Show that $sumlimits_{n=1}^{infty}left(frac{a_{n+1}}{a_n}-1right)$ converges.












0












$begingroup$


$(a_n)$ is a sequence of strictly increasing positive numbers and has a lower as well as an upper bound. The question is, if the partial sum:



begin{align*}sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right)&=left(frac{a_{1+1}}{a_1}-1right)+left(frac{a_{2+1}}{a_2}-1right)+cdots +left(frac{a_{k+1}}{a_k}-1right)\&=frac{a_2}{a_1}+frac{a_3}{a_2}+cdots +frac{a_{k+1}}{a_k}-k.end{align*}



converges? Because $(a_n)$ is a sequence of strictly increasing positive numbers, we have $a_{n+1}>a_n$ for all $n$. Because $(a_n)$ is bounded, we have an upper bound, e.g. $a$, and a lower bound, e.g. $b$, such that $b leq a_n leq a$ for all $n$. This means that $b leq a_n < a_{n+1} leq a$...



The problem with that is: if $k rightarrow infty$, then the series diverges, because of the $-k$ at the end of the expression?! Is there some kind of trick or something to use here?!



Thanks for your help in advance.



Best Regards,



Ahmed Hossam










share|cite|improve this question











$endgroup$












  • $begingroup$
    Note that the sequence $(a_n)$ converges since it is increasing and bounded above. Hence, the fractions $frac{a_{n+1}}{a_n}$ tend to $1$ so that your summands $frac{a_{n+1}}{a_n}-1$ tend to $0$. Hence, the "$-k$" is not a problem. Of course summands tending to zero is just a necessary, not a sufficient condition for the series to converge.
    $endgroup$
    – Christoph
    Dec 13 '18 at 12:08












  • $begingroup$
    You mean $limlimits_{n rightarrow infty} left(frac{a_{n+1}}{a_n} - 1right) = limlimits_{n rightarrow infty} frac{a_{n+1}}{a_n} - limlimits_{n rightarrow infty} 1 = frac{limlimits_{n rightarrow infty} a_{n+1}}{limlimits_{n rightarrow infty} a_n} - 1 = frac{a}{a} - 1 = 1 - 1 = 0 $ ? Is this the same as $limlimits_{k rightarrow infty} sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right)$?
    $endgroup$
    – Ahmed Hossam
    Dec 13 '18 at 12:32












  • $begingroup$
    $$sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right)=underbrace{left(overbrace{frac{a_{1+1}}{a_1}}^{>1}-1right)}_{>0}+underbrace{left(overbrace{frac{a_{2+1}}{a_2}}^{>1}- 1right)}_{>0}+cdots +underbrace{left(overbrace{frac{a_{k+1}}{a_k}}^{rightarrow 1} -1 right)}_{rightarrow 0}$$ if the terms in the sum converge to $0$, does this mean that, the partial sum converges to something???
    $endgroup$
    – Ahmed Hossam
    Dec 13 '18 at 14:27












  • $begingroup$
    The partial sums are increasing and bounded from above... $$sum_{n=1}^k left(frac{a_{n+1}}{a_n} -1 right) = sum_{n=1}^k frac{a_{n+1}-a_n}{a_n} le sum_{n=1}^k frac{a_{n+1}-a_n}{a_1} = frac{a_{k+1}-a_1}{a_1}$$
    $endgroup$
    – achille hui
    Dec 13 '18 at 14:38










  • $begingroup$
    The last equality is not clear...
    $endgroup$
    – Ahmed Hossam
    Dec 13 '18 at 18:28
















0












$begingroup$


$(a_n)$ is a sequence of strictly increasing positive numbers and has a lower as well as an upper bound. The question is, if the partial sum:



begin{align*}sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right)&=left(frac{a_{1+1}}{a_1}-1right)+left(frac{a_{2+1}}{a_2}-1right)+cdots +left(frac{a_{k+1}}{a_k}-1right)\&=frac{a_2}{a_1}+frac{a_3}{a_2}+cdots +frac{a_{k+1}}{a_k}-k.end{align*}



converges? Because $(a_n)$ is a sequence of strictly increasing positive numbers, we have $a_{n+1}>a_n$ for all $n$. Because $(a_n)$ is bounded, we have an upper bound, e.g. $a$, and a lower bound, e.g. $b$, such that $b leq a_n leq a$ for all $n$. This means that $b leq a_n < a_{n+1} leq a$...



The problem with that is: if $k rightarrow infty$, then the series diverges, because of the $-k$ at the end of the expression?! Is there some kind of trick or something to use here?!



Thanks for your help in advance.



Best Regards,



Ahmed Hossam










share|cite|improve this question











$endgroup$












  • $begingroup$
    Note that the sequence $(a_n)$ converges since it is increasing and bounded above. Hence, the fractions $frac{a_{n+1}}{a_n}$ tend to $1$ so that your summands $frac{a_{n+1}}{a_n}-1$ tend to $0$. Hence, the "$-k$" is not a problem. Of course summands tending to zero is just a necessary, not a sufficient condition for the series to converge.
    $endgroup$
    – Christoph
    Dec 13 '18 at 12:08












  • $begingroup$
    You mean $limlimits_{n rightarrow infty} left(frac{a_{n+1}}{a_n} - 1right) = limlimits_{n rightarrow infty} frac{a_{n+1}}{a_n} - limlimits_{n rightarrow infty} 1 = frac{limlimits_{n rightarrow infty} a_{n+1}}{limlimits_{n rightarrow infty} a_n} - 1 = frac{a}{a} - 1 = 1 - 1 = 0 $ ? Is this the same as $limlimits_{k rightarrow infty} sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right)$?
    $endgroup$
    – Ahmed Hossam
    Dec 13 '18 at 12:32












  • $begingroup$
    $$sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right)=underbrace{left(overbrace{frac{a_{1+1}}{a_1}}^{>1}-1right)}_{>0}+underbrace{left(overbrace{frac{a_{2+1}}{a_2}}^{>1}- 1right)}_{>0}+cdots +underbrace{left(overbrace{frac{a_{k+1}}{a_k}}^{rightarrow 1} -1 right)}_{rightarrow 0}$$ if the terms in the sum converge to $0$, does this mean that, the partial sum converges to something???
    $endgroup$
    – Ahmed Hossam
    Dec 13 '18 at 14:27












  • $begingroup$
    The partial sums are increasing and bounded from above... $$sum_{n=1}^k left(frac{a_{n+1}}{a_n} -1 right) = sum_{n=1}^k frac{a_{n+1}-a_n}{a_n} le sum_{n=1}^k frac{a_{n+1}-a_n}{a_1} = frac{a_{k+1}-a_1}{a_1}$$
    $endgroup$
    – achille hui
    Dec 13 '18 at 14:38










  • $begingroup$
    The last equality is not clear...
    $endgroup$
    – Ahmed Hossam
    Dec 13 '18 at 18:28














0












0








0





$begingroup$


$(a_n)$ is a sequence of strictly increasing positive numbers and has a lower as well as an upper bound. The question is, if the partial sum:



begin{align*}sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right)&=left(frac{a_{1+1}}{a_1}-1right)+left(frac{a_{2+1}}{a_2}-1right)+cdots +left(frac{a_{k+1}}{a_k}-1right)\&=frac{a_2}{a_1}+frac{a_3}{a_2}+cdots +frac{a_{k+1}}{a_k}-k.end{align*}



converges? Because $(a_n)$ is a sequence of strictly increasing positive numbers, we have $a_{n+1}>a_n$ for all $n$. Because $(a_n)$ is bounded, we have an upper bound, e.g. $a$, and a lower bound, e.g. $b$, such that $b leq a_n leq a$ for all $n$. This means that $b leq a_n < a_{n+1} leq a$...



The problem with that is: if $k rightarrow infty$, then the series diverges, because of the $-k$ at the end of the expression?! Is there some kind of trick or something to use here?!



Thanks for your help in advance.



Best Regards,



Ahmed Hossam










share|cite|improve this question











$endgroup$




$(a_n)$ is a sequence of strictly increasing positive numbers and has a lower as well as an upper bound. The question is, if the partial sum:



begin{align*}sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right)&=left(frac{a_{1+1}}{a_1}-1right)+left(frac{a_{2+1}}{a_2}-1right)+cdots +left(frac{a_{k+1}}{a_k}-1right)\&=frac{a_2}{a_1}+frac{a_3}{a_2}+cdots +frac{a_{k+1}}{a_k}-k.end{align*}



converges? Because $(a_n)$ is a sequence of strictly increasing positive numbers, we have $a_{n+1}>a_n$ for all $n$. Because $(a_n)$ is bounded, we have an upper bound, e.g. $a$, and a lower bound, e.g. $b$, such that $b leq a_n leq a$ for all $n$. This means that $b leq a_n < a_{n+1} leq a$...



The problem with that is: if $k rightarrow infty$, then the series diverges, because of the $-k$ at the end of the expression?! Is there some kind of trick or something to use here?!



Thanks for your help in advance.



Best Regards,



Ahmed Hossam







real-analysis calculus sequences-and-series real-numbers






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 13 '18 at 12:24







Ahmed Hossam

















asked Dec 13 '18 at 11:53









Ahmed HossamAhmed Hossam

126




126












  • $begingroup$
    Note that the sequence $(a_n)$ converges since it is increasing and bounded above. Hence, the fractions $frac{a_{n+1}}{a_n}$ tend to $1$ so that your summands $frac{a_{n+1}}{a_n}-1$ tend to $0$. Hence, the "$-k$" is not a problem. Of course summands tending to zero is just a necessary, not a sufficient condition for the series to converge.
    $endgroup$
    – Christoph
    Dec 13 '18 at 12:08












  • $begingroup$
    You mean $limlimits_{n rightarrow infty} left(frac{a_{n+1}}{a_n} - 1right) = limlimits_{n rightarrow infty} frac{a_{n+1}}{a_n} - limlimits_{n rightarrow infty} 1 = frac{limlimits_{n rightarrow infty} a_{n+1}}{limlimits_{n rightarrow infty} a_n} - 1 = frac{a}{a} - 1 = 1 - 1 = 0 $ ? Is this the same as $limlimits_{k rightarrow infty} sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right)$?
    $endgroup$
    – Ahmed Hossam
    Dec 13 '18 at 12:32












  • $begingroup$
    $$sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right)=underbrace{left(overbrace{frac{a_{1+1}}{a_1}}^{>1}-1right)}_{>0}+underbrace{left(overbrace{frac{a_{2+1}}{a_2}}^{>1}- 1right)}_{>0}+cdots +underbrace{left(overbrace{frac{a_{k+1}}{a_k}}^{rightarrow 1} -1 right)}_{rightarrow 0}$$ if the terms in the sum converge to $0$, does this mean that, the partial sum converges to something???
    $endgroup$
    – Ahmed Hossam
    Dec 13 '18 at 14:27












  • $begingroup$
    The partial sums are increasing and bounded from above... $$sum_{n=1}^k left(frac{a_{n+1}}{a_n} -1 right) = sum_{n=1}^k frac{a_{n+1}-a_n}{a_n} le sum_{n=1}^k frac{a_{n+1}-a_n}{a_1} = frac{a_{k+1}-a_1}{a_1}$$
    $endgroup$
    – achille hui
    Dec 13 '18 at 14:38










  • $begingroup$
    The last equality is not clear...
    $endgroup$
    – Ahmed Hossam
    Dec 13 '18 at 18:28


















  • $begingroup$
    Note that the sequence $(a_n)$ converges since it is increasing and bounded above. Hence, the fractions $frac{a_{n+1}}{a_n}$ tend to $1$ so that your summands $frac{a_{n+1}}{a_n}-1$ tend to $0$. Hence, the "$-k$" is not a problem. Of course summands tending to zero is just a necessary, not a sufficient condition for the series to converge.
    $endgroup$
    – Christoph
    Dec 13 '18 at 12:08












  • $begingroup$
    You mean $limlimits_{n rightarrow infty} left(frac{a_{n+1}}{a_n} - 1right) = limlimits_{n rightarrow infty} frac{a_{n+1}}{a_n} - limlimits_{n rightarrow infty} 1 = frac{limlimits_{n rightarrow infty} a_{n+1}}{limlimits_{n rightarrow infty} a_n} - 1 = frac{a}{a} - 1 = 1 - 1 = 0 $ ? Is this the same as $limlimits_{k rightarrow infty} sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right)$?
    $endgroup$
    – Ahmed Hossam
    Dec 13 '18 at 12:32












  • $begingroup$
    $$sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right)=underbrace{left(overbrace{frac{a_{1+1}}{a_1}}^{>1}-1right)}_{>0}+underbrace{left(overbrace{frac{a_{2+1}}{a_2}}^{>1}- 1right)}_{>0}+cdots +underbrace{left(overbrace{frac{a_{k+1}}{a_k}}^{rightarrow 1} -1 right)}_{rightarrow 0}$$ if the terms in the sum converge to $0$, does this mean that, the partial sum converges to something???
    $endgroup$
    – Ahmed Hossam
    Dec 13 '18 at 14:27












  • $begingroup$
    The partial sums are increasing and bounded from above... $$sum_{n=1}^k left(frac{a_{n+1}}{a_n} -1 right) = sum_{n=1}^k frac{a_{n+1}-a_n}{a_n} le sum_{n=1}^k frac{a_{n+1}-a_n}{a_1} = frac{a_{k+1}-a_1}{a_1}$$
    $endgroup$
    – achille hui
    Dec 13 '18 at 14:38










  • $begingroup$
    The last equality is not clear...
    $endgroup$
    – Ahmed Hossam
    Dec 13 '18 at 18:28
















$begingroup$
Note that the sequence $(a_n)$ converges since it is increasing and bounded above. Hence, the fractions $frac{a_{n+1}}{a_n}$ tend to $1$ so that your summands $frac{a_{n+1}}{a_n}-1$ tend to $0$. Hence, the "$-k$" is not a problem. Of course summands tending to zero is just a necessary, not a sufficient condition for the series to converge.
$endgroup$
– Christoph
Dec 13 '18 at 12:08






$begingroup$
Note that the sequence $(a_n)$ converges since it is increasing and bounded above. Hence, the fractions $frac{a_{n+1}}{a_n}$ tend to $1$ so that your summands $frac{a_{n+1}}{a_n}-1$ tend to $0$. Hence, the "$-k$" is not a problem. Of course summands tending to zero is just a necessary, not a sufficient condition for the series to converge.
$endgroup$
– Christoph
Dec 13 '18 at 12:08














$begingroup$
You mean $limlimits_{n rightarrow infty} left(frac{a_{n+1}}{a_n} - 1right) = limlimits_{n rightarrow infty} frac{a_{n+1}}{a_n} - limlimits_{n rightarrow infty} 1 = frac{limlimits_{n rightarrow infty} a_{n+1}}{limlimits_{n rightarrow infty} a_n} - 1 = frac{a}{a} - 1 = 1 - 1 = 0 $ ? Is this the same as $limlimits_{k rightarrow infty} sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right)$?
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 12:32






$begingroup$
You mean $limlimits_{n rightarrow infty} left(frac{a_{n+1}}{a_n} - 1right) = limlimits_{n rightarrow infty} frac{a_{n+1}}{a_n} - limlimits_{n rightarrow infty} 1 = frac{limlimits_{n rightarrow infty} a_{n+1}}{limlimits_{n rightarrow infty} a_n} - 1 = frac{a}{a} - 1 = 1 - 1 = 0 $ ? Is this the same as $limlimits_{k rightarrow infty} sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right)$?
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 12:32














$begingroup$
$$sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right)=underbrace{left(overbrace{frac{a_{1+1}}{a_1}}^{>1}-1right)}_{>0}+underbrace{left(overbrace{frac{a_{2+1}}{a_2}}^{>1}- 1right)}_{>0}+cdots +underbrace{left(overbrace{frac{a_{k+1}}{a_k}}^{rightarrow 1} -1 right)}_{rightarrow 0}$$ if the terms in the sum converge to $0$, does this mean that, the partial sum converges to something???
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 14:27






$begingroup$
$$sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right)=underbrace{left(overbrace{frac{a_{1+1}}{a_1}}^{>1}-1right)}_{>0}+underbrace{left(overbrace{frac{a_{2+1}}{a_2}}^{>1}- 1right)}_{>0}+cdots +underbrace{left(overbrace{frac{a_{k+1}}{a_k}}^{rightarrow 1} -1 right)}_{rightarrow 0}$$ if the terms in the sum converge to $0$, does this mean that, the partial sum converges to something???
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 14:27














$begingroup$
The partial sums are increasing and bounded from above... $$sum_{n=1}^k left(frac{a_{n+1}}{a_n} -1 right) = sum_{n=1}^k frac{a_{n+1}-a_n}{a_n} le sum_{n=1}^k frac{a_{n+1}-a_n}{a_1} = frac{a_{k+1}-a_1}{a_1}$$
$endgroup$
– achille hui
Dec 13 '18 at 14:38




$begingroup$
The partial sums are increasing and bounded from above... $$sum_{n=1}^k left(frac{a_{n+1}}{a_n} -1 right) = sum_{n=1}^k frac{a_{n+1}-a_n}{a_n} le sum_{n=1}^k frac{a_{n+1}-a_n}{a_1} = frac{a_{k+1}-a_1}{a_1}$$
$endgroup$
– achille hui
Dec 13 '18 at 14:38












$begingroup$
The last equality is not clear...
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 18:28




$begingroup$
The last equality is not clear...
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 18:28










2 Answers
2






active

oldest

votes


















0












$begingroup$

We are given





  1. $(a_n)$ is a strictly increasing sequence

  2. of positive terms

  3. bounded from above.


Let's say $M$ is an upper bound. (*1) and (*2) implies for all $n$,



$$a_{n+1} > a_n > 0 implies frac{a_{n+1}}{a_n} > 1 iff frac{a_{n+1}}{a_n} - 1 > 0$$



As a sequence indexed by $k$, the partial sums $s_k stackrel{def}{=}sumlimits_{n=1}^k left(frac{a_{n+1}}{a_n} - 1right)$ is a sum of positive terms, so it is strictly increasing. More precisely, we have



$$
s_{k+1} - s_{k} =
sumlimits_{n=1}^{k+1} left(frac{a_{n+1}}{a_n} - 1right)
-
sumlimits_{n=1}^{k} left(frac{a_{n+1}}{a_n} - 1right)
= frac{a_{k+2}}{a_{k+1}} - 1 > 0
implies s_{k+1} > s_{k}
$$



By (*1) and (*2) again, we have $a_{n+1} > a_n ge a_1 > 0$. This implies
$$s_k = sum_{n=1}^k left(frac{a_{n+1}}{a_n} - 1 right)
= sum_{n=1}^k frac{a_{n+1} - a_{n}}{a_n}
le sum_{n=1}^k frac{a_{n+1} - a_{n}}{a_1}
= frac{1}{a_1}sum_{n=1}^k (a_{n+1} - a_n)
$$

The last sum is a telescoping sum. Together with (*3), we obtain
$$s_k le frac{1}{a_1}(a_{k+1} - a_1) le frac{M-1}{a_1}$$
This means as a sequence, the partial sums is bounded from above too. Being increasing and bounded from above, the sequence $s_k$ converges. By definition, so does the series
$sumlimits_{n=1}^infty left(frac{a_{n+1}}{a_n} - 1right)$.






share|cite|improve this answer









$endgroup$





















    4












    $begingroup$

    You can check that it is equivalent to determine whether the series of $logleft(frac{a_{n+1}}{a_n}right)$ converges, because $frac{a_{n+1}}{a_n} rightarrow 1$.



    Edit: to be more clear:



    $frac{a_{n+1}}{a_n}-1 sim logleft(frac{a_{n+1}}{a_n}right) > 0$ as $n$ goes to infinity.



    Thus, the series $sum_n{frac{a_{n+1}}{a_n}-1}$ is convergent iff the series $sum_n{logleft(frac{a_{n+1}}{a_n}right)}$ is convergent.






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      You mean $limlimits_{krightarrow infty}sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right) Leftrightarrow limlimits_{krightarrow infty}sumlimits_{n=1}^{k} log left(frac{a_{n+1}}{a_n}right)$?
      $endgroup$
      – Ahmed Hossam
      Dec 13 '18 at 12:38












    • $begingroup$
      No. I mean that one series grows to $infty$ iff the other does.
      $endgroup$
      – Mindlack
      Dec 13 '18 at 12:41










    • $begingroup$
      Ok, which series is that one series and which is the other?
      $endgroup$
      – Ahmed Hossam
      Dec 13 '18 at 12:43












    • $begingroup$
      $frac{a_{k+1}}{a_k} rightarrow 1$ as $k rightarrow infty$, because the sequence $(a_n)$ has an upper bound. But this is only one term in $displaystylefrac{a_{2}}{a_1} + frac{a_{3}}{a_2} +cdots + frac{a_{k+1}}{a_k}-k$. All other fractions are $>1$, because $a_{n+1}>a_n$ ...
      $endgroup$
      – Ahmed Hossam
      Dec 13 '18 at 14:17












    • $begingroup$
      $$sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right)=underbrace{left(overbrace{frac{a_{1+1}}{a_1}}^{>1}-1right)}_{>0}+underbrace{left(overbrace{frac{a_{2+1}}{a_2}}^{>1}- 1right)}_{>0}+cdots +underbrace{left(overbrace{frac{a_{k+1}}{a_k}}^{rightarrow 1} -1 right)}_{rightarrow 0}$$ if the terms in the sum converge to $0$, does this mean that, the partial sum converges to something???
      $endgroup$
      – Ahmed Hossam
      Dec 13 '18 at 14:28













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037907%2fshow-that-sum-limits-n-1-infty-left-fraca-n1a-n-1-right-converg%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    We are given





    1. $(a_n)$ is a strictly increasing sequence

    2. of positive terms

    3. bounded from above.


    Let's say $M$ is an upper bound. (*1) and (*2) implies for all $n$,



    $$a_{n+1} > a_n > 0 implies frac{a_{n+1}}{a_n} > 1 iff frac{a_{n+1}}{a_n} - 1 > 0$$



    As a sequence indexed by $k$, the partial sums $s_k stackrel{def}{=}sumlimits_{n=1}^k left(frac{a_{n+1}}{a_n} - 1right)$ is a sum of positive terms, so it is strictly increasing. More precisely, we have



    $$
    s_{k+1} - s_{k} =
    sumlimits_{n=1}^{k+1} left(frac{a_{n+1}}{a_n} - 1right)
    -
    sumlimits_{n=1}^{k} left(frac{a_{n+1}}{a_n} - 1right)
    = frac{a_{k+2}}{a_{k+1}} - 1 > 0
    implies s_{k+1} > s_{k}
    $$



    By (*1) and (*2) again, we have $a_{n+1} > a_n ge a_1 > 0$. This implies
    $$s_k = sum_{n=1}^k left(frac{a_{n+1}}{a_n} - 1 right)
    = sum_{n=1}^k frac{a_{n+1} - a_{n}}{a_n}
    le sum_{n=1}^k frac{a_{n+1} - a_{n}}{a_1}
    = frac{1}{a_1}sum_{n=1}^k (a_{n+1} - a_n)
    $$

    The last sum is a telescoping sum. Together with (*3), we obtain
    $$s_k le frac{1}{a_1}(a_{k+1} - a_1) le frac{M-1}{a_1}$$
    This means as a sequence, the partial sums is bounded from above too. Being increasing and bounded from above, the sequence $s_k$ converges. By definition, so does the series
    $sumlimits_{n=1}^infty left(frac{a_{n+1}}{a_n} - 1right)$.






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      We are given





      1. $(a_n)$ is a strictly increasing sequence

      2. of positive terms

      3. bounded from above.


      Let's say $M$ is an upper bound. (*1) and (*2) implies for all $n$,



      $$a_{n+1} > a_n > 0 implies frac{a_{n+1}}{a_n} > 1 iff frac{a_{n+1}}{a_n} - 1 > 0$$



      As a sequence indexed by $k$, the partial sums $s_k stackrel{def}{=}sumlimits_{n=1}^k left(frac{a_{n+1}}{a_n} - 1right)$ is a sum of positive terms, so it is strictly increasing. More precisely, we have



      $$
      s_{k+1} - s_{k} =
      sumlimits_{n=1}^{k+1} left(frac{a_{n+1}}{a_n} - 1right)
      -
      sumlimits_{n=1}^{k} left(frac{a_{n+1}}{a_n} - 1right)
      = frac{a_{k+2}}{a_{k+1}} - 1 > 0
      implies s_{k+1} > s_{k}
      $$



      By (*1) and (*2) again, we have $a_{n+1} > a_n ge a_1 > 0$. This implies
      $$s_k = sum_{n=1}^k left(frac{a_{n+1}}{a_n} - 1 right)
      = sum_{n=1}^k frac{a_{n+1} - a_{n}}{a_n}
      le sum_{n=1}^k frac{a_{n+1} - a_{n}}{a_1}
      = frac{1}{a_1}sum_{n=1}^k (a_{n+1} - a_n)
      $$

      The last sum is a telescoping sum. Together with (*3), we obtain
      $$s_k le frac{1}{a_1}(a_{k+1} - a_1) le frac{M-1}{a_1}$$
      This means as a sequence, the partial sums is bounded from above too. Being increasing and bounded from above, the sequence $s_k$ converges. By definition, so does the series
      $sumlimits_{n=1}^infty left(frac{a_{n+1}}{a_n} - 1right)$.






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        We are given





        1. $(a_n)$ is a strictly increasing sequence

        2. of positive terms

        3. bounded from above.


        Let's say $M$ is an upper bound. (*1) and (*2) implies for all $n$,



        $$a_{n+1} > a_n > 0 implies frac{a_{n+1}}{a_n} > 1 iff frac{a_{n+1}}{a_n} - 1 > 0$$



        As a sequence indexed by $k$, the partial sums $s_k stackrel{def}{=}sumlimits_{n=1}^k left(frac{a_{n+1}}{a_n} - 1right)$ is a sum of positive terms, so it is strictly increasing. More precisely, we have



        $$
        s_{k+1} - s_{k} =
        sumlimits_{n=1}^{k+1} left(frac{a_{n+1}}{a_n} - 1right)
        -
        sumlimits_{n=1}^{k} left(frac{a_{n+1}}{a_n} - 1right)
        = frac{a_{k+2}}{a_{k+1}} - 1 > 0
        implies s_{k+1} > s_{k}
        $$



        By (*1) and (*2) again, we have $a_{n+1} > a_n ge a_1 > 0$. This implies
        $$s_k = sum_{n=1}^k left(frac{a_{n+1}}{a_n} - 1 right)
        = sum_{n=1}^k frac{a_{n+1} - a_{n}}{a_n}
        le sum_{n=1}^k frac{a_{n+1} - a_{n}}{a_1}
        = frac{1}{a_1}sum_{n=1}^k (a_{n+1} - a_n)
        $$

        The last sum is a telescoping sum. Together with (*3), we obtain
        $$s_k le frac{1}{a_1}(a_{k+1} - a_1) le frac{M-1}{a_1}$$
        This means as a sequence, the partial sums is bounded from above too. Being increasing and bounded from above, the sequence $s_k$ converges. By definition, so does the series
        $sumlimits_{n=1}^infty left(frac{a_{n+1}}{a_n} - 1right)$.






        share|cite|improve this answer









        $endgroup$



        We are given





        1. $(a_n)$ is a strictly increasing sequence

        2. of positive terms

        3. bounded from above.


        Let's say $M$ is an upper bound. (*1) and (*2) implies for all $n$,



        $$a_{n+1} > a_n > 0 implies frac{a_{n+1}}{a_n} > 1 iff frac{a_{n+1}}{a_n} - 1 > 0$$



        As a sequence indexed by $k$, the partial sums $s_k stackrel{def}{=}sumlimits_{n=1}^k left(frac{a_{n+1}}{a_n} - 1right)$ is a sum of positive terms, so it is strictly increasing. More precisely, we have



        $$
        s_{k+1} - s_{k} =
        sumlimits_{n=1}^{k+1} left(frac{a_{n+1}}{a_n} - 1right)
        -
        sumlimits_{n=1}^{k} left(frac{a_{n+1}}{a_n} - 1right)
        = frac{a_{k+2}}{a_{k+1}} - 1 > 0
        implies s_{k+1} > s_{k}
        $$



        By (*1) and (*2) again, we have $a_{n+1} > a_n ge a_1 > 0$. This implies
        $$s_k = sum_{n=1}^k left(frac{a_{n+1}}{a_n} - 1 right)
        = sum_{n=1}^k frac{a_{n+1} - a_{n}}{a_n}
        le sum_{n=1}^k frac{a_{n+1} - a_{n}}{a_1}
        = frac{1}{a_1}sum_{n=1}^k (a_{n+1} - a_n)
        $$

        The last sum is a telescoping sum. Together with (*3), we obtain
        $$s_k le frac{1}{a_1}(a_{k+1} - a_1) le frac{M-1}{a_1}$$
        This means as a sequence, the partial sums is bounded from above too. Being increasing and bounded from above, the sequence $s_k$ converges. By definition, so does the series
        $sumlimits_{n=1}^infty left(frac{a_{n+1}}{a_n} - 1right)$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 14 '18 at 3:58









        achille huiachille hui

        96.1k5132260




        96.1k5132260























            4












            $begingroup$

            You can check that it is equivalent to determine whether the series of $logleft(frac{a_{n+1}}{a_n}right)$ converges, because $frac{a_{n+1}}{a_n} rightarrow 1$.



            Edit: to be more clear:



            $frac{a_{n+1}}{a_n}-1 sim logleft(frac{a_{n+1}}{a_n}right) > 0$ as $n$ goes to infinity.



            Thus, the series $sum_n{frac{a_{n+1}}{a_n}-1}$ is convergent iff the series $sum_n{logleft(frac{a_{n+1}}{a_n}right)}$ is convergent.






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              You mean $limlimits_{krightarrow infty}sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right) Leftrightarrow limlimits_{krightarrow infty}sumlimits_{n=1}^{k} log left(frac{a_{n+1}}{a_n}right)$?
              $endgroup$
              – Ahmed Hossam
              Dec 13 '18 at 12:38












            • $begingroup$
              No. I mean that one series grows to $infty$ iff the other does.
              $endgroup$
              – Mindlack
              Dec 13 '18 at 12:41










            • $begingroup$
              Ok, which series is that one series and which is the other?
              $endgroup$
              – Ahmed Hossam
              Dec 13 '18 at 12:43












            • $begingroup$
              $frac{a_{k+1}}{a_k} rightarrow 1$ as $k rightarrow infty$, because the sequence $(a_n)$ has an upper bound. But this is only one term in $displaystylefrac{a_{2}}{a_1} + frac{a_{3}}{a_2} +cdots + frac{a_{k+1}}{a_k}-k$. All other fractions are $>1$, because $a_{n+1}>a_n$ ...
              $endgroup$
              – Ahmed Hossam
              Dec 13 '18 at 14:17












            • $begingroup$
              $$sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right)=underbrace{left(overbrace{frac{a_{1+1}}{a_1}}^{>1}-1right)}_{>0}+underbrace{left(overbrace{frac{a_{2+1}}{a_2}}^{>1}- 1right)}_{>0}+cdots +underbrace{left(overbrace{frac{a_{k+1}}{a_k}}^{rightarrow 1} -1 right)}_{rightarrow 0}$$ if the terms in the sum converge to $0$, does this mean that, the partial sum converges to something???
              $endgroup$
              – Ahmed Hossam
              Dec 13 '18 at 14:28


















            4












            $begingroup$

            You can check that it is equivalent to determine whether the series of $logleft(frac{a_{n+1}}{a_n}right)$ converges, because $frac{a_{n+1}}{a_n} rightarrow 1$.



            Edit: to be more clear:



            $frac{a_{n+1}}{a_n}-1 sim logleft(frac{a_{n+1}}{a_n}right) > 0$ as $n$ goes to infinity.



            Thus, the series $sum_n{frac{a_{n+1}}{a_n}-1}$ is convergent iff the series $sum_n{logleft(frac{a_{n+1}}{a_n}right)}$ is convergent.






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              You mean $limlimits_{krightarrow infty}sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right) Leftrightarrow limlimits_{krightarrow infty}sumlimits_{n=1}^{k} log left(frac{a_{n+1}}{a_n}right)$?
              $endgroup$
              – Ahmed Hossam
              Dec 13 '18 at 12:38












            • $begingroup$
              No. I mean that one series grows to $infty$ iff the other does.
              $endgroup$
              – Mindlack
              Dec 13 '18 at 12:41










            • $begingroup$
              Ok, which series is that one series and which is the other?
              $endgroup$
              – Ahmed Hossam
              Dec 13 '18 at 12:43












            • $begingroup$
              $frac{a_{k+1}}{a_k} rightarrow 1$ as $k rightarrow infty$, because the sequence $(a_n)$ has an upper bound. But this is only one term in $displaystylefrac{a_{2}}{a_1} + frac{a_{3}}{a_2} +cdots + frac{a_{k+1}}{a_k}-k$. All other fractions are $>1$, because $a_{n+1}>a_n$ ...
              $endgroup$
              – Ahmed Hossam
              Dec 13 '18 at 14:17












            • $begingroup$
              $$sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right)=underbrace{left(overbrace{frac{a_{1+1}}{a_1}}^{>1}-1right)}_{>0}+underbrace{left(overbrace{frac{a_{2+1}}{a_2}}^{>1}- 1right)}_{>0}+cdots +underbrace{left(overbrace{frac{a_{k+1}}{a_k}}^{rightarrow 1} -1 right)}_{rightarrow 0}$$ if the terms in the sum converge to $0$, does this mean that, the partial sum converges to something???
              $endgroup$
              – Ahmed Hossam
              Dec 13 '18 at 14:28
















            4












            4








            4





            $begingroup$

            You can check that it is equivalent to determine whether the series of $logleft(frac{a_{n+1}}{a_n}right)$ converges, because $frac{a_{n+1}}{a_n} rightarrow 1$.



            Edit: to be more clear:



            $frac{a_{n+1}}{a_n}-1 sim logleft(frac{a_{n+1}}{a_n}right) > 0$ as $n$ goes to infinity.



            Thus, the series $sum_n{frac{a_{n+1}}{a_n}-1}$ is convergent iff the series $sum_n{logleft(frac{a_{n+1}}{a_n}right)}$ is convergent.






            share|cite|improve this answer











            $endgroup$



            You can check that it is equivalent to determine whether the series of $logleft(frac{a_{n+1}}{a_n}right)$ converges, because $frac{a_{n+1}}{a_n} rightarrow 1$.



            Edit: to be more clear:



            $frac{a_{n+1}}{a_n}-1 sim logleft(frac{a_{n+1}}{a_n}right) > 0$ as $n$ goes to infinity.



            Thus, the series $sum_n{frac{a_{n+1}}{a_n}-1}$ is convergent iff the series $sum_n{logleft(frac{a_{n+1}}{a_n}right)}$ is convergent.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Dec 13 '18 at 14:27

























            answered Dec 13 '18 at 11:59









            MindlackMindlack

            4,780210




            4,780210












            • $begingroup$
              You mean $limlimits_{krightarrow infty}sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right) Leftrightarrow limlimits_{krightarrow infty}sumlimits_{n=1}^{k} log left(frac{a_{n+1}}{a_n}right)$?
              $endgroup$
              – Ahmed Hossam
              Dec 13 '18 at 12:38












            • $begingroup$
              No. I mean that one series grows to $infty$ iff the other does.
              $endgroup$
              – Mindlack
              Dec 13 '18 at 12:41










            • $begingroup$
              Ok, which series is that one series and which is the other?
              $endgroup$
              – Ahmed Hossam
              Dec 13 '18 at 12:43












            • $begingroup$
              $frac{a_{k+1}}{a_k} rightarrow 1$ as $k rightarrow infty$, because the sequence $(a_n)$ has an upper bound. But this is only one term in $displaystylefrac{a_{2}}{a_1} + frac{a_{3}}{a_2} +cdots + frac{a_{k+1}}{a_k}-k$. All other fractions are $>1$, because $a_{n+1}>a_n$ ...
              $endgroup$
              – Ahmed Hossam
              Dec 13 '18 at 14:17












            • $begingroup$
              $$sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right)=underbrace{left(overbrace{frac{a_{1+1}}{a_1}}^{>1}-1right)}_{>0}+underbrace{left(overbrace{frac{a_{2+1}}{a_2}}^{>1}- 1right)}_{>0}+cdots +underbrace{left(overbrace{frac{a_{k+1}}{a_k}}^{rightarrow 1} -1 right)}_{rightarrow 0}$$ if the terms in the sum converge to $0$, does this mean that, the partial sum converges to something???
              $endgroup$
              – Ahmed Hossam
              Dec 13 '18 at 14:28




















            • $begingroup$
              You mean $limlimits_{krightarrow infty}sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right) Leftrightarrow limlimits_{krightarrow infty}sumlimits_{n=1}^{k} log left(frac{a_{n+1}}{a_n}right)$?
              $endgroup$
              – Ahmed Hossam
              Dec 13 '18 at 12:38












            • $begingroup$
              No. I mean that one series grows to $infty$ iff the other does.
              $endgroup$
              – Mindlack
              Dec 13 '18 at 12:41










            • $begingroup$
              Ok, which series is that one series and which is the other?
              $endgroup$
              – Ahmed Hossam
              Dec 13 '18 at 12:43












            • $begingroup$
              $frac{a_{k+1}}{a_k} rightarrow 1$ as $k rightarrow infty$, because the sequence $(a_n)$ has an upper bound. But this is only one term in $displaystylefrac{a_{2}}{a_1} + frac{a_{3}}{a_2} +cdots + frac{a_{k+1}}{a_k}-k$. All other fractions are $>1$, because $a_{n+1}>a_n$ ...
              $endgroup$
              – Ahmed Hossam
              Dec 13 '18 at 14:17












            • $begingroup$
              $$sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right)=underbrace{left(overbrace{frac{a_{1+1}}{a_1}}^{>1}-1right)}_{>0}+underbrace{left(overbrace{frac{a_{2+1}}{a_2}}^{>1}- 1right)}_{>0}+cdots +underbrace{left(overbrace{frac{a_{k+1}}{a_k}}^{rightarrow 1} -1 right)}_{rightarrow 0}$$ if the terms in the sum converge to $0$, does this mean that, the partial sum converges to something???
              $endgroup$
              – Ahmed Hossam
              Dec 13 '18 at 14:28


















            $begingroup$
            You mean $limlimits_{krightarrow infty}sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right) Leftrightarrow limlimits_{krightarrow infty}sumlimits_{n=1}^{k} log left(frac{a_{n+1}}{a_n}right)$?
            $endgroup$
            – Ahmed Hossam
            Dec 13 '18 at 12:38






            $begingroup$
            You mean $limlimits_{krightarrow infty}sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right) Leftrightarrow limlimits_{krightarrow infty}sumlimits_{n=1}^{k} log left(frac{a_{n+1}}{a_n}right)$?
            $endgroup$
            – Ahmed Hossam
            Dec 13 '18 at 12:38














            $begingroup$
            No. I mean that one series grows to $infty$ iff the other does.
            $endgroup$
            – Mindlack
            Dec 13 '18 at 12:41




            $begingroup$
            No. I mean that one series grows to $infty$ iff the other does.
            $endgroup$
            – Mindlack
            Dec 13 '18 at 12:41












            $begingroup$
            Ok, which series is that one series and which is the other?
            $endgroup$
            – Ahmed Hossam
            Dec 13 '18 at 12:43






            $begingroup$
            Ok, which series is that one series and which is the other?
            $endgroup$
            – Ahmed Hossam
            Dec 13 '18 at 12:43














            $begingroup$
            $frac{a_{k+1}}{a_k} rightarrow 1$ as $k rightarrow infty$, because the sequence $(a_n)$ has an upper bound. But this is only one term in $displaystylefrac{a_{2}}{a_1} + frac{a_{3}}{a_2} +cdots + frac{a_{k+1}}{a_k}-k$. All other fractions are $>1$, because $a_{n+1}>a_n$ ...
            $endgroup$
            – Ahmed Hossam
            Dec 13 '18 at 14:17






            $begingroup$
            $frac{a_{k+1}}{a_k} rightarrow 1$ as $k rightarrow infty$, because the sequence $(a_n)$ has an upper bound. But this is only one term in $displaystylefrac{a_{2}}{a_1} + frac{a_{3}}{a_2} +cdots + frac{a_{k+1}}{a_k}-k$. All other fractions are $>1$, because $a_{n+1}>a_n$ ...
            $endgroup$
            – Ahmed Hossam
            Dec 13 '18 at 14:17














            $begingroup$
            $$sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right)=underbrace{left(overbrace{frac{a_{1+1}}{a_1}}^{>1}-1right)}_{>0}+underbrace{left(overbrace{frac{a_{2+1}}{a_2}}^{>1}- 1right)}_{>0}+cdots +underbrace{left(overbrace{frac{a_{k+1}}{a_k}}^{rightarrow 1} -1 right)}_{rightarrow 0}$$ if the terms in the sum converge to $0$, does this mean that, the partial sum converges to something???
            $endgroup$
            – Ahmed Hossam
            Dec 13 '18 at 14:28






            $begingroup$
            $$sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right)=underbrace{left(overbrace{frac{a_{1+1}}{a_1}}^{>1}-1right)}_{>0}+underbrace{left(overbrace{frac{a_{2+1}}{a_2}}^{>1}- 1right)}_{>0}+cdots +underbrace{left(overbrace{frac{a_{k+1}}{a_k}}^{rightarrow 1} -1 right)}_{rightarrow 0}$$ if the terms in the sum converge to $0$, does this mean that, the partial sum converges to something???
            $endgroup$
            – Ahmed Hossam
            Dec 13 '18 at 14:28




















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037907%2fshow-that-sum-limits-n-1-infty-left-fraca-n1a-n-1-right-converg%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Plaza Victoria

            Puebla de Zaragoza

            Musa