Produce formula
Let $a_{i,j}$ any positive integers wher $1leq i,j leq 3$.
I want to write closed form for following summation:
$$a_{1,3}(a_{2,1}+a_{2, 2}+a_{2,3})(a_{3,1}+a_{3, 2}+a_{3,3})+a_{2,3}(a_{1,1}+a_{1, 2})(a_{3,1}+a_{3, 2}+a_{3,3})+a_{3,3}(a_{1,1}+a_{1, 2})(a_{2,1}+a_{2, 2})$$
$textbf{My attempt:}$
begin{equation*}
sum_{j=1}^3 a_{j,3}left[prod_{substack{i=1 \ ineq j}}^3left(sum_{substack{k=1 \ k<j}}^{3 text{or} 3-1} a_{i,k} right) right]
end{equation*}
We will take $3-1$ when $k<j$.
Actually, I want to generalize this. My attempt so complicated to me.
If we consider all of $a_{i,j}$ as a matrix:
begin{pmatrix}
a_{1,1} & a_{1,2} & a_{1,3} \
a_{2,1} & a_{2,2} & a_{2,3} \
a_{3,1} & a_{3,2} & a_{3,3} \
end{pmatrix}
then are there any computer program to make formula?
$$a_{1,3}(a_{2,1}+a_{2, 2}+ a_{2,3})(a_{3,1}+a_{3, 2}+a_{3,3})cdots (a_{r,1}+a_{r,2}+a_{r,3})+a_{2,3}(a_{1,1}+a_{1, 2})(a_{3,1}+a_{3, 2}+a_{3,3})+cdots (a_{r,1}+a_{r,2}+a_{r,3})+a_{3,3}(a_{1,1}+a_{1, 2})(a_{2,1}+a_{2, 2})(a_{4,1}+a_{4,2}+a_{4,3}+cdots (a_{r,1}+a_{r,2}+a_{r,3}) \ vdots \
+a_{r,3}(a_{1,1}+a_{1,2})(a_{2,1}+a_{2,2})cdots (a_{r-1,1}+a_{r-1,2})
$$
combinatorics combinations
add a comment |
Let $a_{i,j}$ any positive integers wher $1leq i,j leq 3$.
I want to write closed form for following summation:
$$a_{1,3}(a_{2,1}+a_{2, 2}+a_{2,3})(a_{3,1}+a_{3, 2}+a_{3,3})+a_{2,3}(a_{1,1}+a_{1, 2})(a_{3,1}+a_{3, 2}+a_{3,3})+a_{3,3}(a_{1,1}+a_{1, 2})(a_{2,1}+a_{2, 2})$$
$textbf{My attempt:}$
begin{equation*}
sum_{j=1}^3 a_{j,3}left[prod_{substack{i=1 \ ineq j}}^3left(sum_{substack{k=1 \ k<j}}^{3 text{or} 3-1} a_{i,k} right) right]
end{equation*}
We will take $3-1$ when $k<j$.
Actually, I want to generalize this. My attempt so complicated to me.
If we consider all of $a_{i,j}$ as a matrix:
begin{pmatrix}
a_{1,1} & a_{1,2} & a_{1,3} \
a_{2,1} & a_{2,2} & a_{2,3} \
a_{3,1} & a_{3,2} & a_{3,3} \
end{pmatrix}
then are there any computer program to make formula?
$$a_{1,3}(a_{2,1}+a_{2, 2}+ a_{2,3})(a_{3,1}+a_{3, 2}+a_{3,3})cdots (a_{r,1}+a_{r,2}+a_{r,3})+a_{2,3}(a_{1,1}+a_{1, 2})(a_{3,1}+a_{3, 2}+a_{3,3})+cdots (a_{r,1}+a_{r,2}+a_{r,3})+a_{3,3}(a_{1,1}+a_{1, 2})(a_{2,1}+a_{2, 2})(a_{4,1}+a_{4,2}+a_{4,3}+cdots (a_{r,1}+a_{r,2}+a_{r,3}) \ vdots \
+a_{r,3}(a_{1,1}+a_{1,2})(a_{2,1}+a_{2,2})cdots (a_{r-1,1}+a_{r-1,2})
$$
combinatorics combinations
add a comment |
Let $a_{i,j}$ any positive integers wher $1leq i,j leq 3$.
I want to write closed form for following summation:
$$a_{1,3}(a_{2,1}+a_{2, 2}+a_{2,3})(a_{3,1}+a_{3, 2}+a_{3,3})+a_{2,3}(a_{1,1}+a_{1, 2})(a_{3,1}+a_{3, 2}+a_{3,3})+a_{3,3}(a_{1,1}+a_{1, 2})(a_{2,1}+a_{2, 2})$$
$textbf{My attempt:}$
begin{equation*}
sum_{j=1}^3 a_{j,3}left[prod_{substack{i=1 \ ineq j}}^3left(sum_{substack{k=1 \ k<j}}^{3 text{or} 3-1} a_{i,k} right) right]
end{equation*}
We will take $3-1$ when $k<j$.
Actually, I want to generalize this. My attempt so complicated to me.
If we consider all of $a_{i,j}$ as a matrix:
begin{pmatrix}
a_{1,1} & a_{1,2} & a_{1,3} \
a_{2,1} & a_{2,2} & a_{2,3} \
a_{3,1} & a_{3,2} & a_{3,3} \
end{pmatrix}
then are there any computer program to make formula?
$$a_{1,3}(a_{2,1}+a_{2, 2}+ a_{2,3})(a_{3,1}+a_{3, 2}+a_{3,3})cdots (a_{r,1}+a_{r,2}+a_{r,3})+a_{2,3}(a_{1,1}+a_{1, 2})(a_{3,1}+a_{3, 2}+a_{3,3})+cdots (a_{r,1}+a_{r,2}+a_{r,3})+a_{3,3}(a_{1,1}+a_{1, 2})(a_{2,1}+a_{2, 2})(a_{4,1}+a_{4,2}+a_{4,3}+cdots (a_{r,1}+a_{r,2}+a_{r,3}) \ vdots \
+a_{r,3}(a_{1,1}+a_{1,2})(a_{2,1}+a_{2,2})cdots (a_{r-1,1}+a_{r-1,2})
$$
combinatorics combinations
Let $a_{i,j}$ any positive integers wher $1leq i,j leq 3$.
I want to write closed form for following summation:
$$a_{1,3}(a_{2,1}+a_{2, 2}+a_{2,3})(a_{3,1}+a_{3, 2}+a_{3,3})+a_{2,3}(a_{1,1}+a_{1, 2})(a_{3,1}+a_{3, 2}+a_{3,3})+a_{3,3}(a_{1,1}+a_{1, 2})(a_{2,1}+a_{2, 2})$$
$textbf{My attempt:}$
begin{equation*}
sum_{j=1}^3 a_{j,3}left[prod_{substack{i=1 \ ineq j}}^3left(sum_{substack{k=1 \ k<j}}^{3 text{or} 3-1} a_{i,k} right) right]
end{equation*}
We will take $3-1$ when $k<j$.
Actually, I want to generalize this. My attempt so complicated to me.
If we consider all of $a_{i,j}$ as a matrix:
begin{pmatrix}
a_{1,1} & a_{1,2} & a_{1,3} \
a_{2,1} & a_{2,2} & a_{2,3} \
a_{3,1} & a_{3,2} & a_{3,3} \
end{pmatrix}
then are there any computer program to make formula?
$$a_{1,3}(a_{2,1}+a_{2, 2}+ a_{2,3})(a_{3,1}+a_{3, 2}+a_{3,3})cdots (a_{r,1}+a_{r,2}+a_{r,3})+a_{2,3}(a_{1,1}+a_{1, 2})(a_{3,1}+a_{3, 2}+a_{3,3})+cdots (a_{r,1}+a_{r,2}+a_{r,3})+a_{3,3}(a_{1,1}+a_{1, 2})(a_{2,1}+a_{2, 2})(a_{4,1}+a_{4,2}+a_{4,3}+cdots (a_{r,1}+a_{r,2}+a_{r,3}) \ vdots \
+a_{r,3}(a_{1,1}+a_{1,2})(a_{2,1}+a_{2,2})cdots (a_{r-1,1}+a_{r-1,2})
$$
combinatorics combinations
combinatorics combinations
edited Nov 27 '18 at 13:23
1Spectre1
asked Nov 27 '18 at 10:57
1Spectre11Spectre1
999
999
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$$a_{1,3}(a_{2,1}+a_{2, 2}+a_{2,3})(a_{3,1}+a_{3, 2}+a_{3,3})+a_{2,3}(a_{1,1}+a_{1, 2})(a_{3,1}+a_{3, 2}+a_{3,3})+a_{3,3}(a_{1,1}+a_{1, 2})(a_{2,1}+a_{2, 2})$$
$$=(a_{1,1}+a_{1,2}+a_{1,3})(a_{2,1}+a_{2,2}+a_{2,3})(a_{3,1}+a_{3,2}+a_{3,3})-(a_{1,1}+a_{1,2})(a_{2,1}+a_{2,2})(a_{3,1}+a_{3,2})$$
$$=prod_{i=1}^3sum_{j=1}^3a_{i,j}-prod_{i=1}^3sum_{j=1}^2a_{i,j}.$$
More generally,
$$sum_{i=1}^ra_{i,m}left(prod_{h=1}^{i-1}sum_{j=1}^{m-1}a_{h,j}right)left(prod_{h=i+1}^rsum_{j=1}^ma_{h,j}right)=prod_{i=1}^rsum_{j=1}^ma_{i,j}-prod_{i=1}^rsum_{j=1}^{m-1}a_{i,j}$$
$$=sum_{min{j_1,j_2,dots,j_r}}a_{1,j_1}a_{2,j_2}cdots a_{r,j_r}.$$
Thank you for the answer. Is it possible to generalize it? I edited my question.
– 1Spectre1
Nov 27 '18 at 13:24
1
@1ENİGMA1 I cleaned up my answer.
– bof
Nov 28 '18 at 23:13
1
For example, $n!=prod_{i=1}^ni$ and in particular $0!=prod_{i=1}^0i=1$. Likewise, $x^n=prod_{i=1}^nx$, in particular, $x^0=prod_{i=1}^0x=1$.
– bof
Nov 29 '18 at 8:59
1
$sum_{min{j_1,j_2,dots,j_r}}a_{1,j_1}a_{2,j_2}cdots a_{r,j_r}$ is the sum of all products of the form $a_{1,j_1}a_{2,j_2}cdots a_{r,j_r}$ where at least one of the indices $j_1,j_2,dots,j_r$ is equal to $m$, or in other words, $m$ is an element of the set ${j_1,j_2,dots,j_r}$.
– bof
Nov 29 '18 at 9:04
1
$$prod_{i=1}^2sum_{j=1}^2a_{i,j}=(a_{1,1}+a_{1,2})(a_{2,1}+a_{2,2})=a_{1,1}a_{2,1}+a_{1,1}a_{2,2}+a_{1,2}a_{2,1}+a_{1,2}a_{2,2}$$ while $$sum_{2in{j_1,j_2}}a_{1,j_1}a_{2,j_2}=a_{1,1}a_{2,2}+a_{1,2}a_{2,1}+a_{1,2}a_{2,2}.$$ The term $a_{1,1}a_{2,1}$ is gone because $2notin{j_1,j_2}={1,1}$.
– bof
Nov 30 '18 at 6:57
|
show 8 more comments
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3015646%2fproduce-formula%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$$a_{1,3}(a_{2,1}+a_{2, 2}+a_{2,3})(a_{3,1}+a_{3, 2}+a_{3,3})+a_{2,3}(a_{1,1}+a_{1, 2})(a_{3,1}+a_{3, 2}+a_{3,3})+a_{3,3}(a_{1,1}+a_{1, 2})(a_{2,1}+a_{2, 2})$$
$$=(a_{1,1}+a_{1,2}+a_{1,3})(a_{2,1}+a_{2,2}+a_{2,3})(a_{3,1}+a_{3,2}+a_{3,3})-(a_{1,1}+a_{1,2})(a_{2,1}+a_{2,2})(a_{3,1}+a_{3,2})$$
$$=prod_{i=1}^3sum_{j=1}^3a_{i,j}-prod_{i=1}^3sum_{j=1}^2a_{i,j}.$$
More generally,
$$sum_{i=1}^ra_{i,m}left(prod_{h=1}^{i-1}sum_{j=1}^{m-1}a_{h,j}right)left(prod_{h=i+1}^rsum_{j=1}^ma_{h,j}right)=prod_{i=1}^rsum_{j=1}^ma_{i,j}-prod_{i=1}^rsum_{j=1}^{m-1}a_{i,j}$$
$$=sum_{min{j_1,j_2,dots,j_r}}a_{1,j_1}a_{2,j_2}cdots a_{r,j_r}.$$
Thank you for the answer. Is it possible to generalize it? I edited my question.
– 1Spectre1
Nov 27 '18 at 13:24
1
@1ENİGMA1 I cleaned up my answer.
– bof
Nov 28 '18 at 23:13
1
For example, $n!=prod_{i=1}^ni$ and in particular $0!=prod_{i=1}^0i=1$. Likewise, $x^n=prod_{i=1}^nx$, in particular, $x^0=prod_{i=1}^0x=1$.
– bof
Nov 29 '18 at 8:59
1
$sum_{min{j_1,j_2,dots,j_r}}a_{1,j_1}a_{2,j_2}cdots a_{r,j_r}$ is the sum of all products of the form $a_{1,j_1}a_{2,j_2}cdots a_{r,j_r}$ where at least one of the indices $j_1,j_2,dots,j_r$ is equal to $m$, or in other words, $m$ is an element of the set ${j_1,j_2,dots,j_r}$.
– bof
Nov 29 '18 at 9:04
1
$$prod_{i=1}^2sum_{j=1}^2a_{i,j}=(a_{1,1}+a_{1,2})(a_{2,1}+a_{2,2})=a_{1,1}a_{2,1}+a_{1,1}a_{2,2}+a_{1,2}a_{2,1}+a_{1,2}a_{2,2}$$ while $$sum_{2in{j_1,j_2}}a_{1,j_1}a_{2,j_2}=a_{1,1}a_{2,2}+a_{1,2}a_{2,1}+a_{1,2}a_{2,2}.$$ The term $a_{1,1}a_{2,1}$ is gone because $2notin{j_1,j_2}={1,1}$.
– bof
Nov 30 '18 at 6:57
|
show 8 more comments
$$a_{1,3}(a_{2,1}+a_{2, 2}+a_{2,3})(a_{3,1}+a_{3, 2}+a_{3,3})+a_{2,3}(a_{1,1}+a_{1, 2})(a_{3,1}+a_{3, 2}+a_{3,3})+a_{3,3}(a_{1,1}+a_{1, 2})(a_{2,1}+a_{2, 2})$$
$$=(a_{1,1}+a_{1,2}+a_{1,3})(a_{2,1}+a_{2,2}+a_{2,3})(a_{3,1}+a_{3,2}+a_{3,3})-(a_{1,1}+a_{1,2})(a_{2,1}+a_{2,2})(a_{3,1}+a_{3,2})$$
$$=prod_{i=1}^3sum_{j=1}^3a_{i,j}-prod_{i=1}^3sum_{j=1}^2a_{i,j}.$$
More generally,
$$sum_{i=1}^ra_{i,m}left(prod_{h=1}^{i-1}sum_{j=1}^{m-1}a_{h,j}right)left(prod_{h=i+1}^rsum_{j=1}^ma_{h,j}right)=prod_{i=1}^rsum_{j=1}^ma_{i,j}-prod_{i=1}^rsum_{j=1}^{m-1}a_{i,j}$$
$$=sum_{min{j_1,j_2,dots,j_r}}a_{1,j_1}a_{2,j_2}cdots a_{r,j_r}.$$
Thank you for the answer. Is it possible to generalize it? I edited my question.
– 1Spectre1
Nov 27 '18 at 13:24
1
@1ENİGMA1 I cleaned up my answer.
– bof
Nov 28 '18 at 23:13
1
For example, $n!=prod_{i=1}^ni$ and in particular $0!=prod_{i=1}^0i=1$. Likewise, $x^n=prod_{i=1}^nx$, in particular, $x^0=prod_{i=1}^0x=1$.
– bof
Nov 29 '18 at 8:59
1
$sum_{min{j_1,j_2,dots,j_r}}a_{1,j_1}a_{2,j_2}cdots a_{r,j_r}$ is the sum of all products of the form $a_{1,j_1}a_{2,j_2}cdots a_{r,j_r}$ where at least one of the indices $j_1,j_2,dots,j_r$ is equal to $m$, or in other words, $m$ is an element of the set ${j_1,j_2,dots,j_r}$.
– bof
Nov 29 '18 at 9:04
1
$$prod_{i=1}^2sum_{j=1}^2a_{i,j}=(a_{1,1}+a_{1,2})(a_{2,1}+a_{2,2})=a_{1,1}a_{2,1}+a_{1,1}a_{2,2}+a_{1,2}a_{2,1}+a_{1,2}a_{2,2}$$ while $$sum_{2in{j_1,j_2}}a_{1,j_1}a_{2,j_2}=a_{1,1}a_{2,2}+a_{1,2}a_{2,1}+a_{1,2}a_{2,2}.$$ The term $a_{1,1}a_{2,1}$ is gone because $2notin{j_1,j_2}={1,1}$.
– bof
Nov 30 '18 at 6:57
|
show 8 more comments
$$a_{1,3}(a_{2,1}+a_{2, 2}+a_{2,3})(a_{3,1}+a_{3, 2}+a_{3,3})+a_{2,3}(a_{1,1}+a_{1, 2})(a_{3,1}+a_{3, 2}+a_{3,3})+a_{3,3}(a_{1,1}+a_{1, 2})(a_{2,1}+a_{2, 2})$$
$$=(a_{1,1}+a_{1,2}+a_{1,3})(a_{2,1}+a_{2,2}+a_{2,3})(a_{3,1}+a_{3,2}+a_{3,3})-(a_{1,1}+a_{1,2})(a_{2,1}+a_{2,2})(a_{3,1}+a_{3,2})$$
$$=prod_{i=1}^3sum_{j=1}^3a_{i,j}-prod_{i=1}^3sum_{j=1}^2a_{i,j}.$$
More generally,
$$sum_{i=1}^ra_{i,m}left(prod_{h=1}^{i-1}sum_{j=1}^{m-1}a_{h,j}right)left(prod_{h=i+1}^rsum_{j=1}^ma_{h,j}right)=prod_{i=1}^rsum_{j=1}^ma_{i,j}-prod_{i=1}^rsum_{j=1}^{m-1}a_{i,j}$$
$$=sum_{min{j_1,j_2,dots,j_r}}a_{1,j_1}a_{2,j_2}cdots a_{r,j_r}.$$
$$a_{1,3}(a_{2,1}+a_{2, 2}+a_{2,3})(a_{3,1}+a_{3, 2}+a_{3,3})+a_{2,3}(a_{1,1}+a_{1, 2})(a_{3,1}+a_{3, 2}+a_{3,3})+a_{3,3}(a_{1,1}+a_{1, 2})(a_{2,1}+a_{2, 2})$$
$$=(a_{1,1}+a_{1,2}+a_{1,3})(a_{2,1}+a_{2,2}+a_{2,3})(a_{3,1}+a_{3,2}+a_{3,3})-(a_{1,1}+a_{1,2})(a_{2,1}+a_{2,2})(a_{3,1}+a_{3,2})$$
$$=prod_{i=1}^3sum_{j=1}^3a_{i,j}-prod_{i=1}^3sum_{j=1}^2a_{i,j}.$$
More generally,
$$sum_{i=1}^ra_{i,m}left(prod_{h=1}^{i-1}sum_{j=1}^{m-1}a_{h,j}right)left(prod_{h=i+1}^rsum_{j=1}^ma_{h,j}right)=prod_{i=1}^rsum_{j=1}^ma_{i,j}-prod_{i=1}^rsum_{j=1}^{m-1}a_{i,j}$$
$$=sum_{min{j_1,j_2,dots,j_r}}a_{1,j_1}a_{2,j_2}cdots a_{r,j_r}.$$
edited Nov 28 '18 at 23:11
answered Nov 27 '18 at 12:27
bofbof
50.5k457119
50.5k457119
Thank you for the answer. Is it possible to generalize it? I edited my question.
