Evaluation of integrals
$begingroup$
I wast to evaluate the following integrals:
begin{multline} label{eqlens12}
int_0^{infty}frac{(1+4lambda^2)}{(1+lambda^2)left[lambdasin(2eta_2)+sinh(2lambdaeta_2)right]} \
left{lambdasin(2eta_2)+sinh(2lambdaeta_2)+left[1+2lambda^2sin^2eta_2-cosh(2lambdaeta_2)right]tanh(lambdapi)right},dlambda.
end{multline}
begin{equation} label{eqlens11}
int_0^{infty}frac{(1+4lambda^2)left{1+(1+2lambda^2)left[3cosh(lambdapi)-cosh(3lambdapi)right]
-3cosh(2lambdapi)right},dlambda}{2(1+lambda^2)cosh(lambdapi)left[1+2lambda^2-cosh(3lambdapi)right]}.
end{equation}
begin{equation}
int_0^{infty}(4lambda^2+1)left[1-tanh(lambdaeta_2)tanh(lambdapi)right],dlambda.
end{equation}
In the first and last integrals $pi>eta_2>0$. Would be grateful if anybody can help.
integration
$endgroup$
add a comment |
$begingroup$
I wast to evaluate the following integrals:
begin{multline} label{eqlens12}
int_0^{infty}frac{(1+4lambda^2)}{(1+lambda^2)left[lambdasin(2eta_2)+sinh(2lambdaeta_2)right]} \
left{lambdasin(2eta_2)+sinh(2lambdaeta_2)+left[1+2lambda^2sin^2eta_2-cosh(2lambdaeta_2)right]tanh(lambdapi)right},dlambda.
end{multline}
begin{equation} label{eqlens11}
int_0^{infty}frac{(1+4lambda^2)left{1+(1+2lambda^2)left[3cosh(lambdapi)-cosh(3lambdapi)right]
-3cosh(2lambdapi)right},dlambda}{2(1+lambda^2)cosh(lambdapi)left[1+2lambda^2-cosh(3lambdapi)right]}.
end{equation}
begin{equation}
int_0^{infty}(4lambda^2+1)left[1-tanh(lambdaeta_2)tanh(lambdapi)right],dlambda.
end{equation}
In the first and last integrals $pi>eta_2>0$. Would be grateful if anybody can help.
integration
$endgroup$
$begingroup$
Have you tried with WolframAlpha?
$endgroup$
– Nosrati
Dec 14 '18 at 12:53
$begingroup$
Yes, of course. It is able to evaluate the integrals for special values of $eta_2$ (especially in the last integral, it is able to evaluate for $eta_2=pi/4,pi/2,pi$ etc. (the upper limit for $eta_2$ should $le pi$ and not $<pi$), but I am not able to find the general expression from these particular cases.
$endgroup$
– Jog
Dec 15 '18 at 3:31
add a comment |
$begingroup$
I wast to evaluate the following integrals:
begin{multline} label{eqlens12}
int_0^{infty}frac{(1+4lambda^2)}{(1+lambda^2)left[lambdasin(2eta_2)+sinh(2lambdaeta_2)right]} \
left{lambdasin(2eta_2)+sinh(2lambdaeta_2)+left[1+2lambda^2sin^2eta_2-cosh(2lambdaeta_2)right]tanh(lambdapi)right},dlambda.
end{multline}
begin{equation} label{eqlens11}
int_0^{infty}frac{(1+4lambda^2)left{1+(1+2lambda^2)left[3cosh(lambdapi)-cosh(3lambdapi)right]
-3cosh(2lambdapi)right},dlambda}{2(1+lambda^2)cosh(lambdapi)left[1+2lambda^2-cosh(3lambdapi)right]}.
end{equation}
begin{equation}
int_0^{infty}(4lambda^2+1)left[1-tanh(lambdaeta_2)tanh(lambdapi)right],dlambda.
end{equation}
In the first and last integrals $pi>eta_2>0$. Would be grateful if anybody can help.
integration
$endgroup$
I wast to evaluate the following integrals:
begin{multline} label{eqlens12}
int_0^{infty}frac{(1+4lambda^2)}{(1+lambda^2)left[lambdasin(2eta_2)+sinh(2lambdaeta_2)right]} \
left{lambdasin(2eta_2)+sinh(2lambdaeta_2)+left[1+2lambda^2sin^2eta_2-cosh(2lambdaeta_2)right]tanh(lambdapi)right},dlambda.
end{multline}
begin{equation} label{eqlens11}
int_0^{infty}frac{(1+4lambda^2)left{1+(1+2lambda^2)left[3cosh(lambdapi)-cosh(3lambdapi)right]
-3cosh(2lambdapi)right},dlambda}{2(1+lambda^2)cosh(lambdapi)left[1+2lambda^2-cosh(3lambdapi)right]}.
end{equation}
begin{equation}
int_0^{infty}(4lambda^2+1)left[1-tanh(lambdaeta_2)tanh(lambdapi)right],dlambda.
end{equation}
In the first and last integrals $pi>eta_2>0$. Would be grateful if anybody can help.
integration
integration
asked Dec 14 '18 at 9:22
JogJog
64
64
$begingroup$
Have you tried with WolframAlpha?
$endgroup$
– Nosrati
Dec 14 '18 at 12:53
$begingroup$
Yes, of course. It is able to evaluate the integrals for special values of $eta_2$ (especially in the last integral, it is able to evaluate for $eta_2=pi/4,pi/2,pi$ etc. (the upper limit for $eta_2$ should $le pi$ and not $<pi$), but I am not able to find the general expression from these particular cases.
$endgroup$
– Jog
Dec 15 '18 at 3:31
add a comment |
$begingroup$
Have you tried with WolframAlpha?
$endgroup$
– Nosrati
Dec 14 '18 at 12:53
$begingroup$
Yes, of course. It is able to evaluate the integrals for special values of $eta_2$ (especially in the last integral, it is able to evaluate for $eta_2=pi/4,pi/2,pi$ etc. (the upper limit for $eta_2$ should $le pi$ and not $<pi$), but I am not able to find the general expression from these particular cases.
$endgroup$
– Jog
Dec 15 '18 at 3:31
$begingroup$
Have you tried with WolframAlpha?
$endgroup$
– Nosrati
Dec 14 '18 at 12:53
$begingroup$
Have you tried with WolframAlpha?
$endgroup$
– Nosrati
Dec 14 '18 at 12:53
$begingroup$
Yes, of course. It is able to evaluate the integrals for special values of $eta_2$ (especially in the last integral, it is able to evaluate for $eta_2=pi/4,pi/2,pi$ etc. (the upper limit for $eta_2$ should $le pi$ and not $<pi$), but I am not able to find the general expression from these particular cases.
$endgroup$
– Jog
Dec 15 '18 at 3:31
$begingroup$
Yes, of course. It is able to evaluate the integrals for special values of $eta_2$ (especially in the last integral, it is able to evaluate for $eta_2=pi/4,pi/2,pi$ etc. (the upper limit for $eta_2$ should $le pi$ and not $<pi$), but I am not able to find the general expression from these particular cases.
$endgroup$
– Jog
Dec 15 '18 at 3:31
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039144%2fevaluation-of-integrals%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039144%2fevaluation-of-integrals%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Have you tried with WolframAlpha?
$endgroup$
– Nosrati
Dec 14 '18 at 12:53
$begingroup$
Yes, of course. It is able to evaluate the integrals for special values of $eta_2$ (especially in the last integral, it is able to evaluate for $eta_2=pi/4,pi/2,pi$ etc. (the upper limit for $eta_2$ should $le pi$ and not $<pi$), but I am not able to find the general expression from these particular cases.
$endgroup$
– Jog
Dec 15 '18 at 3:31