Integral of following fractional part












2














How would I evaluate this integral, where $nin R$ and ${,.}$ is the fractional part?



$$int_{-4}^4{nx},dx$$



I want to use it in one of problems of the ellipse. Thanks. I haven't shown any effort as I got no good step towards the solution.










share|cite|improve this question




















  • 1




    The indefinite integral cannot be calculated as such, only the definite integral can be, so you need to supply the upper and lower bounds.
    – SchrodingersCat
    Jul 21 '16 at 14:40






  • 1




    If it was a definite integral, we could write ${nx}=nx-lfloor nx rfloor$ and then integrate the floor function with proper range.
    – StubbornAtom
    Jul 21 '16 at 14:44


















2














How would I evaluate this integral, where $nin R$ and ${,.}$ is the fractional part?



$$int_{-4}^4{nx},dx$$



I want to use it in one of problems of the ellipse. Thanks. I haven't shown any effort as I got no good step towards the solution.










share|cite|improve this question




















  • 1




    The indefinite integral cannot be calculated as such, only the definite integral can be, so you need to supply the upper and lower bounds.
    – SchrodingersCat
    Jul 21 '16 at 14:40






  • 1




    If it was a definite integral, we could write ${nx}=nx-lfloor nx rfloor$ and then integrate the floor function with proper range.
    – StubbornAtom
    Jul 21 '16 at 14:44
















2












2








2







How would I evaluate this integral, where $nin R$ and ${,.}$ is the fractional part?



$$int_{-4}^4{nx},dx$$



I want to use it in one of problems of the ellipse. Thanks. I haven't shown any effort as I got no good step towards the solution.










share|cite|improve this question















How would I evaluate this integral, where $nin R$ and ${,.}$ is the fractional part?



$$int_{-4}^4{nx},dx$$



I want to use it in one of problems of the ellipse. Thanks. I haven't shown any effort as I got no good step towards the solution.







integration definite-integrals fractional-part






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jul 19 at 16:51









Robert Howard

1,9161822




1,9161822










asked Jul 21 '16 at 14:37









Archis Welankar

12k41640




12k41640








  • 1




    The indefinite integral cannot be calculated as such, only the definite integral can be, so you need to supply the upper and lower bounds.
    – SchrodingersCat
    Jul 21 '16 at 14:40






  • 1




    If it was a definite integral, we could write ${nx}=nx-lfloor nx rfloor$ and then integrate the floor function with proper range.
    – StubbornAtom
    Jul 21 '16 at 14:44
















  • 1




    The indefinite integral cannot be calculated as such, only the definite integral can be, so you need to supply the upper and lower bounds.
    – SchrodingersCat
    Jul 21 '16 at 14:40






  • 1




    If it was a definite integral, we could write ${nx}=nx-lfloor nx rfloor$ and then integrate the floor function with proper range.
    – StubbornAtom
    Jul 21 '16 at 14:44










1




1




The indefinite integral cannot be calculated as such, only the definite integral can be, so you need to supply the upper and lower bounds.
– SchrodingersCat
Jul 21 '16 at 14:40




The indefinite integral cannot be calculated as such, only the definite integral can be, so you need to supply the upper and lower bounds.
– SchrodingersCat
Jul 21 '16 at 14:40




1




1




If it was a definite integral, we could write ${nx}=nx-lfloor nx rfloor$ and then integrate the floor function with proper range.
– StubbornAtom
Jul 21 '16 at 14:44






If it was a definite integral, we could write ${nx}=nx-lfloor nx rfloor$ and then integrate the floor function with proper range.
– StubbornAtom
Jul 21 '16 at 14:44












1 Answer
1






active

oldest

votes


















1














Let's start. $$begin{aligned}int_{-4}^4{nx},dx&=left[begin{matrix}t=n x\dx=frac{dt}nend{matrix}right]=int_{-4n}^{4n}frac{{t}}n,dt=frac1nint_{-4n}^{4n}{t},dt=frac1nint_{-4n}^{4n}left(t-lfloor trfloorright),dt=\
&=frac1nleft(int_{-4n}^{4n}t~dt-int_{-4n}^{4n}lfloor trfloor~dtright)=-frac1nint_{-4n}^{4n}lfloor trfloor~dt=Iend{aligned}$$

Denote $N=lfloor 4nrfloor$. Then $$lfloor -4nrfloor=begin{cases}-N, & 4ninmathbb{Z} & (1)\-N-1, & 4ninmathbb{R}setminusmathbb{Z} & (2)end{cases}$$
When $4ninmathbb{Z}$ $$begin{aligned}I^{(1)}&=-frac1nint_{-4n}^{4n}lfloor trfloor~dt=-frac1nsum_{k=-N}^{N-1}int_k^{k+1}lfloor trfloor~dt=-frac1nsum_{k=-N}^{N-1}int_k^{k+1}k~dt=-frac1nsum_{k=-N}^{N-1}k~dt=\
&=-frac1n(-N)=frac{N}n=frac{lfloor 4nrfloor}{n}=left[4ninmathbb{Z},lfloor 4nrfloor=4nright]=frac{4n}n=4end{aligned}$$

When $4ninmathbb{R}setminusmathbb{Z}$ $$begin{aligned}I^{(2)}&=-frac1nint_{-4n}^{4n}lfloor trfloor~dt=-frac1nleft(int_{-4n}^{-N}lfloor trfloor~dt+int_{-N}^{N}lfloor trfloor~dt+int_{N}^{4n}lfloor trfloor~dtright)=\
&=-frac1nleft(int_{-4n}^{-N}(-N-1)~dt+sum_{k=-N}^{N-1}int_k^{k+1}lfloor trfloor~dt+int_{N}^{4n}N~dtright)=\
&=-frac1nleft((-N-1)(-N+4n)+sum_{k=-N}^{N-1}int_k^{k+1}k~dt+N(4n-N)right)=\
&=-frac1nleft((N+1)(N-4n)+sum_{k=-N}^{N-1}k+4nN-N^2right)=\
&=-frac1nleft(N^2+N-4nN-4n-N+4nN-N^2right)=\
&=-frac1n(-4n)=4end{aligned}$$

Thus $$I=I^{(1)}=I^{(2)}=4$$






share|cite|improve this answer





















    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1866523%2fintegral-of-following-fractional-part%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1














    Let's start. $$begin{aligned}int_{-4}^4{nx},dx&=left[begin{matrix}t=n x\dx=frac{dt}nend{matrix}right]=int_{-4n}^{4n}frac{{t}}n,dt=frac1nint_{-4n}^{4n}{t},dt=frac1nint_{-4n}^{4n}left(t-lfloor trfloorright),dt=\
    &=frac1nleft(int_{-4n}^{4n}t~dt-int_{-4n}^{4n}lfloor trfloor~dtright)=-frac1nint_{-4n}^{4n}lfloor trfloor~dt=Iend{aligned}$$

    Denote $N=lfloor 4nrfloor$. Then $$lfloor -4nrfloor=begin{cases}-N, & 4ninmathbb{Z} & (1)\-N-1, & 4ninmathbb{R}setminusmathbb{Z} & (2)end{cases}$$
    When $4ninmathbb{Z}$ $$begin{aligned}I^{(1)}&=-frac1nint_{-4n}^{4n}lfloor trfloor~dt=-frac1nsum_{k=-N}^{N-1}int_k^{k+1}lfloor trfloor~dt=-frac1nsum_{k=-N}^{N-1}int_k^{k+1}k~dt=-frac1nsum_{k=-N}^{N-1}k~dt=\
    &=-frac1n(-N)=frac{N}n=frac{lfloor 4nrfloor}{n}=left[4ninmathbb{Z},lfloor 4nrfloor=4nright]=frac{4n}n=4end{aligned}$$

    When $4ninmathbb{R}setminusmathbb{Z}$ $$begin{aligned}I^{(2)}&=-frac1nint_{-4n}^{4n}lfloor trfloor~dt=-frac1nleft(int_{-4n}^{-N}lfloor trfloor~dt+int_{-N}^{N}lfloor trfloor~dt+int_{N}^{4n}lfloor trfloor~dtright)=\
    &=-frac1nleft(int_{-4n}^{-N}(-N-1)~dt+sum_{k=-N}^{N-1}int_k^{k+1}lfloor trfloor~dt+int_{N}^{4n}N~dtright)=\
    &=-frac1nleft((-N-1)(-N+4n)+sum_{k=-N}^{N-1}int_k^{k+1}k~dt+N(4n-N)right)=\
    &=-frac1nleft((N+1)(N-4n)+sum_{k=-N}^{N-1}k+4nN-N^2right)=\
    &=-frac1nleft(N^2+N-4nN-4n-N+4nN-N^2right)=\
    &=-frac1n(-4n)=4end{aligned}$$

