How to find the derivative of the function at $0$
How to find the derivative of the function at $0$
$f(x)=e^{-frac{1}{x^2}}sinfrac{1}{x}$ if $xne0$
$=0$ if $x=0$
I cannnot evaluate the limit $$lim_{xto0}frac{e^{-frac{1}{x^2}}sinfrac{1}{x}}{x}.$$
L'Hospital is not working here.
Please help.
real-analysis
add a comment |
How to find the derivative of the function at $0$
$f(x)=e^{-frac{1}{x^2}}sinfrac{1}{x}$ if $xne0$
$=0$ if $x=0$
I cannnot evaluate the limit $$lim_{xto0}frac{e^{-frac{1}{x^2}}sinfrac{1}{x}}{x}.$$
L'Hospital is not working here.
Please help.
real-analysis
add a comment |
How to find the derivative of the function at $0$
$f(x)=e^{-frac{1}{x^2}}sinfrac{1}{x}$ if $xne0$
$=0$ if $x=0$
I cannnot evaluate the limit $$lim_{xto0}frac{e^{-frac{1}{x^2}}sinfrac{1}{x}}{x}.$$
L'Hospital is not working here.
Please help.
real-analysis
How to find the derivative of the function at $0$
$f(x)=e^{-frac{1}{x^2}}sinfrac{1}{x}$ if $xne0$
$=0$ if $x=0$
I cannnot evaluate the limit $$lim_{xto0}frac{e^{-frac{1}{x^2}}sinfrac{1}{x}}{x}.$$
L'Hospital is not working here.
Please help.
real-analysis
real-analysis
asked Nov 22 at 3:11
Jave
458114
458114
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
Hint 1: $-1le sin(1/x)le 1$.
Hint 2: $displaystyle lim_{xto 0}frac{1}{x}e^{-1/x^2} = lim_{yto pminfty} ycdot e^{-y^2}$.
I have tried this but could not solve yet the rest of the limit.
– Jave
Nov 22 at 3:25
add a comment |
You already know that $|sin(1/x)|le 1$. This helps you only if the rest is $0$. So do a change of variable $y=1/x$ and use $e^{-frac 1{x^2}}=frac 1 {e^{y^2}}$. Now you need to calculate $$lim_{ytopminfty}frac y{e^{y^2}}$$
add a comment |
$-1le sin(1/x)le 1 ::text{and let $frac1x=t$}implies -dfrac{t}{e^{t^2}}leq sin tdfrac{t} {e^{t^2}} leq dfrac{t}{e^{t^2}}$ Taking limit as $trightarrow infty$ and using L'hopital rule we get $displaystyle lim_{trightarrowinfty}sin tdfrac{t} {e^{t^2}}=0$.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3008702%2fhow-to-find-the-derivative-of-the-function-at-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
Hint 1: $-1le sin(1/x)le 1$.
Hint 2: $displaystyle lim_{xto 0}frac{1}{x}e^{-1/x^2} = lim_{yto pminfty} ycdot e^{-y^2}$.
I have tried this but could not solve yet the rest of the limit.
– Jave
Nov 22 at 3:25
add a comment |
Hint 1: $-1le sin(1/x)le 1$.
Hint 2: $displaystyle lim_{xto 0}frac{1}{x}e^{-1/x^2} = lim_{yto pminfty} ycdot e^{-y^2}$.
I have tried this but could not solve yet the rest of the limit.
– Jave
Nov 22 at 3:25
add a comment |
Hint 1: $-1le sin(1/x)le 1$.
Hint 2: $displaystyle lim_{xto 0}frac{1}{x}e^{-1/x^2} = lim_{yto pminfty} ycdot e^{-y^2}$.
Hint 1: $-1le sin(1/x)le 1$.
Hint 2: $displaystyle lim_{xto 0}frac{1}{x}e^{-1/x^2} = lim_{yto pminfty} ycdot e^{-y^2}$.
edited Nov 22 at 3:36
answered Nov 22 at 3:23
Torsten Schoeneberg
3,6812833
3,6812833
I have tried this but could not solve yet the rest of the limit.
– Jave
Nov 22 at 3:25
add a comment |
I have tried this but could not solve yet the rest of the limit.
– Jave
Nov 22 at 3:25
I have tried this but could not solve yet the rest of the limit.
– Jave
Nov 22 at 3:25
I have tried this but could not solve yet the rest of the limit.
– Jave
Nov 22 at 3:25
add a comment |
You already know that $|sin(1/x)|le 1$. This helps you only if the rest is $0$. So do a change of variable $y=1/x$ and use $e^{-frac 1{x^2}}=frac 1 {e^{y^2}}$. Now you need to calculate $$lim_{ytopminfty}frac y{e^{y^2}}$$
add a comment |
You already know that $|sin(1/x)|le 1$. This helps you only if the rest is $0$. So do a change of variable $y=1/x$ and use $e^{-frac 1{x^2}}=frac 1 {e^{y^2}}$. Now you need to calculate $$lim_{ytopminfty}frac y{e^{y^2}}$$
add a comment |
You already know that $|sin(1/x)|le 1$. This helps you only if the rest is $0$. So do a change of variable $y=1/x$ and use $e^{-frac 1{x^2}}=frac 1 {e^{y^2}}$. Now you need to calculate $$lim_{ytopminfty}frac y{e^{y^2}}$$
You already know that $|sin(1/x)|le 1$. This helps you only if the rest is $0$. So do a change of variable $y=1/x$ and use $e^{-frac 1{x^2}}=frac 1 {e^{y^2}}$. Now you need to calculate $$lim_{ytopminfty}frac y{e^{y^2}}$$
answered Nov 22 at 3:34
Andrei
10.8k21025
10.8k21025
add a comment |
add a comment |
$-1le sin(1/x)le 1 ::text{and let $frac1x=t$}implies -dfrac{t}{e^{t^2}}leq sin tdfrac{t} {e^{t^2}} leq dfrac{t}{e^{t^2}}$ Taking limit as $trightarrow infty$ and using L'hopital rule we get $displaystyle lim_{trightarrowinfty}sin tdfrac{t} {e^{t^2}}=0$.
add a comment |
$-1le sin(1/x)le 1 ::text{and let $frac1x=t$}implies -dfrac{t}{e^{t^2}}leq sin tdfrac{t} {e^{t^2}} leq dfrac{t}{e^{t^2}}$ Taking limit as $trightarrow infty$ and using L'hopital rule we get $displaystyle lim_{trightarrowinfty}sin tdfrac{t} {e^{t^2}}=0$.
add a comment |
$-1le sin(1/x)le 1 ::text{and let $frac1x=t$}implies -dfrac{t}{e^{t^2}}leq sin tdfrac{t} {e^{t^2}} leq dfrac{t}{e^{t^2}}$ Taking limit as $trightarrow infty$ and using L'hopital rule we get $displaystyle lim_{trightarrowinfty}sin tdfrac{t} {e^{t^2}}=0$.
$-1le sin(1/x)le 1 ::text{and let $frac1x=t$}implies -dfrac{t}{e^{t^2}}leq sin tdfrac{t} {e^{t^2}} leq dfrac{t}{e^{t^2}}$ Taking limit as $trightarrow infty$ and using L'hopital rule we get $displaystyle lim_{trightarrowinfty}sin tdfrac{t} {e^{t^2}}=0$.
answered Nov 22 at 3:40
Yadati Kiran
1,698519
1,698519
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3008702%2fhow-to-find-the-derivative-of-the-function-at-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown