Integration of $int_0^frac{pi}{6} cos^{-3}2x sin2x , dx $?












0












$begingroup$


I tried substituting $x=frac{cos t}{2}$



but I didn't got anywhere.



Thanks!










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    I tried substituting $x=frac{cos t}{2}$



    but I didn't got anywhere.



    Thanks!










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      I tried substituting $x=frac{cos t}{2}$



      but I didn't got anywhere.



      Thanks!










      share|cite|improve this question









      $endgroup$




      I tried substituting $x=frac{cos t}{2}$



      but I didn't got anywhere.



      Thanks!







      calculus integration definite-integrals






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 11 '18 at 16:38









      RaghavRaghav

      557




      557






















          2 Answers
          2






          active

          oldest

          votes


















          4












          $begingroup$

          HINT: Rewrite the integrand as
          $$cos^{-3}(2x)sin(2x)=tan(2x)sec^2(2x)$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            wait, is it cos inverse cube x or $frac{1}{sec^3 x}$?
            $endgroup$
            – Raghav
            Dec 11 '18 at 16:43












          • $begingroup$
            Do you mean the integrand is $arccos^3 2x ,sin 2x$?
            $endgroup$
            – Bernard
            Dec 11 '18 at 16:46










          • $begingroup$
            It should be $sec^3x$, otherwise it would have said $(cos^{-1}x)^3$
            $endgroup$
            – Shubham Johri
            Dec 11 '18 at 16:47












          • $begingroup$
            @Bernard Yeah I meant that.
            $endgroup$
            – Raghav
            Dec 11 '18 at 16:47










          • $begingroup$
            @ShubhamJohri Ohh, ok. It's the first time I've encountered it, so I got confused.Thanks.
            $endgroup$
            – Raghav
            Dec 11 '18 at 16:48



















          0












          $begingroup$

          Hint:



          For $$intcos^m(2x)sin^{2n+1}(2x) dx,$$



          choose $cos(2x)=y$






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035478%2fintegration-of-int-0-frac-pi6-cos-32x-sin2x-dx%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            4












            $begingroup$

            HINT: Rewrite the integrand as
            $$cos^{-3}(2x)sin(2x)=tan(2x)sec^2(2x)$$






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              wait, is it cos inverse cube x or $frac{1}{sec^3 x}$?
              $endgroup$
              – Raghav
              Dec 11 '18 at 16:43












            • $begingroup$
              Do you mean the integrand is $arccos^3 2x ,sin 2x$?
              $endgroup$
              – Bernard
              Dec 11 '18 at 16:46










            • $begingroup$
              It should be $sec^3x$, otherwise it would have said $(cos^{-1}x)^3$
              $endgroup$
              – Shubham Johri
              Dec 11 '18 at 16:47












            • $begingroup$
              @Bernard Yeah I meant that.
              $endgroup$
              – Raghav
              Dec 11 '18 at 16:47










            • $begingroup$
              @ShubhamJohri Ohh, ok. It's the first time I've encountered it, so I got confused.Thanks.
              $endgroup$
              – Raghav
              Dec 11 '18 at 16:48
















            4












            $begingroup$

            HINT: Rewrite the integrand as
            $$cos^{-3}(2x)sin(2x)=tan(2x)sec^2(2x)$$






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              wait, is it cos inverse cube x or $frac{1}{sec^3 x}$?
              $endgroup$
              – Raghav
              Dec 11 '18 at 16:43












            • $begingroup$
              Do you mean the integrand is $arccos^3 2x ,sin 2x$?
              $endgroup$
              – Bernard
              Dec 11 '18 at 16:46










            • $begingroup$
              It should be $sec^3x$, otherwise it would have said $(cos^{-1}x)^3$
              $endgroup$
              – Shubham Johri
              Dec 11 '18 at 16:47












            • $begingroup$
              @Bernard Yeah I meant that.
              $endgroup$
              – Raghav
              Dec 11 '18 at 16:47










            • $begingroup$
              @ShubhamJohri Ohh, ok. It's the first time I've encountered it, so I got confused.Thanks.
              $endgroup$
              – Raghav
              Dec 11 '18 at 16:48














            4












            4








            4





            $begingroup$

            HINT: Rewrite the integrand as
            $$cos^{-3}(2x)sin(2x)=tan(2x)sec^2(2x)$$






            share|cite|improve this answer









            $endgroup$



            HINT: Rewrite the integrand as
            $$cos^{-3}(2x)sin(2x)=tan(2x)sec^2(2x)$$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Dec 11 '18 at 16:40









            FrpzzdFrpzzd

            23k841109




            23k841109












            • $begingroup$
              wait, is it cos inverse cube x or $frac{1}{sec^3 x}$?
              $endgroup$
              – Raghav
              Dec 11 '18 at 16:43












            • $begingroup$
              Do you mean the integrand is $arccos^3 2x ,sin 2x$?
              $endgroup$
              – Bernard
              Dec 11 '18 at 16:46










            • $begingroup$
              It should be $sec^3x$, otherwise it would have said $(cos^{-1}x)^3$
              $endgroup$
              – Shubham Johri
              Dec 11 '18 at 16:47












            • $begingroup$
              @Bernard Yeah I meant that.
              $endgroup$
              – Raghav
              Dec 11 '18 at 16:47










            • $begingroup$
              @ShubhamJohri Ohh, ok. It's the first time I've encountered it, so I got confused.Thanks.
              $endgroup$
              – Raghav
              Dec 11 '18 at 16:48


















            • $begingroup$
              wait, is it cos inverse cube x or $frac{1}{sec^3 x}$?
              $endgroup$
              – Raghav
              Dec 11 '18 at 16:43












            • $begingroup$
              Do you mean the integrand is $arccos^3 2x ,sin 2x$?
              $endgroup$
              – Bernard
              Dec 11 '18 at 16:46










            • $begingroup$
              It should be $sec^3x$, otherwise it would have said $(cos^{-1}x)^3$
              $endgroup$
              – Shubham Johri
              Dec 11 '18 at 16:47












            • $begingroup$
              @Bernard Yeah I meant that.
              $endgroup$
              – Raghav
              Dec 11 '18 at 16:47










            • $begingroup$
              @ShubhamJohri Ohh, ok. It's the first time I've encountered it, so I got confused.Thanks.
              $endgroup$
              – Raghav
              Dec 11 '18 at 16:48
















            $begingroup$
            wait, is it cos inverse cube x or $frac{1}{sec^3 x}$?
            $endgroup$
            – Raghav
            Dec 11 '18 at 16:43






            $begingroup$
            wait, is it cos inverse cube x or $frac{1}{sec^3 x}$?
            $endgroup$
            – Raghav
            Dec 11 '18 at 16:43














            $begingroup$
            Do you mean the integrand is $arccos^3 2x ,sin 2x$?
            $endgroup$
            – Bernard
            Dec 11 '18 at 16:46




            $begingroup$
            Do you mean the integrand is $arccos^3 2x ,sin 2x$?
            $endgroup$
            – Bernard
            Dec 11 '18 at 16:46












            $begingroup$
            It should be $sec^3x$, otherwise it would have said $(cos^{-1}x)^3$
            $endgroup$
            – Shubham Johri
            Dec 11 '18 at 16:47






            $begingroup$
            It should be $sec^3x$, otherwise it would have said $(cos^{-1}x)^3$
            $endgroup$
            – Shubham Johri
            Dec 11 '18 at 16:47














            $begingroup$
            @Bernard Yeah I meant that.
            $endgroup$
            – Raghav
            Dec 11 '18 at 16:47




            $begingroup$
            @Bernard Yeah I meant that.
            $endgroup$
            – Raghav
            Dec 11 '18 at 16:47












            $begingroup$
            @ShubhamJohri Ohh, ok. It's the first time I've encountered it, so I got confused.Thanks.
            $endgroup$
            – Raghav
            Dec 11 '18 at 16:48




            $begingroup$
            @ShubhamJohri Ohh, ok. It's the first time I've encountered it, so I got confused.Thanks.
            $endgroup$
            – Raghav
            Dec 11 '18 at 16:48











            0












            $begingroup$

            Hint:



            For $$intcos^m(2x)sin^{2n+1}(2x) dx,$$



            choose $cos(2x)=y$






            share|cite|improve this answer









            $endgroup$


















              0












              $begingroup$

              Hint:



              For $$intcos^m(2x)sin^{2n+1}(2x) dx,$$



              choose $cos(2x)=y$






              share|cite|improve this answer









              $endgroup$
















                0












                0








                0





                $begingroup$

                Hint:



                For $$intcos^m(2x)sin^{2n+1}(2x) dx,$$



                choose $cos(2x)=y$






                share|cite|improve this answer









                $endgroup$



                Hint:



                For $$intcos^m(2x)sin^{2n+1}(2x) dx,$$



                choose $cos(2x)=y$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Dec 11 '18 at 17:33









                lab bhattacharjeelab bhattacharjee

                226k15157275




                226k15157275






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035478%2fintegration-of-int-0-frac-pi6-cos-32x-sin2x-dx%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Plaza Victoria

                    Puebla de Zaragoza

                    Musa