Evaluating $ int frac1{5S_{8} - 9S_{10} + 7S_{12} - 2S_{14}} {rm d}x$, where $S_n = sin^n(x) + cos^n(x)$
$begingroup$
Prove that
$$ int frac1{5S_{8} - 9S_{10} + 7S_{12} - 2S_{14}} {rm d}x = 2x - arctan left( frac{tan2x}{2 + tan^22x} right) + C$$
where $S_n = sin^n(x) + cos^n(x)$.
Even differentiating the right doesn't end up with anything close to that monster integrand.
$$ frac{{rm d}}{{rm d}x} left( 2x - arctan left( frac{tan2x}{2 + tan^22x} right) + C right)
\ = 2 + frac{(tan^22x+1)(2tan^22x-4)}{tan^42x+5tan^22x+4}
\ = frac{ 4 } {sin^42x+ 5sin^22xcos^22x + 4cos^42x}
\ = frac1{sin^8x + sin^2xcos^6x +cos^2xsin^6x + cos^8x} $$
integration trigonometry indefinite-integrals trigonometric-integrals
$endgroup$
add a comment |
$begingroup$
Prove that
$$ int frac1{5S_{8} - 9S_{10} + 7S_{12} - 2S_{14}} {rm d}x = 2x - arctan left( frac{tan2x}{2 + tan^22x} right) + C$$
where $S_n = sin^n(x) + cos^n(x)$.
Even differentiating the right doesn't end up with anything close to that monster integrand.
$$ frac{{rm d}}{{rm d}x} left( 2x - arctan left( frac{tan2x}{2 + tan^22x} right) + C right)
\ = 2 + frac{(tan^22x+1)(2tan^22x-4)}{tan^42x+5tan^22x+4}
\ = frac{ 4 } {sin^42x+ 5sin^22xcos^22x + 4cos^42x}
\ = frac1{sin^8x + sin^2xcos^6x +cos^2xsin^6x + cos^8x} $$
integration trigonometry indefinite-integrals trigonometric-integrals
$endgroup$
1
$begingroup$
The denominator in your final expression is $S_6$
$endgroup$
– Empy2
Dec 13 '18 at 12:14
2
$begingroup$
$S_0=2,S_2=1$ $$S_{m+2}=sin^mx(1-cos^2x)+cos^mx(1-sin^2x)=S_m-sin^2xcos^2xS_{m-2}$$
$endgroup$
– lab bhattacharjee
Dec 13 '18 at 14:38
add a comment |
$begingroup$
Prove that
$$ int frac1{5S_{8} - 9S_{10} + 7S_{12} - 2S_{14}} {rm d}x = 2x - arctan left( frac{tan2x}{2 + tan^22x} right) + C$$
where $S_n = sin^n(x) + cos^n(x)$.
Even differentiating the right doesn't end up with anything close to that monster integrand.
$$ frac{{rm d}}{{rm d}x} left( 2x - arctan left( frac{tan2x}{2 + tan^22x} right) + C right)
\ = 2 + frac{(tan^22x+1)(2tan^22x-4)}{tan^42x+5tan^22x+4}
\ = frac{ 4 } {sin^42x+ 5sin^22xcos^22x + 4cos^42x}
\ = frac1{sin^8x + sin^2xcos^6x +cos^2xsin^6x + cos^8x} $$
integration trigonometry indefinite-integrals trigonometric-integrals
$endgroup$
Prove that
$$ int frac1{5S_{8} - 9S_{10} + 7S_{12} - 2S_{14}} {rm d}x = 2x - arctan left( frac{tan2x}{2 + tan^22x} right) + C$$
where $S_n = sin^n(x) + cos^n(x)$.
Even differentiating the right doesn't end up with anything close to that monster integrand.
$$ frac{{rm d}}{{rm d}x} left( 2x - arctan left( frac{tan2x}{2 + tan^22x} right) + C right)
\ = 2 + frac{(tan^22x+1)(2tan^22x-4)}{tan^42x+5tan^22x+4}
\ = frac{ 4 } {sin^42x+ 5sin^22xcos^22x + 4cos^42x}
\ = frac1{sin^8x + sin^2xcos^6x +cos^2xsin^6x + cos^8x} $$
integration trigonometry indefinite-integrals trigonometric-integrals
integration trigonometry indefinite-integrals trigonometric-integrals
edited Dec 13 '18 at 13:23
Blue
48.6k870156
48.6k870156
asked Dec 13 '18 at 12:08
MintMint
5311417
5311417
1
$begingroup$
The denominator in your final expression is $S_6$
$endgroup$
– Empy2
Dec 13 '18 at 12:14
2
$begingroup$
$S_0=2,S_2=1$ $$S_{m+2}=sin^mx(1-cos^2x)+cos^mx(1-sin^2x)=S_m-sin^2xcos^2xS_{m-2}$$
$endgroup$
– lab bhattacharjee
Dec 13 '18 at 14:38
add a comment |
1
$begingroup$
The denominator in your final expression is $S_6$
$endgroup$
– Empy2
Dec 13 '18 at 12:14
2
$begingroup$
$S_0=2,S_2=1$ $$S_{m+2}=sin^mx(1-cos^2x)+cos^mx(1-sin^2x)=S_m-sin^2xcos^2xS_{m-2}$$
$endgroup$
– lab bhattacharjee
Dec 13 '18 at 14:38
1
1
$begingroup$
The denominator in your final expression is $S_6$
$endgroup$
– Empy2
Dec 13 '18 at 12:14
$begingroup$
The denominator in your final expression is $S_6$
$endgroup$
– Empy2
Dec 13 '18 at 12:14
2
2
$begingroup$
$S_0=2,S_2=1$ $$S_{m+2}=sin^mx(1-cos^2x)+cos^mx(1-sin^2x)=S_m-sin^2xcos^2xS_{m-2}$$
$endgroup$
– lab bhattacharjee
Dec 13 '18 at 14:38
$begingroup$
$S_0=2,S_2=1$ $$S_{m+2}=sin^mx(1-cos^2x)+cos^mx(1-sin^2x)=S_m-sin^2xcos^2xS_{m-2}$$
$endgroup$
– lab bhattacharjee
Dec 13 '18 at 14:38
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Let $c=cos2x$. Then applying the double angle identities,
$$sin^2x=frac{1-cos2x}2,quadcos^2x=frac{1+cos2x}2,$$
to each occurrence of $sin^nx$ and $cos^nx$, we get
$$begin{cases}
S_8=2^{-3}(1+6c^2+c^4)\
S_{10}=2^{-4}(1+10c^2+5c^4)\
S_{12}=2^{-5}(1+15c^2+15c^4+c^6)\
S_{14}=2^{-6}(1+21c^2+35c^4+7c^6)
end{cases}$$
Combining these expressions to match the denominator of the integrand, we find that it reduces to
$$5S_8-9S_{10}+7S_{12}-2S_{14}=2^{-2}(1+3c^2)$$
so that
$$intfrac{mathrm dx}{5S_8-9S_{10}+7S_{12}-2S_{14}}=intfrac4{1+3cos^22x},mathrm dx=intfrac8{5+3cos4x},mathrm dx$$
The antiderivative is $-arctan(2cot2x)+C$, which I don't think should be too hard to reconcile with the given solution.
$endgroup$
1
$begingroup$
The pure elegance and beauty of this answer is incredible. I commend you with a meaningless upvote.
$endgroup$
– clathratus
Dec 14 '18 at 16:20
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037919%2fevaluating-int-frac15s-8-9s-10-7s-12-2s-14-rm-dx-where%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $c=cos2x$. Then applying the double angle identities,
$$sin^2x=frac{1-cos2x}2,quadcos^2x=frac{1+cos2x}2,$$
to each occurrence of $sin^nx$ and $cos^nx$, we get
$$begin{cases}
S_8=2^{-3}(1+6c^2+c^4)\
S_{10}=2^{-4}(1+10c^2+5c^4)\
S_{12}=2^{-5}(1+15c^2+15c^4+c^6)\
S_{14}=2^{-6}(1+21c^2+35c^4+7c^6)
end{cases}$$
Combining these expressions to match the denominator of the integrand, we find that it reduces to
$$5S_8-9S_{10}+7S_{12}-2S_{14}=2^{-2}(1+3c^2)$$
so that
$$intfrac{mathrm dx}{5S_8-9S_{10}+7S_{12}-2S_{14}}=intfrac4{1+3cos^22x},mathrm dx=intfrac8{5+3cos4x},mathrm dx$$
The antiderivative is $-arctan(2cot2x)+C$, which I don't think should be too hard to reconcile with the given solution.
$endgroup$
1
$begingroup$
The pure elegance and beauty of this answer is incredible. I commend you with a meaningless upvote.
