Find the integral $int _{1}^{e} (x ln x)^2 dx$.
Find : $$int _{1}^{e} (x ln x)^2 ;dx.$$
My answer:
I have tried integration by parts with $u = x^2$ and $dv = (ln x)^2$ but I end up having the same integration another time!
I reversed the role of $u$ & $v$, but it also did not work?
Do you have any suggestions ?
calculus integration analysis
add a comment |
Find : $$int _{1}^{e} (x ln x)^2 ;dx.$$
My answer:
I have tried integration by parts with $u = x^2$ and $dv = (ln x)^2$ but I end up having the same integration another time!
I reversed the role of $u$ & $v$, but it also did not work?
Do you have any suggestions ?
calculus integration analysis
add a comment |
Find : $$int _{1}^{e} (x ln x)^2 ;dx.$$
My answer:
I have tried integration by parts with $u = x^2$ and $dv = (ln x)^2$ but I end up having the same integration another time!
I reversed the role of $u$ & $v$, but it also did not work?
Do you have any suggestions ?
calculus integration analysis
Find : $$int _{1}^{e} (x ln x)^2 ;dx.$$
My answer:
I have tried integration by parts with $u = x^2$ and $dv = (ln x)^2$ but I end up having the same integration another time!
I reversed the role of $u$ & $v$, but it also did not work?
Do you have any suggestions ?
calculus integration analysis
calculus integration analysis
edited Nov 27 '18 at 10:14
Anurag A
25.8k12249
25.8k12249
asked Nov 27 '18 at 9:42
hopefullyhopefully
129112
129112
add a comment |
add a comment |
4 Answers
4
active
oldest
votes
Hint:
Let $ln x=yimplies x=e^y,dx=e^y dy$
$$int_1^e(xln x)^2=int_0^1e^{3y}y^2 dy$$
Now $dfrac{d(e^{my}y^n)}{dy}=me^{my}y^n+e^{my}ny^{n-1}$
If $displaystyle I(n)=int e^{my}y^n dy,$
$$mI(n)+nI(n-1)=e^{my}y^n+K$$
Here $m=3,n=2$
add a comment |
Hint: make thus substitution $y =ln, x$ and then integrate by parts.
add a comment |
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
int_{1}^{expo{}}x^{nu},dd x & =
left.{x^{nu +1} over nu + 1},rightvert_{ 1}^{ expo{}} =
{expo{nu +1} - 1 over nu + 1}
\[5mm] &
textsf{Derive twice respect of} nu:
\
int_{1}^{expo{}}x^{nu}ln^{2}pars{x},dd x & =
totald[2]{}{nu}pars{expo{nu +1} - 1 over nu + 1} =
{pars{nu^{2} + 1}expo{nu + 1} - 2 over pars{nu +1}^{3}}
\[5mm] &
textsf{Evaluate the limit} nu to 2:
\
int_{1}^{expo{}}bracks{xlnpars{x}}^{2},dd x & =
bbx{5expo{3} - 2 over 27} approx 3.6455
end{align}
add a comment |
Let $u=(ln x)^2$ and $dv=x^2 ,dx$. Then $du=2(ln x)frac{1}{x} , dx$ and $v=frac{x^3}{3}$. So
$$I=int_1^e(x ln x)^2 , dx=(ln x)^2 frac{x^3}{3}Big|_{1}^{e}-frac{2}{3}int_1^e x^2 ln x , dx.$$
Now we will solve the integral on the right side. Call the integral as $J$. For this $u=ln x$ and $dv=x^2 , dx$. So $du= frac{1}{x},dx$ and $v=frac{x^3}{3}$.Then
$$J=(ln x) frac{x^3}{3}Big|_{1}^{e}-frac{1}{3}int_1^e x^ 2, dx=(ln x) frac{x^3}{3}Big|_{1}^{e}-frac{x^3}{9}Big|_{1}^{e}=frac{e^3}{3}-left(frac{e^3-1}{9}right)=frac{2e^3+1}{9}.$$
So
$$I=frac{e^3}{3}-frac{2}{3}left(frac{2e^3+1}{9}right)=frac{5e^3-2}{27}$$
My final answer is different from you ..... are you sure that yours is correct ?
