An upper bound for the largest eigen value of $A^tA$












0












$begingroup$


I would like to compute an upper bound on the largest eigenvalue of $A^tA$, where $A$ is an $n times p$ real-valued matrix. This bound should be sharper than the Gerschgorin bound. I should also be able to compute the bound directly from A, without forming $A^tA$ (which rules out the Gerschgorin bound), since it is likely that $p >> n$. I would like to have a computational procedure which is of the same degree of complexity as the Gerschgorin disc, if possible. Are there any results on this?










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    I would like to compute an upper bound on the largest eigenvalue of $A^tA$, where $A$ is an $n times p$ real-valued matrix. This bound should be sharper than the Gerschgorin bound. I should also be able to compute the bound directly from A, without forming $A^tA$ (which rules out the Gerschgorin bound), since it is likely that $p >> n$. I would like to have a computational procedure which is of the same degree of complexity as the Gerschgorin disc, if possible. Are there any results on this?










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      I would like to compute an upper bound on the largest eigenvalue of $A^tA$, where $A$ is an $n times p$ real-valued matrix. This bound should be sharper than the Gerschgorin bound. I should also be able to compute the bound directly from A, without forming $A^tA$ (which rules out the Gerschgorin bound), since it is likely that $p >> n$. I would like to have a computational procedure which is of the same degree of complexity as the Gerschgorin disc, if possible. Are there any results on this?










      share|cite|improve this question









      $endgroup$




      I would like to compute an upper bound on the largest eigenvalue of $A^tA$, where $A$ is an $n times p$ real-valued matrix. This bound should be sharper than the Gerschgorin bound. I should also be able to compute the bound directly from A, without forming $A^tA$ (which rules out the Gerschgorin bound), since it is likely that $p >> n$. I would like to have a computational procedure which is of the same degree of complexity as the Gerschgorin disc, if possible. Are there any results on this?







      matrices eigenvalues-eigenvectors






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 6 '18 at 23:35









      user67724user67724

      965




      965






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3029221%2fan-upper-bound-for-the-largest-eigen-value-of-ata%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3029221%2fan-upper-bound-for-the-largest-eigen-value-of-ata%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Plaza Victoria

          Puebla de Zaragoza

          Musa