    Thus $$I=I^{(1)}=I^{(2)}=4$$






    share|cite|improve this answer


























      1














      Let's start. $$begin{aligned}int_{-4}^4{nx},dx&=left[begin{matrix}t=n x\dx=frac{dt}nend{matrix}right]=int_{-4n}^{4n}frac{{t}}n,dt=frac1nint_{-4n}^{4n}{t},dt=frac1nint_{-4n}^{4n}left(t-lfloor trfloorright),dt=\
      &=frac1nleft(int_{-4n}^{4n}t~dt-int_{-4n}^{4n}lfloor trfloor~dtright)=-frac1nint_{-4n}^{4n}lfloor trfloor~dt=Iend{aligned}$$

      Denote $N=lfloor 4nrfloor$. Then $$lfloor -4nrfloor=begin{cases}-N, & 4ninmathbb{Z} & (1)\-N-1, & 4ninmathbb{R}setminusmathbb{Z} & (2)end{cases}$$
      When $4ninmathbb{Z}$ $$begin{aligned}I^{(1)}&=-frac1nint_{-4n}^{4n}lfloor trfloor~dt=-frac1nsum_{k=-N}^{N-1}int_k^{k+1}lfloor trfloor~dt=-frac1nsum_{k=-N}^{N-1}int_k^{k+1}k~dt=-frac1nsum_{k=-N}^{N-1}k~dt=\
      &=-frac1n(-N)=frac{N}n=frac{lfloor 4nrfloor}{n}=left[4ninmathbb{Z},lfloor 4nrfloor=4nright]=frac{4n}n=4end{aligned}$$

      When $4ninmathbb{R}setminusmathbb{Z}$ $$begin{aligned}I^{(2)}&=-frac1nint_{-4n}^{4n}lfloor trfloor~dt=-frac1nleft(int_{-4n}^{-N}lfloor trfloor~dt+int_{-N}^{N}lfloor trfloor~dt+int_{N}^{4n}lfloor trfloor~dtright)=\
      &=-frac1nleft(int_{-4n}^{-N}(-N-1)~dt+sum_{k=-N}^{N-1}int_k^{k+1}lfloor trfloor~dt+int_{N}^{4n}N~dtright)=\
      &=-frac1nleft((-N-1)(-N+4n)+sum_{k=-N}^{N-1}int_k^{k+1}k~dt+N(4n-N)right)=\
      &=-frac1nleft((N+1)(N-4n)+sum_{k=-N}^{N-1}k+4nN-N^2right)=\
      &=-frac1nleft(N^2+N-4nN-4n-N+4nN-N^2right)=\
      &=-frac1n(-4n)=4end{aligned}$$

      Thus $$I=I^{(1)}=I^{(2)}=4$$






      share|cite|improve this answer
























        1












        1








        1






        Let's start. $$begin{aligned}int_{-4}^4{nx},dx&=left[begin{matrix}t=n x\dx=frac{dt}nend{matrix}right]=int_{-4n}^{4n}frac{{t}}n,dt=frac1nint_{-4n}^{4n}{t},dt=frac1nint_{-4n}^{4n}left(t-lfloor trfloorright),dt=\
        &=frac1nleft(int_{-4n}^{4n}t~dt-int_{-4n}^{4n}lfloor trfloor~dtright)=-frac1nint_{-4n}^{4n}lfloor trfloor~dt=Iend{aligned}$$

        Denote $N=lfloor 4nrfloor$. Then $$lfloor -4nrfloor=begin{cases}-N, & 4ninmathbb{Z} & (1)\-N-1, & 4ninmathbb{R}setminusmathbb{Z} & (2)end{cases}$$
        When $4ninmathbb{Z}$ $$begin{aligned}I^{(1)}&=-frac1nint_{-4n}^{4n}lfloor trfloor~dt=-frac1nsum_{k=-N}^{N-1}int_k^{k+1}lfloor trfloor~dt=-frac1nsum_{k=-N}^{N-1}int_k^{k+1}k~dt=-frac1nsum_{k=-N}^{N-1}k~dt=\
        &=-frac1n(-N)=frac{N}n=frac{lfloor 4nrfloor}{n}=left[4ninmathbb{Z},lfloor 4nrfloor=4nright]=frac{4n}n=4end{aligned}$$

        When $4ninmathbb{R}setminusmathbb{Z}$ $$begin{aligned}I^{(2)}&=-frac1nint_{-4n}^{4n}lfloor trfloor~dt=-frac1nleft(int_{-4n}^{-N}lfloor trfloor~dt+int_{-N}^{N}lfloor trfloor~dt+int_{N}^{4n}lfloor trfloor~dtright)=\
        &=-frac1nleft(int_{-4n}^{-N}(-N-1)~dt+sum_{k=-N}^{N-1}int_k^{k+1}lfloor trfloor~dt+int_{N}^{4n}N~dtright)=\
        &=-frac1nleft((-N-1)(-N+4n)+sum_{k=-N}^{N-1}int_k^{k+1}k~dt+N(4n-N)right)=\
        &=-frac1nleft((N+1)(N-4n)+sum_{k=-N}^{N-1}k+4nN-N^2right)=\
        &=-frac1nleft(N^2+N-4nN-4n-N+4nN-N^2right)=\
        &=-frac1n(-4n)=4end{aligned}$$

        Thus $$I=I^{(1)}=I^{(2)}=4$$






        share|cite|improve this answer












        Let's start. $$begin{aligned}int_{-4}^4{nx},dx&=left[begin{matrix}t=n x\dx=frac{dt}nend{matrix}right]=int_{-4n}^{4n}frac{{t}}n,dt=frac1nint_{-4n}^{4n}{t},dt=frac1nint_{-4n}^{4n}left(t-lfloor trfloorright),dt=\
        &=frac1nleft(int_{-4n}^{4n}t~dt-int_{-4n}^{4n}lfloor trfloor~dtright)=-frac1nint_{-4n}^{4n}lfloor trfloor~dt=Iend{aligned}$$

        Denote $N=lfloor 4nrfloor$. Then $$lfloor -4nrfloor=begin{cases}-N, & 4ninmathbb{Z} & (1)\-N-1, & 4ninmathbb{R}setminusmathbb{Z} & (2)end{cases}$$
        When $4ninmathbb{Z}$ $$begin{aligned}I^{(1)}&=-frac1nint_{-4n}^{4n}lfloor trfloor~dt=-frac1nsum_{k=-N}^{N-1}int_k^{k+1}lfloor trfloor~dt=-frac1nsum_{k=-N}^{N-1}int_k^{k+1}k~dt=-frac1nsum_{k=-N}^{N-1}k~dt=\
        &=-frac1n(-N)=frac{N}n=frac{lfloor 4nrfloor}{n}=left[4ninmathbb{Z},lfloor 4nrfloor=4nright]=frac{4n}n=4end{aligned}$$

        When $4ninmathbb{R}setminusmathbb{Z}$ $$begin{aligned}I^{(2)}&=-frac1nint_{-4n}^{4n}lfloor trfloor~dt=-frac1nleft(int_{-4n}^{-N}lfloor trfloor~dt+int_{-N}^{N}lfloor trfloor~dt+int_{N}^{4n}lfloor trfloor~dtright)=\
        &=-frac1nleft(int_{-4n}^{-N}(-N-1)~dt+sum_{k=-N}^{N-1}int_k^{k+1}lfloor trfloor~dt+int_{N}^{4n}N~dtright)=\
        &=-frac1nleft((-N-1)(-N+4n)+sum_{k=-N}^{N-1}int_k^{k+1}k~dt+N(4n-N)right)=\
        &=-frac1nleft((N+1)(N-4n)+sum_{k=-N}^{N-1}k+4nN-N^2right)=\
        &=-frac1nleft(N^2+N-4nN-4n-N+4nN-N^2right)=\
        &=-frac1n(-4n)=4end{aligned}$$

        Thus $$I=I^{(1)}=I^{(2)}=4$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Nov 23 at 7:00









        Mikalai Parshutsich

        453315




        453315






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1866523%2fintegral-of-following-fractional-part%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Plaza Victoria

            Puebla de Zaragoza

            Musa