– hopefully
Nov 27 '18 at 10:10
Mine is $frac {6 e^3 + 3}{27}$
– hopefully
Nov 27 '18 at 10:11
@hopefully I am quite sure my answer is correct.
– Anurag A
Nov 27 '18 at 10:13
the problem with me is your last line ..... all the previous is okay for me
– hopefully
Nov 27 '18 at 10:18
1
@hopefully you are mistaken $J$ has only $x^2 ln x$ (the log term is NOT squared) whereas your actual integral (which I am referring to as $I$) has $(x ln x)^2=x^2 (ln x)^2$.
– Anurag A
Nov 27 '18 at 10:22
|
show 3 more comments
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3015570%2ffind-the-integral-int-1e-x-ln-x2-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
Hint:
Let $ln x=yimplies x=e^y,dx=e^y dy$
$$int_1^e(xln x)^2=int_0^1e^{3y}y^2 dy$$
Now $dfrac{d(e^{my}y^n)}{dy}=me^{my}y^n+e^{my}ny^{n-1}$
If $displaystyle I(n)=int e^{my}y^n dy,$
$$mI(n)+nI(n-1)=e^{my}y^n+K$$
Here $m=3,n=2$
add a comment |
Hint:
Let $ln x=yimplies x=e^y,dx=e^y dy$
$$int_1^e(xln x)^2=int_0^1e^{3y}y^2 dy$$
Now $dfrac{d(e^{my}y^n)}{dy}=me^{my}y^n+e^{my}ny^{n-1}$
If $displaystyle I(n)=int e^{my}y^n dy,$
$$mI(n)+nI(n-1)=e^{my}y^n+K$$
Here $m=3,n=2$
add a comment |
Hint:
Let $ln x=yimplies x=e^y,dx=e^y dy$
$$int_1^e(xln x)^2=int_0^1e^{3y}y^2 dy$$
Now $dfrac{d(e^{my}y^n)}{dy}=me^{my}y^n+e^{my}ny^{n-1}$
If $displaystyle I(n)=int e^{my}y^n dy,$
$$mI(n)+nI(n-1)=e^{my}y^n+K$$
Here $m=3,n=2$
Hint:
Let $ln x=yimplies x=e^y,dx=e^y dy$
$$int_1^e(xln x)^2=int_0^1e^{3y}y^2 dy$$
Now $dfrac{d(e^{my}y^n)}{dy}=me^{my}y^n+e^{my}ny^{n-1}$
If $displaystyle I(n)=int e^{my}y^n dy,$
$$mI(n)+nI(n-1)=e^{my}y^n+K$$
Here $m=3,n=2$
answered Nov 27 '18 at 9:49
lab bhattacharjeelab bhattacharjee
223k15156274
223k15156274
add a comment |
add a comment |
Hint: make thus substitution $y =ln, x$ and then integrate by parts.
add a comment |
Hint: make thus substitution $y =ln, x$ and then integrate by parts.
add a comment |
Hint: make thus substitution $y =ln, x$ and then integrate by parts.
Hint: make thus substitution $y =ln, x$ and then integrate by parts.
answered Nov 27 '18 at 9:48
Kavi Rama MurthyKavi Rama Murthy
51.5k31855
51.5k31855
add a comment |
add a comment |
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
int_{1}^{expo{}}x^{nu},dd x & =
left.{x^{nu +1} over nu + 1},rightvert_{ 1}^{ expo{}} =
{expo{nu +1} - 1 over nu + 1}
\[5mm] &
textsf{Derive twice respect of} nu:
\
int_{1}^{expo{}}x^{nu}ln^{2}pars{x},dd x & =
totald[2]{}{nu}pars{expo{nu +1} - 1 over nu + 1} =
{pars{nu^{2} + 1}expo{nu + 1} - 2 over pars{nu +1}^{3}}
\[5mm] &
textsf{Evaluate the limit} nu to 2:
\
int_{1}^{expo{}}bracks{xlnpars{x}}^{2},dd x & =
bbx{5expo{3} - 2 over 27} approx 3.6455
end{align}
add a comment |
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
int_{1}^{expo{}}x^{nu},dd x & =
left.{x^{nu +1} over nu + 1},rightvert_{ 1}^{ expo{}} =
{expo{nu +1} - 1 over nu + 1}
\[5mm] &
textsf{Derive twice respect of} nu:
\
int_{1}^{expo{}}x^{nu}ln^{2}pars{x},dd x & =
totald[2]{}{nu}pars{expo{nu +1} - 1 over nu + 1} =
{pars{nu^{2} + 1}expo{nu + 1} - 2 over pars{nu +1}^{3}}
\[5mm] &
textsf{Evaluate the limit} nu to 2:
\
int_{1}^{expo{}}bracks{xlnpars{x}}^{2},dd x & =
bbx{5expo{3} - 2 over 27} approx 3.6455
end{align}
add a comment |
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
int_{1}^{expo{}}x^{nu},dd x & =
left.{x^{nu +1} over nu + 1},rightvert_{ 1}^{ expo{}} =
{expo{nu +1} - 1 over nu + 1}
\[5mm] &
textsf{Derive twice respect of} nu:
\
int_{1}^{expo{}}x^{nu}ln^{2}pars{x},dd x & =
totald[2]{}{nu}pars{expo{nu +1} - 1 over nu + 1} =
{pars{nu^{2} + 1}expo{nu + 1} - 2 over pars{nu +1}^{3}}
\[5mm] &
textsf{Evaluate the limit} nu to 2:
\
int_{1}^{expo{}}bracks{xlnpars{x}}^{2},dd x & =
bbx{5expo{3} - 2 over 27} approx 3.6455
end{align}
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
int_{1}^{expo{}}x^{nu},dd x & =
left.{x^{nu +1} over nu + 1},rightvert_{ 1}^{ expo{}} =
{expo{nu +1} - 1 over nu + 1}
\[5mm] &
textsf{Derive twice respect of} nu:
\
int_{1}^{expo{}}x^{nu}ln^{2}pars{x},dd x & =
totald[2]{}{nu}pars{expo{nu +1} - 1 over nu + 1} =
{pars{nu^{2} + 1}expo{nu + 1} - 2 over pars{nu +1}^{3}}
\[5mm] &
textsf{Evaluate the limit} nu to 2:
\
int_{1}^{expo{}}bracks{xlnpars{x}}^{2},dd x & =
bbx{5expo{3} - 2 over 27} approx 3.6455
end{align}
answered Nov 27 '18 at 17:11
Felix MarinFelix Marin
67.3k7107141
67.3k7107141
add a comment |
add a comment |
Let $u=(ln x)^2$ and $dv=x^2 ,dx$. Then $du=2(ln x)frac{1}{x} , dx$ and $v=frac{x^3}{3}$. So
$$I=int_1^e(x ln x)^2 , dx=(ln x)^2 frac{x^3}{3}Big|_{1}^{e}-frac{2}{3}int_1^e x^2 ln x , dx.$$
Now we will solve the integral on the right side. Call the integral as $J$. For this $u=ln x$ and $dv=x^2 , dx$. So $du= frac{1}{x},dx$ and $v=frac{x^3}{3}$.Then
$$J=(ln x) frac{x^3}{3}Big|_{1}^{e}-frac{1}{3}int_1^e x^ 2, dx=(ln x) frac{x^3}{3}Big|_{1}^{e}-frac{x^3}{9}Big|_{1}^{e}=frac{e^3}{3}-left(frac{e^3-1}{9}right)=frac{2e^3+1}{9}.$$
So
$$I=frac{e^3}{3}-frac{2}{3}left(frac{2e^3+1}{9}right)=frac{5e^3-2}{27}$$
My final answer is different from you ..... are you sure that yours is correct ?
– hopefully
Nov 27 '18 at 10:10
Mine is $frac {6 e^3 + 3}{27}$
– hopefully
Nov 27 '18 at 10:11
@hopefully I am quite sure my answer is correct.
– Anurag A
Nov 27 '18 at 10:13
the problem with me is your last line ..... all the previous is okay for me
– hopefully
Nov 27 '18 at 10:18
1
@hopefully you are mistaken $J$ has only $x^2 ln x$ (the log term is NOT squared) whereas your actual integral (which I am referring to as $I$) has $(x ln x)^2=x^2 (ln x)^2$.
– Anurag A
Nov 27 '18 at 10:22
|
show 3 more comments
Let $u=(ln x)^2$ and $dv=x^2 ,dx$. Then $du=2(ln x)frac{1}{x} , dx$ and $v=frac{x^3}{3}$. So
$$I=int_1^e(x ln x)^2 , dx=(ln x)^2 frac{x^3}{3}Big|_{1}^{e}-frac{2}{3}int_1^e x^2 ln x , dx.$$
Now we will solve the integral on the right side. Call the integral as $J$. For this $u=ln x$ and $dv=x^2 , dx$. So $du= frac{1}{x},dx$ and $v=frac{x^3}{3}$.Then
$$J=(ln x) frac{x^3}{3}Big|_{1}^{e}-frac{1}{3}int_1^e x^ 2, dx=(ln x) frac{x^3}{3}Big|_{1}^{e}-frac{x^3}{9}Big|_{1}^{e}=frac{e^3}{3}-left(frac{e^3-1}{9}right)=frac{2e^3+1}{9}.$$
So
$$I=frac{e^3}{3}-frac{2}{3}left(frac{2e^3+1}{9}right)=frac{5e^3-2}{27}$$
My final answer is different from you ..... are you sure that yours is correct ?
– hopefully
Nov 27 '18 at 10:10
Mine is $frac {6 e^3 + 3}{27}$
– hopefully
Nov 27 '18 at 10:11
@hopefully I am quite sure my answer is correct.
– Anurag A
Nov 27 '18 at 10:13
the problem with me is your last line ..... all the previous is okay for me
– hopefully
Nov 27 '18 at 10:18
1
@hopefully you are mistaken $J$ has only $x^2 ln x$ (the log term is NOT squared) whereas your actual integral (which I am referring to as $I$) has $(x ln x)^2=x^2 (ln x)^2$.
– Anurag A
Nov 27 '18 at 10:22
|
show 3 more comments
Let $u=(ln x)^2$ and $dv=x^2 ,dx$. Then $du=2(ln x)frac{1}{x} , dx$ and $v=frac{x^3}{3}$. So
$$I=int_1^e(x ln x)^2 , dx=(ln x)^2 frac{x^3}{3}Big|_{1}^{e}-frac{2}{3}int_1^e x^2 ln x , dx.$$
Now we will solve the integral on the right side. Call the integral as $J$. For this $u=ln x$ and $dv=x^2 , dx$. So $du= frac{1}{x},dx$ and $v=frac{x^3}{3}$.Then
$$J=(ln x) frac{x^3}{3}Big|_{1}^{e}-frac{1}{3}int_1^e x^ 2, dx=(ln x) frac{x^3}{3}Big|_{1}^{e}-frac{x^3}{9}Big|_{1}^{e}=frac{e^3}{3}-left(frac{e^3-1}{9}right)=frac{2e^3+1}{9}.$$
So
$$I=frac{e^3}{3}-frac{2}{3}left(frac{2e^3+1}{9}right)=frac{5e^3-2}{27}$$
Let $u=(ln x)^2$ and $dv=x^2 ,dx$. Then $du=2(ln x)frac{1}{x} , dx$ and $v=frac{x^3}{3}$. So
$$I=int_1^e(x ln x)^2 , dx=(ln x)^2 frac{x^3}{3}Big|_{1}^{e}-frac{2}{3}int_1^e x^2 ln x , dx.$$
Now we will solve the integral on the right side. Call the integral as $J$. For this $u=ln x$ and $dv=x^2 , dx$. So $du= frac{1}{x},dx$ and $v=frac{x^3}{3}$.Then
$$J=(ln x) frac{x^3}{3}Big|_{1}^{e}-frac{1}{3}int_1^e x^ 2, dx=(ln x) frac{x^3}{3}Big|_{1}^{e}-frac{x^3}{9}Big|_{1}^{e}=frac{e^3}{3}-left(frac{e^3-1}{9}right)=frac{2e^3+1}{9}.$$
So
$$I=frac{e^3}{3}-frac{2}{3}left(frac{2e^3+1}{9}right)=frac{5e^3-2}{27}$$
edited Nov 27 '18 at 10:00
answered Nov 27 '18 at 9:54
Anurag AAnurag A
25.8k12249
25.8k12249
My final answer is different from you ..... are you sure that yours is correct ?
– hopefully
Nov 27 '18 at 10:10
Mine is $frac {6 e^3 + 3}{27}$
– hopefully
Nov 27 '18 at 10:11
@hopefully I am quite sure my answer is correct.
– Anurag A
Nov 27 '18 at 10:13
the problem with me is your last line ..... all the previous is okay for me
– hopefully
Nov 27 '18 at 10:18
1
@hopefully you are mistaken $J$ has only $x^2 ln x$ (the log term is NOT squared) whereas your actual integral (which I am referring to as $I$) has $(x ln x)^2=x^2 (ln x)^2$.
– Anurag A
Nov 27 '18 at 10:22
|
show 3 more comments
My final answer is different from you ..... are you sure that yours is correct ?
– hopefully
Nov 27 '18 at 10:10
Mine is $frac {6 e^3 + 3}{27}$
– hopefully
Nov 27 '18 at 10:11
@hopefully I am quite sure my answer is correct.
– Anurag A
Nov 27 '18 at 10:13
the problem with me is your last line ..... all the previous is okay for me
– hopefully
Nov 27 '18 at 10:18
1
@hopefully you are mistaken $J$ has only $x^2 ln x$ (the log term is NOT squared) whereas your actual integral (which I am referring to as $I$) has $(x ln x)^2=x^2 (ln x)^2$.
– Anurag A
Nov 27 '18 at 10:22
My final answer is different from you ..... are you sure that yours is correct ?
– hopefully
Nov 27 '18 at 10:10
My final answer is different from you ..... are you sure that yours is correct ?
– hopefully
Nov 27 '18 at 10:10
Mine is $frac {6 e^3 + 3}{27}$
– hopefully
Nov 27 '18 at 10:11
Mine is $frac {6 e^3 + 3}{27}$
– hopefully
Nov 27 '18 at 10:11
@hopefully I am quite sure my answer is correct.
– Anurag A
Nov 27 '18 at 10:13
@hopefully I am quite sure my answer is correct.
– Anurag A
Nov 27 '18 at 10:13
the problem with me is your last line ..... all the previous is okay for me
– hopefully
Nov 27 '18 at 10:18
the problem with me is your last line ..... all the previous is okay for me
– hopefully
Nov 27 '18 at 10:18
1
1
@hopefully you are mistaken $J$ has only $x^2 ln x$ (the log term is NOT squared) whereas your actual integral (which I am referring to as $I$) has $(x ln x)^2=x^2 (ln x)^2$.
– Anurag A
Nov 27 '18 at 10:22
@hopefully you are mistaken $J$ has only $x^2 ln x$ (the log term is NOT squared) whereas your actual integral (which I am referring to as $I$) has $(x ln x)^2=x^2 (ln x)^2$.
– Anurag A
Nov 27 '18 at 10:22
|
show 3 more comments
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3015570%2ffind-the-integral-int-1e-x-ln-x2-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown