Integral of following fractional part
How would I evaluate this integral, where $nin R$ and ${,.}$ is the fractional part?
$$int_{-4}^4{nx},dx$$
I want to use it in one of problems of the ellipse. Thanks. I haven't shown any effort as I got no good step towards the solution.
integration definite-integrals fractional-part
add a comment |
How would I evaluate this integral, where $nin R$ and ${,.}$ is the fractional part?
$$int_{-4}^4{nx},dx$$
I want to use it in one of problems of the ellipse. Thanks. I haven't shown any effort as I got no good step towards the solution.
integration definite-integrals fractional-part
1
The indefinite integral cannot be calculated as such, only the definite integral can be, so you need to supply the upper and lower bounds.
– SchrodingersCat
Jul 21 '16 at 14:40
1
If it was a definite integral, we could write ${nx}=nx-lfloor nx rfloor$ and then integrate the floor function with proper range.
– StubbornAtom
Jul 21 '16 at 14:44
add a comment |
How would I evaluate this integral, where $nin R$ and ${,.}$ is the fractional part?
$$int_{-4}^4{nx},dx$$
I want to use it in one of problems of the ellipse. Thanks. I haven't shown any effort as I got no good step towards the solution.
integration definite-integrals fractional-part
How would I evaluate this integral, where $nin R$ and ${,.}$ is the fractional part?
$$int_{-4}^4{nx},dx$$
I want to use it in one of problems of the ellipse. Thanks. I haven't shown any effort as I got no good step towards the solution.
integration definite-integrals fractional-part
integration definite-integrals fractional-part
edited Jul 19 at 16:51
Robert Howard
1,9161822
1,9161822
asked Jul 21 '16 at 14:37
Archis Welankar
12k41640
12k41640
1
The indefinite integral cannot be calculated as such, only the definite integral can be, so you need to supply the upper and lower bounds.
– SchrodingersCat
Jul 21 '16 at 14:40
1
If it was a definite integral, we could write ${nx}=nx-lfloor nx rfloor$ and then integrate the floor function with proper range.
– StubbornAtom
Jul 21 '16 at 14:44
add a comment |
1
The indefinite integral cannot be calculated as such, only the definite integral can be, so you need to supply the upper and lower bounds.
– SchrodingersCat
Jul 21 '16 at 14:40
1
If it was a definite integral, we could write ${nx}=nx-lfloor nx rfloor$ and then integrate the floor function with proper range.
– StubbornAtom
Jul 21 '16 at 14:44
1
1
The indefinite integral cannot be calculated as such, only the definite integral can be, so you need to supply the upper and lower bounds.
– SchrodingersCat
Jul 21 '16 at 14:40
The indefinite integral cannot be calculated as such, only the definite integral can be, so you need to supply the upper and lower bounds.
– SchrodingersCat
Jul 21 '16 at 14:40
1
1
If it was a definite integral, we could write ${nx}=nx-lfloor nx rfloor$ and then integrate the floor function with proper range.
– StubbornAtom
Jul 21 '16 at 14:44
If it was a definite integral, we could write ${nx}=nx-lfloor nx rfloor$ and then integrate the floor function with proper range.
– StubbornAtom
Jul 21 '16 at 14:44
add a comment |
1 Answer
1
active
oldest
votes
Let's start. $$begin{aligned}int_{-4}^4{nx},dx&=left[begin{matrix}t=n x\dx=frac{dt}nend{matrix}right]=int_{-4n}^{4n}frac{{t}}n,dt=frac1nint_{-4n}^{4n}{t},dt=frac1nint_{-4n}^{4n}left(t-lfloor trfloorright),dt=\
&=frac1nleft(int_{-4n}^{4n}t~dt-int_{-4n}^{4n}lfloor trfloor~dtright)=-frac1nint_{-4n}^{4n}lfloor trfloor~dt=Iend{aligned}$$
Denote $N=lfloor 4nrfloor$. Then $$lfloor -4nrfloor=begin{cases}-N, & 4ninmathbb{Z} & (1)\-N-1, & 4ninmathbb{R}setminusmathbb{Z} & (2)end{cases}$$
When $4ninmathbb{Z}$ $$begin{aligned}I^{(1)}&=-frac1nint_{-4n}^{4n}lfloor trfloor~dt=-frac1nsum_{k=-N}^{N-1}int_k^{k+1}lfloor trfloor~dt=-frac1nsum_{k=-N}^{N-1}int_k^{k+1}k~dt=-frac1nsum_{k=-N}^{N-1}k~dt=\
&=-frac1n(-N)=frac{N}n=frac{lfloor 4nrfloor}{n}=left[4ninmathbb{Z},lfloor 4nrfloor=4nright]=frac{4n}n=4end{aligned}$$
When $4ninmathbb{R}setminusmathbb{Z}$ $$begin{aligned}I^{(2)}&=-frac1nint_{-4n}^{4n}lfloor trfloor~dt=-frac1nleft(int_{-4n}^{-N}lfloor trfloor~dt+int_{-N}^{N}lfloor trfloor~dt+int_{N}^{4n}lfloor trfloor~dtright)=\
&=-frac1nleft(int_{-4n}^{-N}(-N-1)~dt+sum_{k=-N}^{N-1}int_k^{k+1}lfloor trfloor~dt+int_{N}^{4n}N~dtright)=\
&=-frac1nleft((-N-1)(-N+4n)+sum_{k=-N}^{N-1}int_k^{k+1}k~dt+N(4n-N)right)=\
&=-frac1nleft((N+1)(N-4n)+sum_{k=-N}^{N-1}k+4nN-N^2right)=\
&=-frac1nleft(N^2+N-4nN-4n-N+4nN-N^2right)=\
&=-frac1n(-4n)=4end{aligned}$$
Thus $$I=I^{(1)}=I^{(2)}=4$$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1866523%2fintegral-of-following-fractional-part%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Let's start. $$begin{aligned}int_{-4}^4{nx},dx&=left[begin{matrix}t=n x\dx=frac{dt}nend{matrix}right]=int_{-4n}^{4n}frac{{t}}n,dt=frac1nint_{-4n}^{4n}{t},dt=frac1nint_{-4n}^{4n}left(t-lfloor trfloorright),dt=\
&=frac1nleft(int_{-4n}^{4n}t~dt-int_{-4n}^{4n}lfloor trfloor~dtright)=-frac1nint_{-4n}^{4n}lfloor trfloor~dt=Iend{aligned}$$
Denote $N=lfloor 4nrfloor$. Then $$lfloor -4nrfloor=begin{cases}-N, & 4ninmathbb{Z} & (1)\-N-1, & 4ninmathbb{R}setminusmathbb{Z} & (2)end{cases}$$
When $4ninmathbb{Z}$ $$begin{aligned}I^{(1)}&=-frac1nint_{-4n}^{4n}lfloor trfloor~dt=-frac1nsum_{k=-N}^{N-1}int_k^{k+1}lfloor trfloor~dt=-frac1nsum_{k=-N}^{N-1}int_k^{k+1}k~dt=-frac1nsum_{k=-N}^{N-1}k~dt=\
&=-frac1n(-N)=frac{N}n=frac{lfloor 4nrfloor}{n}=left[4ninmathbb{Z},lfloor 4nrfloor=4nright]=frac{4n}n=4end{aligned}$$
When $4ninmathbb{R}setminusmathbb{Z}$ $$begin{aligned}I^{(2)}&=-frac1nint_{-4n}^{4n}lfloor trfloor~dt=-frac1nleft(int_{-4n}^{-N}lfloor trfloor~dt+int_{-N}^{N}lfloor trfloor~dt+int_{N}^{4n}lfloor trfloor~dtright)=\
&=-frac1nleft(int_{-4n}^{-N}(-N-1)~dt+sum_{k=-N}^{N-1}int_k^{k+1}lfloor trfloor~dt+int_{N}^{4n}N~dtright)=\
&=-frac1nleft((-N-1)(-N+4n)+sum_{k=-N}^{N-1}int_k^{k+1}k~dt+N(4n-N)right)=\
&=-frac1nleft((N+1)(N-4n)+sum_{k=-N}^{N-1}k+4nN-N^2right)=\
&=-frac1nleft(N^2+N-4nN-4n-N+4nN-N^2right)=\
&=-frac1n(-4n)=4end{aligned}$$
Thus $$I=I^{(1)}=I^{(2)}=4$$
add a comment |
Let's start. $$begin{aligned}int_{-4}^4{nx},dx&=left[begin{matrix}t=n x\dx=frac{dt}nend{matrix}right]=int_{-4n}^{4n}frac{{t}}n,dt=frac1nint_{-4n}^{4n}{t},dt=frac1nint_{-4n}^{4n}left(t-lfloor trfloorright),dt=\
&=frac1nleft(int_{-4n}^{4n}t~dt-int_{-4n}^{4n}lfloor trfloor~dtright)=-frac1nint_{-4n}^{4n}lfloor trfloor~dt=Iend{aligned}$$
Denote $N=lfloor 4nrfloor$. Then $$lfloor -4nrfloor=begin{cases}-N, & 4ninmathbb{Z} & (1)\-N-1, & 4ninmathbb{R}setminusmathbb{Z} & (2)end{cases}$$
When $4ninmathbb{Z}$ $$begin{aligned}I^{(1)}&=-frac1nint_{-4n}^{4n}lfloor trfloor~dt=-frac1nsum_{k=-N}^{N-1}int_k^{k+1}lfloor trfloor~dt=-frac1nsum_{k=-N}^{N-1}int_k^{k+1}k~dt=-frac1nsum_{k=-N}^{N-1}k~dt=\
&=-frac1n(-N)=frac{N}n=frac{lfloor 4nrfloor}{n}=left[4ninmathbb{Z},lfloor 4nrfloor=4nright]=frac{4n}n=4end{aligned}$$
When $4ninmathbb{R}setminusmathbb{Z}$ $$begin{aligned}I^{(2)}&=-frac1nint_{-4n}^{4n}lfloor trfloor~dt=-frac1nleft(int_{-4n}^{-N}lfloor trfloor~dt+int_{-N}^{N}lfloor trfloor~dt+int_{N}^{4n}lfloor trfloor~dtright)=\
&=-frac1nleft(int_{-4n}^{-N}(-N-1)~dt+sum_{k=-N}^{N-1}int_k^{k+1}lfloor trfloor~dt+int_{N}^{4n}N~dtright)=\
&=-frac1nleft((-N-1)(-N+4n)+sum_{k=-N}^{N-1}int_k^{k+1}k~dt+N(4n-N)right)=\
&=-frac1nleft((N+1)(N-4n)+sum_{k=-N}^{N-1}k+4nN-N^2right)=\
&=-frac1nleft(N^2+N-4nN-4n-N+4nN-N^2right)=\
&=-frac1n(-4n)=4end{aligned}$$
Thus $$I=I^{(1)}=I^{(2)}=4$$
add a comment |
Let's start. $$begin{aligned}int_{-4}^4{nx},dx&=left[begin{matrix}t=n x\dx=frac{dt}nend{matrix}right]=int_{-4n}^{4n}frac{{t}}n,dt=frac1nint_{-4n}^{4n}{t},dt=frac1nint_{-4n}^{4n}left(t-lfloor trfloorright),dt=\
&=frac1nleft(int_{-4n}^{4n}t~dt-int_{-4n}^{4n}lfloor trfloor~dtright)=-frac1nint_{-4n}^{4n}lfloor trfloor~dt=Iend{aligned}$$
Denote $N=lfloor 4nrfloor$. Then $$lfloor -4nrfloor=begin{cases}-N, & 4ninmathbb{Z} & (1)\-N-1, & 4ninmathbb{R}setminusmathbb{Z} & (2)end{cases}$$
When $4ninmathbb{Z}$ $$begin{aligned}I^{(1)}&=-frac1nint_{-4n}^{4n}lfloor trfloor~dt=-frac1nsum_{k=-N}^{N-1}int_k^{k+1}lfloor trfloor~dt=-frac1nsum_{k=-N}^{N-1}int_k^{k+1}k~dt=-frac1nsum_{k=-N}^{N-1}k~dt=\
&=-frac1n(-N)=frac{N}n=frac{lfloor 4nrfloor}{n}=left[4ninmathbb{Z},lfloor 4nrfloor=4nright]=frac{4n}n=4end{aligned}$$
When $4ninmathbb{R}setminusmathbb{Z}$ $$begin{aligned}I^{(2)}&=-frac1nint_{-4n}^{4n}lfloor trfloor~dt=-frac1nleft(int_{-4n}^{-N}lfloor trfloor~dt+int_{-N}^{N}lfloor trfloor~dt+int_{N}^{4n}lfloor trfloor~dtright)=\
&=-frac1nleft(int_{-4n}^{-N}(-N-1)~dt+sum_{k=-N}^{N-1}int_k^{k+1}lfloor trfloor~dt+int_{N}^{4n}N~dtright)=\
&=-frac1nleft((-N-1)(-N+4n)+sum_{k=-N}^{N-1}int_k^{k+1}k~dt+N(4n-N)right)=\
&=-frac1nleft((N+1)(N-4n)+sum_{k=-N}^{N-1}k+4nN-N^2right)=\
&=-frac1nleft(N^2+N-4nN-4n-N+4nN-N^2right)=\
&=-frac1n(-4n)=4end{aligned}$$
Thus $$I=I^{(1)}=I^{(2)}=4$$
Let's start. $$begin{aligned}int_{-4}^4{nx},dx&=left[begin{matrix}t=n x\dx=frac{dt}nend{matrix}right]=int_{-4n}^{4n}frac{{t}}n,dt=frac1nint_{-4n}^{4n}{t},dt=frac1nint_{-4n}^{4n}left(t-lfloor trfloorright),dt=\
&=frac1nleft(int_{-4n}^{4n}t~dt-int_{-4n}^{4n}lfloor trfloor~dtright)=-frac1nint_{-4n}^{4n}lfloor trfloor~dt=Iend{aligned}$$
Denote $N=lfloor 4nrfloor$. Then $$lfloor -4nrfloor=begin{cases}-N, & 4ninmathbb{Z} & (1)\-N-1, & 4ninmathbb{R}setminusmathbb{Z} & (2)end{cases}$$
When $4ninmathbb{Z}$ $$begin{aligned}I^{(1)}&=-frac1nint_{-4n}^{4n}lfloor trfloor~dt=-frac1nsum_{k=-N}^{N-1}int_k^{k+1}lfloor trfloor~dt=-frac1nsum_{k=-N}^{N-1}int_k^{k+1}k~dt=-frac1nsum_{k=-N}^{N-1}k~dt=\
&=-frac1n(-N)=frac{N}n=frac{lfloor 4nrfloor}{n}=left[4ninmathbb{Z},lfloor 4nrfloor=4nright]=frac{4n}n=4end{aligned}$$
When $4ninmathbb{R}setminusmathbb{Z}$ $$begin{aligned}I^{(2)}&=-frac1nint_{-4n}^{4n}lfloor trfloor~dt=-frac1nleft(int_{-4n}^{-N}lfloor trfloor~dt+int_{-N}^{N}lfloor trfloor~dt+int_{N}^{4n}lfloor trfloor~dtright)=\
&=-frac1nleft(int_{-4n}^{-N}(-N-1)~dt+sum_{k=-N}^{N-1}int_k^{k+1}lfloor trfloor~dt+int_{N}^{4n}N~dtright)=\
&=-frac1nleft((-N-1)(-N+4n)+sum_{k=-N}^{N-1}int_k^{k+1}k~dt+N(4n-N)right)=\
&=-frac1nleft((N+1)(N-4n)+sum_{k=-N}^{N-1}k+4nN-N^2right)=\
&=-frac1nleft(N^2+N-4nN-4n-N+4nN-N^2right)=\
&=-frac1n(-4n)=4end{aligned}$$
Thus $$I=I^{(1)}=I^{(2)}=4$$
answered Nov 23 at 7:00
Mikalai Parshutsich
453315
453315
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1866523%2fintegral-of-following-fractional-part%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
The indefinite integral cannot be calculated as such, only the definite integral can be, so you need to supply the upper and lower bounds.
– SchrodingersCat
Jul 21 '16 at 14:40
1
If it was a definite integral, we could write ${nx}=nx-lfloor nx rfloor$ and then integrate the floor function with proper range.
– StubbornAtom
Jul 21 '16 at 14:44