$endgroup$
– clathratus
Dec 14 '18 at 16:20
add a comment |
$begingroup$
Let $c=cos2x$. Then applying the double angle identities,
$$sin^2x=frac{1-cos2x}2,quadcos^2x=frac{1+cos2x}2,$$
to each occurrence of $sin^nx$ and $cos^nx$, we get
$$begin{cases}
S_8=2^{-3}(1+6c^2+c^4)\
S_{10}=2^{-4}(1+10c^2+5c^4)\
S_{12}=2^{-5}(1+15c^2+15c^4+c^6)\
S_{14}=2^{-6}(1+21c^2+35c^4+7c^6)
end{cases}$$
Combining these expressions to match the denominator of the integrand, we find that it reduces to
$$5S_8-9S_{10}+7S_{12}-2S_{14}=2^{-2}(1+3c^2)$$
so that
$$intfrac{mathrm dx}{5S_8-9S_{10}+7S_{12}-2S_{14}}=intfrac4{1+3cos^22x},mathrm dx=intfrac8{5+3cos4x},mathrm dx$$
The antiderivative is $-arctan(2cot2x)+C$, which I don't think should be too hard to reconcile with the given solution.
$endgroup$
1
$begingroup$
The pure elegance and beauty of this answer is incredible. I commend you with a meaningless upvote.
$endgroup$
– clathratus
Dec 14 '18 at 16:20
add a comment |
$begingroup$
Let $c=cos2x$. Then applying the double angle identities,
$$sin^2x=frac{1-cos2x}2,quadcos^2x=frac{1+cos2x}2,$$
to each occurrence of $sin^nx$ and $cos^nx$, we get
$$begin{cases}
S_8=2^{-3}(1+6c^2+c^4)\
S_{10}=2^{-4}(1+10c^2+5c^4)\
S_{12}=2^{-5}(1+15c^2+15c^4+c^6)\
S_{14}=2^{-6}(1+21c^2+35c^4+7c^6)
end{cases}$$
Combining these expressions to match the denominator of the integrand, we find that it reduces to
$$5S_8-9S_{10}+7S_{12}-2S_{14}=2^{-2}(1+3c^2)$$
so that
$$intfrac{mathrm dx}{5S_8-9S_{10}+7S_{12}-2S_{14}}=intfrac4{1+3cos^22x},mathrm dx=intfrac8{5+3cos4x},mathrm dx$$
The antiderivative is $-arctan(2cot2x)+C$, which I don't think should be too hard to reconcile with the given solution.
$endgroup$
Let $c=cos2x$. Then applying the double angle identities,
$$sin^2x=frac{1-cos2x}2,quadcos^2x=frac{1+cos2x}2,$$
to each occurrence of $sin^nx$ and $cos^nx$, we get
$$begin{cases}
S_8=2^{-3}(1+6c^2+c^4)\
S_{10}=2^{-4}(1+10c^2+5c^4)\
S_{12}=2^{-5}(1+15c^2+15c^4+c^6)\
S_{14}=2^{-6}(1+21c^2+35c^4+7c^6)
end{cases}$$
Combining these expressions to match the denominator of the integrand, we find that it reduces to
$$5S_8-9S_{10}+7S_{12}-2S_{14}=2^{-2}(1+3c^2)$$
so that
$$intfrac{mathrm dx}{5S_8-9S_{10}+7S_{12}-2S_{14}}=intfrac4{1+3cos^22x},mathrm dx=intfrac8{5+3cos4x},mathrm dx$$
The antiderivative is $-arctan(2cot2x)+C$, which I don't think should be too hard to reconcile with the given solution.
answered Dec 13 '18 at 17:17
user170231user170231
4,15811429
4,15811429
1
$begingroup$
The pure elegance and beauty of this answer is incredible. I commend you with a meaningless upvote.
$endgroup$
– clathratus
Dec 14 '18 at 16:20
add a comment |
1
$begingroup$
The pure elegance and beauty of this answer is incredible. I commend you with a meaningless upvote.
$endgroup$
– clathratus
Dec 14 '18 at 16:20
1
1
$begingroup$
The pure elegance and beauty of this answer is incredible. I commend you with a meaningless upvote.
$endgroup$
– clathratus
Dec 14 '18 at 16:20
$begingroup$
The pure elegance and beauty of this answer is incredible. I commend you with a meaningless upvote.
$endgroup$
– clathratus
Dec 14 '18 at 16:20
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037919%2fevaluating-int-frac15s-8-9s-10-7s-12-2s-14-rm-dx-where%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
The denominator in your final expression is $S_6$
$endgroup$
– Empy2
Dec 13 '18 at 12:14
2
$begingroup$
$S_0=2,S_2=1$ $$S_{m+2}=sin^mx(1-cos^2x)+cos^mx(1-sin^2x)=S_m-sin^2xcos^2xS_{m-2}$$
$endgroup$
– lab bhattacharjee
Dec 13 '18 at 14:38