Find the integral $int _{1}^{e} (x ln x)^2 dx$.












4















Find : $$int _{1}^{e} (x ln x)^2 ;dx.$$




My answer:



I have tried integration by parts with $u = x^2$ and $dv = (ln x)^2$ but I end up having the same integration another time!



I reversed the role of $u$ & $v$, but it also did not work?



Do you have any suggestions ?










share|cite|improve this question





























    4















    Find : $$int _{1}^{e} (x ln x)^2 ;dx.$$




    My answer:



    I have tried integration by parts with $u = x^2$ and $dv = (ln x)^2$ but I end up having the same integration another time!



    I reversed the role of $u$ & $v$, but it also did not work?



    Do you have any suggestions ?










    share|cite|improve this question



























      4












      4








      4








      Find : $$int _{1}^{e} (x ln x)^2 ;dx.$$




      My answer:



      I have tried integration by parts with $u = x^2$ and $dv = (ln x)^2$ but I end up having the same integration another time!



      I reversed the role of $u$ & $v$, but it also did not work?



      Do you have any suggestions ?










      share|cite|improve this question
















      Find : $$int _{1}^{e} (x ln x)^2 ;dx.$$




      My answer:



      I have tried integration by parts with $u = x^2$ and $dv = (ln x)^2$ but I end up having the same integration another time!



      I reversed the role of $u$ & $v$, but it also did not work?



      Do you have any suggestions ?







      calculus integration analysis






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 27 '18 at 10:14









      Anurag A

      25.8k12249




      25.8k12249










      asked Nov 27 '18 at 9:42









      hopefullyhopefully

      129112




      129112






















          4 Answers
          4






          active

          oldest

          votes


















          2














          Hint:



          Let $ln x=yimplies x=e^y,dx=e^y dy$



          $$int_1^e(xln x)^2=int_0^1e^{3y}y^2 dy$$



          Now $dfrac{d(e^{my}y^n)}{dy}=me^{my}y^n+e^{my}ny^{n-1}$



          If $displaystyle I(n)=int e^{my}y^n dy,$



          $$mI(n)+nI(n-1)=e^{my}y^n+K$$



          Here $m=3,n=2$






          share|cite|improve this answer





























            4














            Hint: make thus substitution $y =ln, x$ and then integrate by parts.






            share|cite|improve this answer





























              2














              $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
              newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
              newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
              newcommand{dd}{mathrm{d}}
              newcommand{ds}[1]{displaystyle{#1}}
              newcommand{expo}[1]{,mathrm{e}^{#1},}
              newcommand{ic}{mathrm{i}}
              newcommand{mc}[1]{mathcal{#1}}
              newcommand{mrm}[1]{mathrm{#1}}
              newcommand{pars}[1]{left(,{#1},right)}
              newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
              newcommand{root}[2]{,sqrt[#1]{,{#2},},}
              newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
              newcommand{verts}[1]{leftvert,{#1},rightvert}$

              begin{align}
              int_{1}^{expo{}}x^{nu},dd x & =
              left.{x^{nu +1} over nu + 1},rightvert_{ 1}^{ expo{}} =
              {expo{nu +1} - 1 over nu + 1}
              \[5mm] &
              textsf{Derive twice respect of} nu:
              \
              int_{1}^{expo{}}x^{nu}ln^{2}pars{x},dd x & =
              totald[2]{}{nu}pars{expo{nu +1} - 1 over nu + 1} =
              {pars{nu^{2} + 1}expo{nu + 1} - 2 over pars{nu +1}^{3}}
              \[5mm] &
              textsf{Evaluate the limit} nu to 2:
              \
              int_{1}^{expo{}}bracks{xlnpars{x}}^{2},dd x & =
              bbx{5expo{3} - 2 over 27} approx 3.6455
              end{align}






              share|cite|improve this answer





























                1














                Let $u=(ln x)^2$ and $dv=x^2 ,dx$. Then $du=2(ln x)frac{1}{x} , dx$ and $v=frac{x^3}{3}$. So
                $$I=int_1^e(x ln x)^2 , dx=(ln x)^2 frac{x^3}{3}Big|_{1}^{e}-frac{2}{3}int_1^e x^2 ln x , dx.$$
                Now we will solve the integral on the right side. Call the integral as $J$. For this $u=ln x$ and $dv=x^2 , dx$. So $du= frac{1}{x},dx$ and $v=frac{x^3}{3}$.Then
                $$J=(ln x) frac{x^3}{3}Big|_{1}^{e}-frac{1}{3}int_1^e x^ 2, dx=(ln x) frac{x^3}{3}Big|_{1}^{e}-frac{x^3}{9}Big|_{1}^{e}=frac{e^3}{3}-left(frac{e^3-1}{9}right)=frac{2e^3+1}{9}.$$
                So
                $$I=frac{e^3}{3}-frac{2}{3}left(frac{2e^3+1}{9}right)=frac{5e^3-2}{27}$$






                share|cite|improve this answer























                • My final answer is different from you ..... are you sure that yours is correct ?
                  – hopefully
                  Nov 27 '18 at 10:10










                • Mine is $frac {6 e^3 + 3}{27}$
                  – hopefully
                  Nov 27 '18 at 10:11










                • @hopefully I am quite sure my answer is correct.
                  – Anurag A
                  Nov 27 '18 at 10:13










                • the problem with me is your last line ..... all the previous is okay for me
                  – hopefully
                  Nov 27 '18 at 10:18






                • 1




                  @hopefully you are mistaken $J$ has only $x^2 ln x$ (the log term is NOT squared) whereas your actual integral (which I am referring to as $I$) has $(x ln x)^2=x^2 (ln x)^2$.
                  – Anurag A
                  Nov 27 '18 at 10:22













                Your Answer





                StackExchange.ifUsing("editor", function () {
                return StackExchange.using("mathjaxEditing", function () {
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                });
                });
                }, "mathjax-editing");

                StackExchange.ready(function() {
                var channelOptions = {
                tags: "".split(" "),
                id: "69"
                };
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function() {
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled) {
                StackExchange.using("snippets", function() {
                createEditor();
                });
                }
                else {
                createEditor();
                }
                });

                function createEditor() {
                StackExchange.prepareEditor({
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader: {
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                },
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                });


                }
                });














                draft saved

                draft discarded


















                StackExchange.ready(
                function () {
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3015570%2ffind-the-integral-int-1e-x-ln-x2-dx%23new-answer', 'question_page');
                }
                );

                Post as a guest















                Required, but never shown

























                4 Answers
                4






                active

                oldest

                votes








                4 Answers
                4






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                2














                Hint:



                Let $ln x=yimplies x=e^y,dx=e^y dy$



                $$int_1^e(xln x)^2=int_0^1e^{3y}y^2 dy$$



                Now $dfrac{d(e^{my}y^n)}{dy}=me^{my}y^n+e^{my}ny^{n-1}$



                If $displaystyle I(n)=int e^{my}y^n dy,$



                $$mI(n)+nI(n-1)=e^{my}y^n+K$$



                Here $m=3,n=2$






                share|cite|improve this answer


























                  2














                  Hint:



                  Let $ln x=yimplies x=e^y,dx=e^y dy$



                  $$int_1^e(xln x)^2=int_0^1e^{3y}y^2 dy$$



                  Now $dfrac{d(e^{my}y^n)}{dy}=me^{my}y^n+e^{my}ny^{n-1}$



                  If $displaystyle I(n)=int e^{my}y^n dy,$



                  $$mI(n)+nI(n-1)=e^{my}y^n+K$$



                  Here $m=3,n=2$






                  share|cite|improve this answer
























                    2












                    2








                    2






                    Hint:



                    Let $ln x=yimplies x=e^y,dx=e^y dy$



                    $$int_1^e(xln x)^2=int_0^1e^{3y}y^2 dy$$



                    Now $dfrac{d(e^{my}y^n)}{dy}=me^{my}y^n+e^{my}ny^{n-1}$



                    If $displaystyle I(n)=int e^{my}y^n dy,$



                    $$mI(n)+nI(n-1)=e^{my}y^n+K$$



                    Here $m=3,n=2$






                    share|cite|improve this answer












                    Hint:



                    Let $ln x=yimplies x=e^y,dx=e^y dy$



                    $$int_1^e(xln x)^2=int_0^1e^{3y}y^2 dy$$



                    Now $dfrac{d(e^{my}y^n)}{dy}=me^{my}y^n+e^{my}ny^{n-1}$



                    If $displaystyle I(n)=int e^{my}y^n dy,$



                    $$mI(n)+nI(n-1)=e^{my}y^n+K$$



                    Here $m=3,n=2$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Nov 27 '18 at 9:49









                    lab bhattacharjeelab bhattacharjee

                    223k15156274




                    223k15156274























                        4














                        Hint: make thus substitution $y =ln, x$ and then integrate by parts.






                        share|cite|improve this answer


























                          4














                          Hint: make thus substitution $y =ln, x$ and then integrate by parts.






                          share|cite|improve this answer
























                            4












                            4








                            4






                            Hint: make thus substitution $y =ln, x$ and then integrate by parts.






                            share|cite|improve this answer












                            Hint: make thus substitution $y =ln, x$ and then integrate by parts.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Nov 27 '18 at 9:48









                            Kavi Rama MurthyKavi Rama Murthy

                            51.5k31855




                            51.5k31855























                                2














                                $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                                newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                                newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                                newcommand{dd}{mathrm{d}}
                                newcommand{ds}[1]{displaystyle{#1}}
                                newcommand{expo}[1]{,mathrm{e}^{#1},}
                                newcommand{ic}{mathrm{i}}
                                newcommand{mc}[1]{mathcal{#1}}
                                newcommand{mrm}[1]{mathrm{#1}}
                                newcommand{pars}[1]{left(,{#1},right)}
                                newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                                newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                                newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                                newcommand{verts}[1]{leftvert,{#1},rightvert}$

                                begin{align}
                                int_{1}^{expo{}}x^{nu},dd x & =
                                left.{x^{nu +1} over nu + 1},rightvert_{ 1}^{ expo{}} =
                                {expo{nu +1} - 1 over nu + 1}
                                \[5mm] &
                                textsf{Derive twice respect of} nu:
                                \
                                int_{1}^{expo{}}x^{nu}ln^{2}pars{x},dd x & =
                                totald[2]{}{nu}pars{expo{nu +1} - 1 over nu + 1} =
                                {pars{nu^{2} + 1}expo{nu + 1} - 2 over pars{nu +1}^{3}}
                                \[5mm] &
                                textsf{Evaluate the limit} nu to 2:
                                \
                                int_{1}^{expo{}}bracks{xlnpars{x}}^{2},dd x & =
                                bbx{5expo{3} - 2 over 27} approx 3.6455
                                end{align}






                                share|cite|improve this answer


























                                  2














                                  $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                                  newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                                  newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                                  newcommand{dd}{mathrm{d}}
                                  newcommand{ds}[1]{displaystyle{#1}}
                                  newcommand{expo}[1]{,mathrm{e}^{#1},}
                                  newcommand{ic}{mathrm{i}}
                                  newcommand{mc}[1]{mathcal{#1}}
                                  newcommand{mrm}[1]{mathrm{#1}}
                                  newcommand{pars}[1]{left(,{#1},right)}
                                  newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                                  newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                                  newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                                  newcommand{verts}[1]{leftvert,{#1},rightvert}$

                                  begin{align}
                                  int_{1}^{expo{}}x^{nu},dd x & =
                                  left.{x^{nu +1} over nu + 1},rightvert_{ 1}^{ expo{}} =
                                  {expo{nu +1} - 1 over nu + 1}
                                  \[5mm] &
                                  textsf{Derive twice respect of} nu:
                                  \
                                  int_{1}^{expo{}}x^{nu}ln^{2}pars{x},dd x & =
                                  totald[2]{}{nu}pars{expo{nu +1} - 1 over nu + 1} =
                                  {pars{nu^{2} + 1}expo{nu + 1} - 2 over pars{nu +1}^{3}}
                                  \[5mm] &
                                  textsf{Evaluate the limit} nu to 2:
                                  \
                                  int_{1}^{expo{}}bracks{xlnpars{x}}^{2},dd x & =
                                  bbx{5expo{3} - 2 over 27} approx 3.6455
                                  end{align}






                                  share|cite|improve this answer
























                                    2












                                    2








                                    2






                                    $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                                    newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                                    newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                                    newcommand{dd}{mathrm{d}}
                                    newcommand{ds}[1]{displaystyle{#1}}
                                    newcommand{expo}[1]{,mathrm{e}^{#1},}
                                    newcommand{ic}{mathrm{i}}
                                    newcommand{mc}[1]{mathcal{#1}}
                                    newcommand{mrm}[1]{mathrm{#1}}
                                    newcommand{pars}[1]{left(,{#1},right)}
                                    newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                                    newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                                    newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                                    newcommand{verts}[1]{leftvert,{#1},rightvert}$

                                    begin{align}
                                    int_{1}^{expo{}}x^{nu},dd x & =
                                    left.{x^{nu +1} over nu + 1},rightvert_{ 1}^{ expo{}} =
                                    {expo{nu +1} - 1 over nu + 1}
                                    \[5mm] &
                                    textsf{Derive twice respect of} nu:
                                    \
                                    int_{1}^{expo{}}x^{nu}ln^{2}pars{x},dd x & =
                                    totald[2]{}{nu}pars{expo{nu +1} - 1 over nu + 1} =
                                    {pars{nu^{2} + 1}expo{nu + 1} - 2 over pars{nu +1}^{3}}
                                    \[5mm] &
                                    textsf{Evaluate the limit} nu to 2:
                                    \
                                    int_{1}^{expo{}}bracks{xlnpars{x}}^{2},dd x & =
                                    bbx{5expo{3} - 2 over 27} approx 3.6455
                                    end{align}






                                    share|cite|improve this answer












                                    $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                                    newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                                    newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                                    newcommand{dd}{mathrm{d}}
                                    newcommand{ds}[1]{displaystyle{#1}}
                                    newcommand{expo}[1]{,mathrm{e}^{#1},}
                                    newcommand{ic}{mathrm{i}}
                                    newcommand{mc}[1]{mathcal{#1}}
                                    newcommand{mrm}[1]{mathrm{#1}}
                                    newcommand{pars}[1]{left(,{#1},right)}
                                    newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                                    newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                                    newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                                    newcommand{verts}[1]{leftvert,{#1},rightvert}$

                                    begin{align}
                                    int_{1}^{expo{}}x^{nu},dd x & =
                                    left.{x^{nu +1} over nu + 1},rightvert_{ 1}^{ expo{}} =
                                    {expo{nu +1} - 1 over nu + 1}
                                    \[5mm] &
                                    textsf{Derive twice respect of} nu:
                                    \
                                    int_{1}^{expo{}}x^{nu}ln^{2}pars{x},dd x & =
                                    totald[2]{}{nu}pars{expo{nu +1} - 1 over nu + 1} =
                                    {pars{nu^{2} + 1}expo{nu + 1} - 2 over pars{nu +1}^{3}}
                                    \[5mm] &
                                    textsf{Evaluate the limit} nu to 2:
                                    \
                                    int_{1}^{expo{}}bracks{xlnpars{x}}^{2},dd x & =
                                    bbx{5expo{3} - 2 over 27} approx 3.6455
                                    end{align}







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered Nov 27 '18 at 17:11









                                    Felix MarinFelix Marin

                                    67.3k7107141




                                    67.3k7107141























                                        1














                                        Let $u=(ln x)^2$ and $dv=x^2 ,dx$. Then $du=2(ln x)frac{1}{x} , dx$ and $v=frac{x^3}{3}$. So
                                        $$I=int_1^e(x ln x)^2 , dx=(ln x)^2 frac{x^3}{3}Big|_{1}^{e}-frac{2}{3}int_1^e x^2 ln x , dx.$$
                                        Now we will solve the integral on the right side. Call the integral as $J$. For this $u=ln x$ and $dv=x^2 , dx$. So $du= frac{1}{x},dx$ and $v=frac{x^3}{3}$.Then
                                        $$J=(ln x) frac{x^3}{3}Big|_{1}^{e}-frac{1}{3}int_1^e x^ 2, dx=(ln x) frac{x^3}{3}Big|_{1}^{e}-frac{x^3}{9}Big|_{1}^{e}=frac{e^3}{3}-left(frac{e^3-1}{9}right)=frac{2e^3+1}{9}.$$
                                        So
                                        $$I=frac{e^3}{3}-frac{2}{3}left(frac{2e^3+1}{9}right)=frac{5e^3-2}{27}$$






                                        share|cite|improve this answer























                                        • My final answer is different from you ..... are you sure that yours is correct ?
                                          – hopefully
                                          Nov 27 '18 at 10:10










                                        • Mine is $frac {6 e^3 + 3}{27}$
                                          – hopefully
                                          Nov 27 '18 at 10:11










                                        • @hopefully I am quite sure my answer is correct.
                                          – Anurag A
                                          Nov 27 '18 at 10:13










                                        • the problem with me is your last line ..... all the previous is okay for me
                                          – hopefully
                                          Nov 27 '18 at 10:18






                                        • 1




                                          @hopefully you are mistaken $J$ has only $x^2 ln x$ (the log term is NOT squared) whereas your actual integral (which I am referring to as $I$) has $(x ln x)^2=x^2 (ln x)^2$.
                                          – Anurag A
                                          Nov 27 '18 at 10:22


















                                        1














                                        Let $u=(ln x)^2$ and $dv=x^2 ,dx$. Then $du=2(ln x)frac{1}{x} , dx$ and $v=frac{x^3}{3}$. So
                                        $$I=int_1^e(x ln x)^2 , dx=(ln x)^2 frac{x^3}{3}Big|_{1}^{e}-frac{2}{3}int_1^e x^2 ln x , dx.$$
                                        Now we will solve the integral on the right side. Call the integral as $J$. For this $u=ln x$ and $dv=x^2 , dx$. So $du= frac{1}{x},dx$ and $v=frac{x^3}{3}$.Then
                                        $$J=(ln x) frac{x^3}{3}Big|_{1}^{e}-frac{1}{3}int_1^e x^ 2, dx=(ln x) frac{x^3}{3}Big|_{1}^{e}-frac{x^3}{9}Big|_{1}^{e}=frac{e^3}{3}-left(frac{e^3-1}{9}right)=frac{2e^3+1}{9}.$$
                                        So
                                        $$I=frac{e^3}{3}-frac{2}{3}left(frac{2e^3+1}{9}right)=frac{5e^3-2}{27}$$






                                        share|cite|improve this answer























                                        • My final answer is different from you ..... are you sure that yours is correct ?
                                          – hopefully
                                          Nov 27 '18 at 10:10










                                        • Mine is $frac {6 e^3 + 3}{27}$
                                          – hopefully
                                          Nov 27 '18 at 10:11










                                        • @hopefully I am quite sure my answer is correct.
                                          – Anurag A
                                          Nov 27 '18 at 10:13










                                        • the problem with me is your last line ..... all the previous is okay for me
                                          – hopefully
                                          Nov 27 '18 at 10:18






                                        • 1




                                          @hopefully you are mistaken $J$ has only $x^2 ln x$ (the log term is NOT squared) whereas your actual integral (which I am referring to as $I$) has $(x ln x)^2=x^2 (ln x)^2$.
                                          – Anurag A
                                          Nov 27 '18 at 10:22
















                                        1












                                        1








                                        1






                                        Let $u=(ln x)^2$ and $dv=x^2 ,dx$. Then $du=2(ln x)frac{1}{x} , dx$ and $v=frac{x^3}{3}$. So
                                        $$I=int_1^e(x ln x)^2 , dx=(ln x)^2 frac{x^3}{3}Big|_{1}^{e}-frac{2}{3}int_1^e x^2 ln x , dx.$$
                                        Now we will solve the integral on the right side. Call the integral as $J$. For this $u=ln x$ and $dv=x^2 , dx$. So $du= frac{1}{x},dx$ and $v=frac{x^3}{3}$.Then
                                        $$J=(ln x) frac{x^3}{3}Big|_{1}^{e}-frac{1}{3}int_1^e x^ 2, dx=(ln x) frac{x^3}{3}Big|_{1}^{e}-frac{x^3}{9}Big|_{1}^{e}=frac{e^3}{3}-left(frac{e^3-1}{9}right)=frac{2e^3+1}{9}.$$
                                        So
                                        $$I=frac{e^3}{3}-frac{2}{3}left(frac{2e^3+1}{9}right)=frac{5e^3-2}{27}$$






                                        share|cite|improve this answer














                                        Let $u=(ln x)^2$ and $dv=x^2 ,dx$. Then $du=2(ln x)frac{1}{x} , dx$ and $v=frac{x^3}{3}$. So
                                        $$I=int_1^e(x ln x)^2 , dx=(ln x)^2 frac{x^3}{3}Big|_{1}^{e}-frac{2}{3}int_1^e x^2 ln x , dx.$$
                                        Now we will solve the integral on the right side. Call the integral as $J$. For this $u=ln x$ and $dv=x^2 , dx$. So $du= frac{1}{x},dx$ and $v=frac{x^3}{3}$.Then
                                        $$J=(ln x) frac{x^3}{3}Big|_{1}^{e}-frac{1}{3}int_1^e x^ 2, dx=(ln x) frac{x^3}{3}Big|_{1}^{e}-frac{x^3}{9}Big|_{1}^{e}=frac{e^3}{3}-left(frac{e^3-1}{9}right)=frac{2e^3+1}{9}.$$
                                        So
                                        $$I=frac{e^3}{3}-frac{2}{3}left(frac{2e^3+1}{9}right)=frac{5e^3-2}{27}$$







                                        share|cite|improve this answer














                                        share|cite|improve this answer



                                        share|cite|improve this answer








                                        edited Nov 27 '18 at 10:00

























                                        answered Nov 27 '18 at 9:54









                                        Anurag AAnurag A

                                        25.8k12249




                                        25.8k12249












                                        • My final answer is different from you ..... are you sure that yours is correct ?
                                          – hopefully
                                          Nov 27 '18 at 10:10










                                        • Mine is $frac {6 e^3 + 3}{27}$
                                          – hopefully
                                          Nov 27 '18 at 10:11










                                        • @hopefully I am quite sure my answer is correct.
                                          – Anurag A
                                          Nov 27 '18 at 10:13










                                        • the problem with me is your last line ..... all the previous is okay for me
                                          – hopefully
                                          Nov 27 '18 at 10:18






                                        • 1




                                          @hopefully you are mistaken $J$ has only $x^2 ln x$ (the log term is NOT squared) whereas your actual integral (which I am referring to as $I$) has $(x ln x)^2=x^2 (ln x)^2$.
                                          – Anurag A
                                          Nov 27 '18 at 10:22




















                                        • My final answer is different from you ..... are you sure that yours is correct ?
                                          – hopefully
                                          Nov 27 '18 at 10:10










                                        • Mine is $frac {6 e^3 + 3}{27}$
                                          – hopefully
                                          Nov 27 '18 at 10:11










                                        • @hopefully I am quite sure my answer is correct.
                                          – Anurag A
                                          Nov 27 '18 at 10:13










                                        • the problem with me is your last line ..... all the previous is okay for me
                                          – hopefully
                                          Nov 27 '18 at 10:18






                                        • 1




                                          @hopefully you are mistaken $J$ has only $x^2 ln x$ (the log term is NOT squared) whereas your actual integral (which I am referring to as $I$) has $(x ln x)^2=x^2 (ln x)^2$.
                                          – Anurag A
                                          Nov 27 '18 at 10:22


















                                        My final answer is different from you ..... are you sure that yours is correct ?
                                        – hopefully
                                        Nov 27 '18 at 10:10




                                        My final answer is different from you ..... are you sure that yours is correct ?
                                        – hopefully
                                        Nov 27 '18 at 10:10












                                        Mine is $frac {6 e^3 + 3}{27}$
                                        – hopefully
                                        Nov 27 '18 at 10:11




                                        Mine is $frac {6 e^3 + 3}{27}$
                                        – hopefully
                                        Nov 27 '18 at 10:11












                                        @hopefully I am quite sure my answer is correct.
                                        – Anurag A
                                        Nov 27 '18 at 10:13




                                        @hopefully I am quite sure my answer is correct.
                                        – Anurag A
                                        Nov 27 '18 at 10:13












                                        the problem with me is your last line ..... all the previous is okay for me
                                        – hopefully
                                        Nov 27 '18 at 10:18




                                        the problem with me is your last line ..... all the previous is okay for me
                                        – hopefully
                                        Nov 27 '18 at 10:18




                                        1




                                        1




                                        @hopefully you are mistaken $J$ has only $x^2 ln x$ (the log term is NOT squared) whereas your actual integral (which I am referring to as $I$) has $(x ln x)^2=x^2 (ln x)^2$.
                                        – Anurag A
                                        Nov 27 '18 at 10:22






                                        @hopefully you are mistaken $J$ has only $x^2 ln x$ (the log term is NOT squared) whereas your actual integral (which I am referring to as $I$) has $(x ln x)^2=x^2 (ln x)^2$.
                                        – Anurag A
                                        Nov 27 '18 at 10:22




















                                        draft saved

                                        draft discarded




















































                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid



                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.


                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.





                                        Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                                        Please pay close attention to the following guidance:


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid



                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function () {
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3015570%2ffind-the-integral-int-1e-x-ln-x2-dx%23new-answer', 'question_page');
                                        }
                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        Plaza Victoria

                                        In PowerPoint, is there a keyboard shortcut for bulleted / numbered list?

                                        How to put 3 figures in Latex with 2 figures side by side and 1 below these side by side images but in...