– 1Spectre1
Nov 27 '18 at 13:24
1
@1ENİGMA1 I cleaned up my answer.
– bof
Nov 28 '18 at 23:13
1
For example, $n!=prod_{i=1}^ni$ and in particular $0!=prod_{i=1}^0i=1$. Likewise, $x^n=prod_{i=1}^nx$, in particular, $x^0=prod_{i=1}^0x=1$.
– bof
Nov 29 '18 at 8:59
1
$sum_{min{j_1,j_2,dots,j_r}}a_{1,j_1}a_{2,j_2}cdots a_{r,j_r}$ is the sum of all products of the form $a_{1,j_1}a_{2,j_2}cdots a_{r,j_r}$ where at least one of the indices $j_1,j_2,dots,j_r$ is equal to $m$, or in other words, $m$ is an element of the set ${j_1,j_2,dots,j_r}$.
– bof
Nov 29 '18 at 9:04
1
$$prod_{i=1}^2sum_{j=1}^2a_{i,j}=(a_{1,1}+a_{1,2})(a_{2,1}+a_{2,2})=a_{1,1}a_{2,1}+a_{1,1}a_{2,2}+a_{1,2}a_{2,1}+a_{1,2}a_{2,2}$$ while $$sum_{2in{j_1,j_2}}a_{1,j_1}a_{2,j_2}=a_{1,1}a_{2,2}+a_{1,2}a_{2,1}+a_{1,2}a_{2,2}.$$ The term $a_{1,1}a_{2,1}$ is gone because $2notin{j_1,j_2}={1,1}$.
– bof
Nov 30 '18 at 6:57
|
show 8 more comments
Thank you for the answer. Is it possible to generalize it? I edited my question.
– 1Spectre1
Nov 27 '18 at 13:24
1
@1ENİGMA1 I cleaned up my answer.
– bof
Nov 28 '18 at 23:13
1
For example, $n!=prod_{i=1}^ni$ and in particular $0!=prod_{i=1}^0i=1$. Likewise, $x^n=prod_{i=1}^nx$, in particular, $x^0=prod_{i=1}^0x=1$.
– bof
Nov 29 '18 at 8:59
1
$sum_{min{j_1,j_2,dots,j_r}}a_{1,j_1}a_{2,j_2}cdots a_{r,j_r}$ is the sum of all products of the form $a_{1,j_1}a_{2,j_2}cdots a_{r,j_r}$ where at least one of the indices $j_1,j_2,dots,j_r$ is equal to $m$, or in other words, $m$ is an element of the set ${j_1,j_2,dots,j_r}$.
– bof
Nov 29 '18 at 9:04
1
$$prod_{i=1}^2sum_{j=1}^2a_{i,j}=(a_{1,1}+a_{1,2})(a_{2,1}+a_{2,2})=a_{1,1}a_{2,1}+a_{1,1}a_{2,2}+a_{1,2}a_{2,1}+a_{1,2}a_{2,2}$$ while $$sum_{2in{j_1,j_2}}a_{1,j_1}a_{2,j_2}=a_{1,1}a_{2,2}+a_{1,2}a_{2,1}+a_{1,2}a_{2,2}.$$ The term $a_{1,1}a_{2,1}$ is gone because $2notin{j_1,j_2}={1,1}$.
– bof
Nov 30 '18 at 6:57
Thank you for the answer. Is it possible to generalize it? I edited my question.
– 1Spectre1
Nov 27 '18 at 13:24
Thank you for the answer. Is it possible to generalize it? I edited my question.
– 1Spectre1
Nov 27 '18 at 13:24
1
1
@1ENİGMA1 I cleaned up my answer.
– bof
Nov 28 '18 at 23:13
@1ENİGMA1 I cleaned up my answer.
– bof
Nov 28 '18 at 23:13
1
1
For example, $n!=prod_{i=1}^ni$ and in particular $0!=prod_{i=1}^0i=1$. Likewise, $x^n=prod_{i=1}^nx$, in particular, $x^0=prod_{i=1}^0x=1$.
– bof
Nov 29 '18 at 8:59
For example, $n!=prod_{i=1}^ni$ and in particular $0!=prod_{i=1}^0i=1$. Likewise, $x^n=prod_{i=1}^nx$, in particular, $x^0=prod_{i=1}^0x=1$.
– bof
Nov 29 '18 at 8:59
1
1
$sum_{min{j_1,j_2,dots,j_r}}a_{1,j_1}a_{2,j_2}cdots a_{r,j_r}$ is the sum of all products of the form $a_{1,j_1}a_{2,j_2}cdots a_{r,j_r}$ where at least one of the indices $j_1,j_2,dots,j_r$ is equal to $m$, or in other words, $m$ is an element of the set ${j_1,j_2,dots,j_r}$.
– bof
Nov 29 '18 at 9:04
$sum_{min{j_1,j_2,dots,j_r}}a_{1,j_1}a_{2,j_2}cdots a_{r,j_r}$ is the sum of all products of the form $a_{1,j_1}a_{2,j_2}cdots a_{r,j_r}$ where at least one of the indices $j_1,j_2,dots,j_r$ is equal to $m$, or in other words, $m$ is an element of the set ${j_1,j_2,dots,j_r}$.
– bof
Nov 29 '18 at 9:04
1
1
$$prod_{i=1}^2sum_{j=1}^2a_{i,j}=(a_{1,1}+a_{1,2})(a_{2,1}+a_{2,2})=a_{1,1}a_{2,1}+a_{1,1}a_{2,2}+a_{1,2}a_{2,1}+a_{1,2}a_{2,2}$$ while $$sum_{2in{j_1,j_2}}a_{1,j_1}a_{2,j_2}=a_{1,1}a_{2,2}+a_{1,2}a_{2,1}+a_{1,2}a_{2,2}.$$ The term $a_{1,1}a_{2,1}$ is gone because $2notin{j_1,j_2}={1,1}$.
– bof
Nov 30 '18 at 6:57
$$prod_{i=1}^2sum_{j=1}^2a_{i,j}=(a_{1,1}+a_{1,2})(a_{2,1}+a_{2,2})=a_{1,1}a_{2,1}+a_{1,1}a_{2,2}+a_{1,2}a_{2,1}+a_{1,2}a_{2,2}$$ while $$sum_{2in{j_1,j_2}}a_{1,j_1}a_{2,j_2}=a_{1,1}a_{2,2}+a_{1,2}a_{2,1}+a_{1,2}a_{2,2}.$$ The term $a_{1,1}a_{2,1}$ is gone because $2notin{j_1,j_2}={1,1}$.
– bof
Nov 30 '18 at 6:57
|
show 8 more comments
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3015646%2fproduce-formula%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown