Maximum Principle for Poisson
$begingroup$
Let $Omega subset mathbb{R}^n$ be open $f,ginmathcal{C}(overlineOmega)$. If $uinmathcal{C}^2(overlineOmega)$ satisfies
$-Delta u=f text{on} Omega, u=g text{on} partialOmega$
then there is a constant $C_Omega$ depending only on $Omega$ such that
$max_{overlineOmega}|u|le C_{Omega} left (max_{partialOmega}g+max_{overlineOmega} fright)$
My book suggests using
$tilde u(x)=u(x)+frac{|f|_{L^infty(Omega)}}{2n}|x|^2$
in connection with the maximum principle.
The problem is, I don't think this is enough. This auxiliary function might have to be modified.
My attempt so far:
$-Delta tilde u(x)=f -|f|_{L^infty(overlineOmega)}C_Omegale 0\
tilde u|_{partial Omega} le g - |f|_{L^infty(Omega)}$
where I defined $C_Omega=text{diam}, Omega /n$
Now I would have $tilde ule 0$ by comparison principle, but I am unable to reach the conclusion, because the auxiliary function misses a term for $max_{partialOmega}g$.
ordinary-differential-equations pde
$endgroup$
add a comment |
$begingroup$
Let $Omega subset mathbb{R}^n$ be open $f,ginmathcal{C}(overlineOmega)$. If $uinmathcal{C}^2(overlineOmega)$ satisfies
$-Delta u=f text{on} Omega, u=g text{on} partialOmega$
then there is a constant $C_Omega$ depending only on $Omega$ such that
$max_{overlineOmega}|u|le C_{Omega} left (max_{partialOmega}g+max_{overlineOmega} fright)$
My book suggests using
$tilde u(x)=u(x)+frac{|f|_{L^infty(Omega)}}{2n}|x|^2$
in connection with the maximum principle.
The problem is, I don't think this is enough. This auxiliary function might have to be modified.
My attempt so far:
$-Delta tilde u(x)=f -|f|_{L^infty(overlineOmega)}C_Omegale 0\
tilde u|_{partial Omega} le g - |f|_{L^infty(Omega)}$
where I defined $C_Omega=text{diam}, Omega /n$
Now I would have $tilde ule 0$ by comparison principle, but I am unable to reach the conclusion, because the auxiliary function misses a term for $max_{partialOmega}g$.
ordinary-differential-equations pde
$endgroup$
add a comment |
$begingroup$
Let $Omega subset mathbb{R}^n$ be open $f,ginmathcal{C}(overlineOmega)$. If $uinmathcal{C}^2(overlineOmega)$ satisfies
$-Delta u=f text{on} Omega, u=g text{on} partialOmega$
then there is a constant $C_Omega$ depending only on $Omega$ such that
$max_{overlineOmega}|u|le C_{Omega} left (max_{partialOmega}g+max_{overlineOmega} fright)$
My book suggests using
$tilde u(x)=u(x)+frac{|f|_{L^infty(Omega)}}{2n}|x|^2$
in connection with the maximum principle.
The problem is, I don't think this is enough. This auxiliary function might have to be modified.
My attempt so far:
$-Delta tilde u(x)=f -|f|_{L^infty(overlineOmega)}C_Omegale 0\
tilde u|_{partial Omega} le g - |f|_{L^infty(Omega)}$
where I defined $C_Omega=text{diam}, Omega /n$
Now I would have $tilde ule 0$ by comparison principle, but I am unable to reach the conclusion, because the auxiliary function misses a term for $max_{partialOmega}g$.
ordinary-differential-equations pde
$endgroup$
Let $Omega subset mathbb{R}^n$ be open $f,ginmathcal{C}(overlineOmega)$. If $uinmathcal{C}^2(overlineOmega)$ satisfies
$-Delta u=f text{on} Omega, u=g text{on} partialOmega$
then there is a constant $C_Omega$ depending only on $Omega$ such that
$max_{overlineOmega}|u|le C_{Omega} left (max_{partialOmega}g+max_{overlineOmega} fright)$
My book suggests using
$tilde u(x)=u(x)+frac{|f|_{L^infty(Omega)}}{2n}|x|^2$
in connection with the maximum principle.
The problem is, I don't think this is enough. This auxiliary function might have to be modified.
My attempt so far:
$-Delta tilde u(x)=f -|f|_{L^infty(overlineOmega)}C_Omegale 0\
tilde u|_{partial Omega} le g - |f|_{L^infty(Omega)}$
where I defined $C_Omega=text{diam}, Omega /n$
Now I would have $tilde ule 0$ by comparison principle, but I am unable to reach the conclusion, because the auxiliary function misses a term for $max_{partialOmega}g$.
ordinary-differential-equations pde
ordinary-differential-equations pde
asked Dec 6 '18 at 21:49
EpsilonDeltaEpsilonDelta
6701615
6701615
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3029092%2fmaximum-principle-for-poisson%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3029092%2fmaximum-principle-for-poisson%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown