Evaluating $ int frac1{5S_{8} - 9S_{10} + 7S_{12} - 2S_{14}} {rm d}x$, where $S_n = sin^n(x) + cos^n(x)$












5












$begingroup$



Prove that



$$ int frac1{5S_{8} - 9S_{10} + 7S_{12} - 2S_{14}} {rm d}x = 2x - arctan left( frac{tan2x}{2 + tan^22x} right) + C$$



where $S_n = sin^n(x) + cos^n(x)$.




Even differentiating the right doesn't end up with anything close to that monster integrand.



$$ frac{{rm d}}{{rm d}x} left( 2x - arctan left( frac{tan2x}{2 + tan^22x} right) + C right)
\ = 2 + frac{(tan^22x+1)(2tan^22x-4)}{tan^42x+5tan^22x+4}
\ = frac{ 4 } {sin^42x+ 5sin^22xcos^22x + 4cos^42x}
\ = frac1{sin^8x + sin^2xcos^6x +cos^2xsin^6x + cos^8x} $$










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    The denominator in your final expression is $S_6$
    $endgroup$
    – Empy2
    Dec 13 '18 at 12:14






  • 2




    $begingroup$
    $S_0=2,S_2=1$ $$S_{m+2}=sin^mx(1-cos^2x)+cos^mx(1-sin^2x)=S_m-sin^2xcos^2xS_{m-2}$$
    $endgroup$
    – lab bhattacharjee
    Dec 13 '18 at 14:38
















5












$begingroup$



Prove that



$$ int frac1{5S_{8} - 9S_{10} + 7S_{12} - 2S_{14}} {rm d}x = 2x - arctan left( frac{tan2x}{2 + tan^22x} right) + C$$



where $S_n = sin^n(x) + cos^n(x)$.




Even differentiating the right doesn't end up with anything close to that monster integrand.



$$ frac{{rm d}}{{rm d}x} left( 2x - arctan left( frac{tan2x}{2 + tan^22x} right) + C right)
\ = 2 + frac{(tan^22x+1)(2tan^22x-4)}{tan^42x+5tan^22x+4}
\ = frac{ 4 } {sin^42x+ 5sin^22xcos^22x + 4cos^42x}
\ = frac1{sin^8x + sin^2xcos^6x +cos^2xsin^6x + cos^8x} $$










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    The denominator in your final expression is $S_6$
    $endgroup$
    – Empy2
    Dec 13 '18 at 12:14






  • 2




    $begingroup$
    $S_0=2,S_2=1$ $$S_{m+2}=sin^mx(1-cos^2x)+cos^mx(1-sin^2x)=S_m-sin^2xcos^2xS_{m-2}$$
    $endgroup$
    – lab bhattacharjee
    Dec 13 '18 at 14:38














5












5








5


1



$begingroup$



Prove that



$$ int frac1{5S_{8} - 9S_{10} + 7S_{12} - 2S_{14}} {rm d}x = 2x - arctan left( frac{tan2x}{2 + tan^22x} right) + C$$



where $S_n = sin^n(x) + cos^n(x)$.




Even differentiating the right doesn't end up with anything close to that monster integrand.



$$ frac{{rm d}}{{rm d}x} left( 2x - arctan left( frac{tan2x}{2 + tan^22x} right) + C right)
\ = 2 + frac{(tan^22x+1)(2tan^22x-4)}{tan^42x+5tan^22x+4}
\ = frac{ 4 } {sin^42x+ 5sin^22xcos^22x + 4cos^42x}
\ = frac1{sin^8x + sin^2xcos^6x +cos^2xsin^6x + cos^8x} $$










share|cite|improve this question











$endgroup$





Prove that



$$ int frac1{5S_{8} - 9S_{10} + 7S_{12} - 2S_{14}} {rm d}x = 2x - arctan left( frac{tan2x}{2 + tan^22x} right) + C$$



where $S_n = sin^n(x) + cos^n(x)$.




Even differentiating the right doesn't end up with anything close to that monster integrand.



$$ frac{{rm d}}{{rm d}x} left( 2x - arctan left( frac{tan2x}{2 + tan^22x} right) + C right)
\ = 2 + frac{(tan^22x+1)(2tan^22x-4)}{tan^42x+5tan^22x+4}
\ = frac{ 4 } {sin^42x+ 5sin^22xcos^22x + 4cos^42x}
\ = frac1{sin^8x + sin^2xcos^6x +cos^2xsin^6x + cos^8x} $$







integration trigonometry indefinite-integrals trigonometric-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 13 '18 at 13:23









Blue

48.6k870156




48.6k870156










asked Dec 13 '18 at 12:08









MintMint

5311417




5311417








  • 1




    $begingroup$
    The denominator in your final expression is $S_6$
    $endgroup$
    – Empy2
    Dec 13 '18 at 12:14






  • 2




    $begingroup$
    $S_0=2,S_2=1$ $$S_{m+2}=sin^mx(1-cos^2x)+cos^mx(1-sin^2x)=S_m-sin^2xcos^2xS_{m-2}$$
    $endgroup$
    – lab bhattacharjee
    Dec 13 '18 at 14:38














  • 1




    $begingroup$
    The denominator in your final expression is $S_6$
    $endgroup$
    – Empy2
    Dec 13 '18 at 12:14






  • 2




    $begingroup$
    $S_0=2,S_2=1$ $$S_{m+2}=sin^mx(1-cos^2x)+cos^mx(1-sin^2x)=S_m-sin^2xcos^2xS_{m-2}$$
    $endgroup$
    – lab bhattacharjee
    Dec 13 '18 at 14:38








1




1




$begingroup$
The denominator in your final expression is $S_6$
$endgroup$
– Empy2
Dec 13 '18 at 12:14




$begingroup$
The denominator in your final expression is $S_6$
$endgroup$
– Empy2
Dec 13 '18 at 12:14




2




2




$begingroup$
$S_0=2,S_2=1$ $$S_{m+2}=sin^mx(1-cos^2x)+cos^mx(1-sin^2x)=S_m-sin^2xcos^2xS_{m-2}$$
$endgroup$
– lab bhattacharjee
Dec 13 '18 at 14:38




$begingroup$
$S_0=2,S_2=1$ $$S_{m+2}=sin^mx(1-cos^2x)+cos^mx(1-sin^2x)=S_m-sin^2xcos^2xS_{m-2}$$
$endgroup$
– lab bhattacharjee
Dec 13 '18 at 14:38










1 Answer
1






active

oldest

votes


















5












$begingroup$

Let $c=cos2x$. Then applying the double angle identities,
$$sin^2x=frac{1-cos2x}2,quadcos^2x=frac{1+cos2x}2,$$
to each occurrence of $sin^nx$ and $cos^nx$, we get
$$begin{cases}
S_8=2^{-3}(1+6c^2+c^4)\
S_{10}=2^{-4}(1+10c^2+5c^4)\
S_{12}=2^{-5}(1+15c^2+15c^4+c^6)\
S_{14}=2^{-6}(1+21c^2+35c^4+7c^6)
end{cases}$$

Combining these expressions to match the denominator of the integrand, we find that it reduces to
$$5S_8-9S_{10}+7S_{12}-2S_{14}=2^{-2}(1+3c^2)$$
so that
$$intfrac{mathrm dx}{5S_8-9S_{10}+7S_{12}-2S_{14}}=intfrac4{1+3cos^22x},mathrm dx=intfrac8{5+3cos4x},mathrm dx$$
The antiderivative is $-arctan(2cot2x)+C$, which I don't think should be too hard to reconcile with the given solution.






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    The pure elegance and beauty of this answer is incredible. I commend you with a meaningless upvote.
    $endgroup$
    – clathratus
    Dec 14 '18 at 16:20











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037919%2fevaluating-int-frac15s-8-9s-10-7s-12-2s-14-rm-dx-where%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









5












$begingroup$

Let $c=cos2x$. Then applying the double angle identities,
$$sin^2x=frac{1-cos2x}2,quadcos^2x=frac{1+cos2x}2,$$
to each occurrence of $sin^nx$ and $cos^nx$, we get
$$begin{cases}
S_8=2^{-3}(1+6c^2+c^4)\
S_{10}=2^{-4}(1+10c^2+5c^4)\
S_{12}=2^{-5}(1+15c^2+15c^4+c^6)\
S_{14}=2^{-6}(1+21c^2+35c^4+7c^6)
end{cases}$$

Combining these expressions to match the denominator of the integrand, we find that it reduces to
$$5S_8-9S_{10}+7S_{12}-2S_{14}=2^{-2}(1+3c^2)$$
so that
$$intfrac{mathrm dx}{5S_8-9S_{10}+7S_{12}-2S_{14}}=intfrac4{1+3cos^22x},mathrm dx=intfrac8{5+3cos4x},mathrm dx$$
The antiderivative is $-arctan(2cot2x)+C$, which I don't think should be too hard to reconcile with the given solution.






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    The pure elegance and beauty of this answer is incredible. I commend you with a meaningless upvote.
    $endgroup$
    – clathratus
    Dec 14 '18 at 16:20
















5












$begingroup$

Let $c=cos2x$. Then applying the double angle identities,
$$sin^2x=frac{1-cos2x}2,quadcos^2x=frac{1+cos2x}2,$$
to each occurrence of $sin^nx$ and $cos^nx$, we get
$$begin{cases}
S_8=2^{-3}(1+6c^2+c^4)\
S_{10}=2^{-4}(1+10c^2+5c^4)\
S_{12}=2^{-5}(1+15c^2+15c^4+c^6)\
S_{14}=2^{-6}(1+21c^2+35c^4+7c^6)
end{cases}$$

Combining these expressions to match the denominator of the integrand, we find that it reduces to
$$5S_8-9S_{10}+7S_{12}-2S_{14}=2^{-2}(1+3c^2)$$
so that
$$intfrac{mathrm dx}{5S_8-9S_{10}+7S_{12}-2S_{14}}=intfrac4{1+3cos^22x},mathrm dx=intfrac8{5+3cos4x},mathrm dx$$
The antiderivative is $-arctan(2cot2x)+C$, which I don't think should be too hard to reconcile with the given solution.






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    The pure elegance and beauty of this answer is incredible. I commend you with a meaningless upvote.
    $endgroup$
    – clathratus
    Dec 14 '18 at 16:20














5












5








5





$begingroup$

Let $c=cos2x$. Then applying the double angle identities,
$$sin^2x=frac{1-cos2x}2,quadcos^2x=frac{1+cos2x}2,$$
to each occurrence of $sin^nx$ and $cos^nx$, we get
$$begin{cases}
S_8=2^{-3}(1+6c^2+c^4)\
S_{10}=2^{-4}(1+10c^2+5c^4)\
S_{12}=2^{-5}(1+15c^2+15c^4+c^6)\
S_{14}=2^{-6}(1+21c^2+35c^4+7c^6)
end{cases}$$

Combining these expressions to match the denominator of the integrand, we find that it reduces to
$$5S_8-9S_{10}+7S_{12}-2S_{14}=2^{-2}(1+3c^2)$$
so that
$$intfrac{mathrm dx}{5S_8-9S_{10}+7S_{12}-2S_{14}}=intfrac4{1+3cos^22x},mathrm dx=intfrac8{5+3cos4x},mathrm dx$$
The antiderivative is $-arctan(2cot2x)+C$, which I don't think should be too hard to reconcile with the given solution.






share|cite|improve this answer









$endgroup$



Let $c=cos2x$. Then applying the double angle identities,
$$sin^2x=frac{1-cos2x}2,quadcos^2x=frac{1+cos2x}2,$$
to each occurrence of $sin^nx$ and $cos^nx$, we get
$$begin{cases}
S_8=2^{-3}(1+6c^2+c^4)\
S_{10}=2^{-4}(1+10c^2+5c^4)\
S_{12}=2^{-5}(1+15c^2+15c^4+c^6)\
S_{14}=2^{-6}(1+21c^2+35c^4+7c^6)
end{cases}$$

Combining these expressions to match the denominator of the integrand, we find that it reduces to
$$5S_8-9S_{10}+7S_{12}-2S_{14}=2^{-2}(1+3c^2)$$
so that
$$intfrac{mathrm dx}{5S_8-9S_{10}+7S_{12}-2S_{14}}=intfrac4{1+3cos^22x},mathrm dx=intfrac8{5+3cos4x},mathrm dx$$
The antiderivative is $-arctan(2cot2x)+C$, which I don't think should be too hard to reconcile with the given solution.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Dec 13 '18 at 17:17









user170231user170231

4,15811429




4,15811429








  • 1




    $begingroup$
    The pure elegance and beauty of this answer is incredible. I commend you with a meaningless upvote.
    $endgroup$
    – clathratus
    Dec 14 '18 at 16:20














  • 1




    $begingroup$
    The pure elegance and beauty of this answer is incredible. I commend you with a meaningless upvote.
    $endgroup$
    – clathratus
    Dec 14 '18 at 16:20








1




1




$begingroup$
The pure elegance and beauty of this answer is incredible. I commend you with a meaningless upvote.
$endgroup$
– clathratus
Dec 14 '18 at 16:20




$begingroup$
The pure elegance and beauty of this answer is incredible. I commend you with a meaningless upvote.
$endgroup$
– clathratus
Dec 14 '18 at 16:20


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037919%2fevaluating-int-frac15s-8-9s-10-7s-12-2s-14-rm-dx-where%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Plaza Victoria

In PowerPoint, is there a keyboard shortcut for bulleted / numbered list?

How to put 3 figures in Latex with 2 figures side by side and 1 below these side by side images but in...