How do I solve $lim limits_{x to frac{π}{3}} frac{2 sin x - sqrt{3}}{cos frac{3x}{2}}$
$begingroup$
Alright, I know, there are easier ways to solve this, like L'hopitals Rule etc.
But I'm not solving it for the answer, just doing it for the fun so I tried using substitution method.
Put $t= x- dfrac{π}{3}$
$lim limits_{x to frac{π}{3}} dfrac{2 sin x - sqrt{3}}{cos frac{3x}{2}}$
$= limlimits_{t to 0} dfrac{2 sin left(t+frac{π}{3} right) - sqrt{3}}{cos left( frac{3t}{2} + frac{π}{2}right)}$
$= limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{ sin frac{3t}{2}}$
Where do I go from here, I'm not able to eliminate the $t$ fully from the Nr and Dr, any help?
Or any other alternative way that uses only the fact that $limlimits_{x to 0} dfrac{ sin x}{x} = 1$?
Thanks :)
limits limits-without-lhopital
$endgroup$
add a comment |
$begingroup$
Alright, I know, there are easier ways to solve this, like L'hopitals Rule etc.
But I'm not solving it for the answer, just doing it for the fun so I tried using substitution method.
Put $t= x- dfrac{π}{3}$
$lim limits_{x to frac{π}{3}} dfrac{2 sin x - sqrt{3}}{cos frac{3x}{2}}$
$= limlimits_{t to 0} dfrac{2 sin left(t+frac{π}{3} right) - sqrt{3}}{cos left( frac{3t}{2} + frac{π}{2}right)}$
$= limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{ sin frac{3t}{2}}$
Where do I go from here, I'm not able to eliminate the $t$ fully from the Nr and Dr, any help?
Or any other alternative way that uses only the fact that $limlimits_{x to 0} dfrac{ sin x}{x} = 1$?
Thanks :)
limits limits-without-lhopital
$endgroup$
add a comment |
$begingroup$
Alright, I know, there are easier ways to solve this, like L'hopitals Rule etc.
But I'm not solving it for the answer, just doing it for the fun so I tried using substitution method.
Put $t= x- dfrac{π}{3}$
$lim limits_{x to frac{π}{3}} dfrac{2 sin x - sqrt{3}}{cos frac{3x}{2}}$
$= limlimits_{t to 0} dfrac{2 sin left(t+frac{π}{3} right) - sqrt{3}}{cos left( frac{3t}{2} + frac{π}{2}right)}$
$= limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{ sin frac{3t}{2}}$
Where do I go from here, I'm not able to eliminate the $t$ fully from the Nr and Dr, any help?
Or any other alternative way that uses only the fact that $limlimits_{x to 0} dfrac{ sin x}{x} = 1$?
Thanks :)
limits limits-without-lhopital
$endgroup$
Alright, I know, there are easier ways to solve this, like L'hopitals Rule etc.
But I'm not solving it for the answer, just doing it for the fun so I tried using substitution method.
Put $t= x- dfrac{π}{3}$
$lim limits_{x to frac{π}{3}} dfrac{2 sin x - sqrt{3}}{cos frac{3x}{2}}$
$= limlimits_{t to 0} dfrac{2 sin left(t+frac{π}{3} right) - sqrt{3}}{cos left( frac{3t}{2} + frac{π}{2}right)}$
$= limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{ sin frac{3t}{2}}$
Where do I go from here, I'm not able to eliminate the $t$ fully from the Nr and Dr, any help?
Or any other alternative way that uses only the fact that $limlimits_{x to 0} dfrac{ sin x}{x} = 1$?
Thanks :)
limits limits-without-lhopital
limits limits-without-lhopital
edited Dec 28 '18 at 16:50
Martin Sleziak
45.1k10123277
45.1k10123277
asked Dec 23 '18 at 19:23
William William
1,253514
1,253514
add a comment |
add a comment |
5 Answers
5
active
oldest
votes
$begingroup$
So we already have, after putting $;t:=x-fracpi3;$ :
$$dfrac{2 sin left(t+frac{π}{3} right) - sqrt{3}}{cos left( frac{3t}{2} + frac{π}{2}right)}=frac{2left(sin tcdotfrac12+frac{sqrt3}2cos tright)-sqrt3}{-sinfrac{3t}2}=-frac{sin t}{sinfrac{3t}2}-sqrt3frac{cos t -1}{sinfrac{3t}2}=$$$${}$$
$$=-frac23cdotfrac{frac{3t}2}{sinfrac{3t}2}cdotfrac{sin t}t+sqrt3cdotfrac23cdotfrac{frac{3t}2}{sinfrac{3t}2}cdotfrac{1-cos t}txrightarrow[tto0]{}-frac23cdot1cdot1+frac2{sqrt3}cdot1cdot0=-frac23$$
$endgroup$
1
$begingroup$
@AnkitKumar "Same"...same what? I don't get it? Ah! If you mean "same result", then yes: the correct one, I believe...
$endgroup$
– DonAntonio
Dec 23 '18 at 19:39
$begingroup$
@Clayton Indeed so. Thanks and corrected
$endgroup$
– DonAntonio
Dec 23 '18 at 19:55
add a comment |
$begingroup$
$lim limits_{x to frac{π}{3}} dfrac{2 sin x - sqrt{3}}{cos frac{3x}{2}}=2lim limits_{x to frac{π}{3}} dfrac{sin x - sin cfrac pi 3}{cos frac{3x}{2}}$
$=4lim limits_{x to frac{π}{3}} dfrac{cos (cfrac x2+cfrac pi 6) sin (cfrac x2 - cfrac pi 6)}{sin (frac pi 2-frac {3x}{2})}$
$=4lim limits_{x to frac{π}{3}} dfrac{cos (cfrac x2+cfrac pi 6) (cfrac x2 - cfrac pi 6)}{frac pi 2-frac {3x}{2}}$
$=-4/3lim limits_{x to frac{π}{3}} {cos (cfrac x2+cfrac pi 6) }$
$=-4/3cos pi/3=-2/3$
$endgroup$
1
$begingroup$
There exists no $;pi;$ at the end....
$endgroup$
– DonAntonio
Dec 23 '18 at 19:43
$begingroup$
Thanks. Rush to conclusion, too many errors :(
$endgroup$
– Lance
Dec 23 '18 at 19:44
$begingroup$
Yes...and the final result is wrong, again: $$fracpi6+fracpi6=fracpi3;$$ and cosinus on this equals $;frac12;$ ...
$endgroup$
– DonAntonio
Dec 23 '18 at 19:45
$begingroup$
That's right. Thank you!
$endgroup$
– Lance
Dec 23 '18 at 19:47
add a comment |
$begingroup$
To end your computation, you can split your expression in two:
$$frac{sqrt{3}- sin t - sqrt{3} cos t}{ sin frac{3t}{2}} =-frac{sin t}{ sin frac{3t}{2}}+sqrt 3,frac{1- cos t}{sin frac{3t}{2}} $$
Now it is standard that $;lim_{tto 0}dfrac{sin at}{sin bt}=dfrac ab$. On the other hand
$$frac{1-cos t}{sinfrac{3t}{2}}=frac{2sin^2t}{sinfrac{3t}{2}}=2sin t,frac{sin t}{sinfrac{3t}{2}}.$$
Can you conclude now?
$endgroup$
add a comment |
$begingroup$
Just to give another approach, let's let $f(x)=2sin x$ and $g(x)=cos(3x/2)$ and use the fact(s) that $f'(x)=2cos x$, $g'(x)=-{3over2}sin(3x/2)$, $f(pi/3)=2sin(pi/3)=sqrt3$, and $g(pi/3)=cos(pi/2)=0$. From the definition of the derivative, it follows that
$$lim_{xtopi/3}{2sin x-sqrt3over x-pi/3}=lim_{pi/3}{f(x)-f(pi/3)over x-pi/3}=f'(pi/3)=2cos(pi/3)=1$$
and
$$lim_{xtopi/3}{cos(3x/2)over x-pi/3}=lim_{xtopi/3}{g(x)-g(pi/3)over x-pi/3 }=g'(pi/3)=-{3over2}sin(pi/2)=-{3over2}$$
Thus
$$lim_{xtopi/3}{2sin x-sqrt2overcos(3x/2)}={displaystylelim_{xtopi/3}{2sin x-sqrt3over x-pi/3}overdisplaystylelim_{xtopi/3}{cos(3x/2)over x-pi/3}}={1over-{3over2}}=-{2over3}$$
$endgroup$
add a comment |
$begingroup$
$$limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{ sin frac{3t}{2}}=limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{ sin frac{3t}{2}}cdotfrac{3t/2}{3t/2}$$
$$=frac{2}{3} limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{ t} (1)$$
Now, $1-cost=2sin^2(t/2)$
$$limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{t}= limlimits_{t to 0}( frac{sqrt{3}(1-cos t)}{t}-frac{sint}{t})$$
$$=limlimits_{t to 0}( frac{2sin^2(t/2)}{t}-frac{sint}{t})$$
$$=limlimits_{t to 0}( frac{2sin^2(t/2)}{t^2/4}frac{t^2/4}{t}-frac{sint}{t})$$
$$=0-1=-1$$
Put -1 in (1) to get the final limit, $-2/3$.
$endgroup$
$begingroup$
Your last part is...um... so extremely wrong my man
$endgroup$
– William
Dec 23 '18 at 19:38
$begingroup$
It seems to be you erased a $;sinfrac{3t}2;$ in the denominator when going from line 1 to line 2. How come? And where does that $;frac23;$ come from?
$endgroup$
– DonAntonio
Dec 23 '18 at 19:38
1
$begingroup$
@AnkitKumar That you first took the limit and left some $;t,'$ s there. Had you separated the limits indication you'll have prodcut of limits it'd be correct, indeed. It seems to be just a confusion, yet a little more explanation would yield this as a correct solution, imo.
$endgroup$
– DonAntonio
Dec 23 '18 at 19:47
1
$begingroup$
@William I wrote the argument for that above, in the $sin^2(t/2)$ part
$endgroup$
– Ankit Kumar
Dec 23 '18 at 19:51
1
$begingroup$
Oh I see, you have solved it part by part, so yea, you end up with -2/3 in the end if you combine it all.
$endgroup$
– William
Dec 23 '18 at 19:59
|
show 11 more comments
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050628%2fhow-do-i-solve-lim-limits-x-to-frac%25cf%25803-frac2-sin-x-sqrt3-cos%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
So we already have, after putting $;t:=x-fracpi3;$ :
$$dfrac{2 sin left(t+frac{π}{3} right) - sqrt{3}}{cos left( frac{3t}{2} + frac{π}{2}right)}=frac{2left(sin tcdotfrac12+frac{sqrt3}2cos tright)-sqrt3}{-sinfrac{3t}2}=-frac{sin t}{sinfrac{3t}2}-sqrt3frac{cos t -1}{sinfrac{3t}2}=$$$${}$$
$$=-frac23cdotfrac{frac{3t}2}{sinfrac{3t}2}cdotfrac{sin t}t+sqrt3cdotfrac23cdotfrac{frac{3t}2}{sinfrac{3t}2}cdotfrac{1-cos t}txrightarrow[tto0]{}-frac23cdot1cdot1+frac2{sqrt3}cdot1cdot0=-frac23$$
$endgroup$
1
$begingroup$
@AnkitKumar "Same"...same what? I don't get it? Ah! If you mean "same result", then yes: the correct one, I believe...
$endgroup$
– DonAntonio
Dec 23 '18 at 19:39
$begingroup$
@Clayton Indeed so. Thanks and corrected
$endgroup$
– DonAntonio
Dec 23 '18 at 19:55
add a comment |
$begingroup$
So we already have, after putting $;t:=x-fracpi3;$ :
$$dfrac{2 sin left(t+frac{π}{3} right) - sqrt{3}}{cos left( frac{3t}{2} + frac{π}{2}right)}=frac{2left(sin tcdotfrac12+frac{sqrt3}2cos tright)-sqrt3}{-sinfrac{3t}2}=-frac{sin t}{sinfrac{3t}2}-sqrt3frac{cos t -1}{sinfrac{3t}2}=$$$${}$$
$$=-frac23cdotfrac{frac{3t}2}{sinfrac{3t}2}cdotfrac{sin t}t+sqrt3cdotfrac23cdotfrac{frac{3t}2}{sinfrac{3t}2}cdotfrac{1-cos t}txrightarrow[tto0]{}-frac23cdot1cdot1+frac2{sqrt3}cdot1cdot0=-frac23$$
$endgroup$
1
$begingroup$
@AnkitKumar "Same"...same what? I don't get it? Ah! If you mean "same result", then yes: the correct one, I believe...
$endgroup$
– DonAntonio
Dec 23 '18 at 19:39
$begingroup$
@Clayton Indeed so. Thanks and corrected
$endgroup$
– DonAntonio
Dec 23 '18 at 19:55
add a comment |
$begingroup$
So we already have, after putting $;t:=x-fracpi3;$ :
$$dfrac{2 sin left(t+frac{π}{3} right) - sqrt{3}}{cos left( frac{3t}{2} + frac{π}{2}right)}=frac{2left(sin tcdotfrac12+frac{sqrt3}2cos tright)-sqrt3}{-sinfrac{3t}2}=-frac{sin t}{sinfrac{3t}2}-sqrt3frac{cos t -1}{sinfrac{3t}2}=$$$${}$$
$$=-frac23cdotfrac{frac{3t}2}{sinfrac{3t}2}cdotfrac{sin t}t+sqrt3cdotfrac23cdotfrac{frac{3t}2}{sinfrac{3t}2}cdotfrac{1-cos t}txrightarrow[tto0]{}-frac23cdot1cdot1+frac2{sqrt3}cdot1cdot0=-frac23$$
$endgroup$
So we already have, after putting $;t:=x-fracpi3;$ :
$$dfrac{2 sin left(t+frac{π}{3} right) - sqrt{3}}{cos left( frac{3t}{2} + frac{π}{2}right)}=frac{2left(sin tcdotfrac12+frac{sqrt3}2cos tright)-sqrt3}{-sinfrac{3t}2}=-frac{sin t}{sinfrac{3t}2}-sqrt3frac{cos t -1}{sinfrac{3t}2}=$$$${}$$
$$=-frac23cdotfrac{frac{3t}2}{sinfrac{3t}2}cdotfrac{sin t}t+sqrt3cdotfrac23cdotfrac{frac{3t}2}{sinfrac{3t}2}cdotfrac{1-cos t}txrightarrow[tto0]{}-frac23cdot1cdot1+frac2{sqrt3}cdot1cdot0=-frac23$$
edited Dec 23 '18 at 19:54
answered Dec 23 '18 at 19:35
DonAntonioDonAntonio
180k1495233
180k1495233
1
$begingroup$
@AnkitKumar "Same"...same what? I don't get it? Ah! If you mean "same result", then yes: the correct one, I believe...
$endgroup$
– DonAntonio
Dec 23 '18 at 19:39
$begingroup$
@Clayton Indeed so. Thanks and corrected
$endgroup$
– DonAntonio
Dec 23 '18 at 19:55
add a comment |
1
$begingroup$
@AnkitKumar "Same"...same what? I don't get it? Ah! If you mean "same result", then yes: the correct one, I believe...
$endgroup$
– DonAntonio
Dec 23 '18 at 19:39
$begingroup$
@Clayton Indeed so. Thanks and corrected
$endgroup$
– DonAntonio
Dec 23 '18 at 19:55
1
1
$begingroup$
@AnkitKumar "Same"...same what? I don't get it? Ah! If you mean "same result", then yes: the correct one, I believe...
$endgroup$
– DonAntonio
Dec 23 '18 at 19:39
$begingroup$
@AnkitKumar "Same"...same what? I don't get it? Ah! If you mean "same result", then yes: the correct one, I believe...
$endgroup$
– DonAntonio
Dec 23 '18 at 19:39
$begingroup$
@Clayton Indeed so. Thanks and corrected
$endgroup$
– DonAntonio
Dec 23 '18 at 19:55
$begingroup$
@Clayton Indeed so. Thanks and corrected
$endgroup$
– DonAntonio
Dec 23 '18 at 19:55
add a comment |
$begingroup$
$lim limits_{x to frac{π}{3}} dfrac{2 sin x - sqrt{3}}{cos frac{3x}{2}}=2lim limits_{x to frac{π}{3}} dfrac{sin x - sin cfrac pi 3}{cos frac{3x}{2}}$
$=4lim limits_{x to frac{π}{3}} dfrac{cos (cfrac x2+cfrac pi 6) sin (cfrac x2 - cfrac pi 6)}{sin (frac pi 2-frac {3x}{2})}$
$=4lim limits_{x to frac{π}{3}} dfrac{cos (cfrac x2+cfrac pi 6) (cfrac x2 - cfrac pi 6)}{frac pi 2-frac {3x}{2}}$
$=-4/3lim limits_{x to frac{π}{3}} {cos (cfrac x2+cfrac pi 6) }$
$=-4/3cos pi/3=-2/3$
$endgroup$
1
$begingroup$
There exists no $;pi;$ at the end....
$endgroup$
– DonAntonio
Dec 23 '18 at 19:43
$begingroup$
Thanks. Rush to conclusion, too many errors :(
$endgroup$
– Lance
Dec 23 '18 at 19:44
$begingroup$
Yes...and the final result is wrong, again: $$fracpi6+fracpi6=fracpi3;$$ and cosinus on this equals $;frac12;$ ...
$endgroup$
– DonAntonio
Dec 23 '18 at 19:45
$begingroup$
That's right. Thank you!
$endgroup$
– Lance
Dec 23 '18 at 19:47
add a comment |
$begingroup$
$lim limits_{x to frac{π}{3}} dfrac{2 sin x - sqrt{3}}{cos frac{3x}{2}}=2lim limits_{x to frac{π}{3}} dfrac{sin x - sin cfrac pi 3}{cos frac{3x}{2}}$
$=4lim limits_{x to frac{π}{3}} dfrac{cos (cfrac x2+cfrac pi 6) sin (cfrac x2 - cfrac pi 6)}{sin (frac pi 2-frac {3x}{2})}$
$=4lim limits_{x to frac{π}{3}} dfrac{cos (cfrac x2+cfrac pi 6) (cfrac x2 - cfrac pi 6)}{frac pi 2-frac {3x}{2}}$
$=-4/3lim limits_{x to frac{π}{3}} {cos (cfrac x2+cfrac pi 6) }$
$=-4/3cos pi/3=-2/3$
$endgroup$
1
$begingroup$
There exists no $;pi;$ at the end....
$endgroup$
– DonAntonio
Dec 23 '18 at 19:43
$begingroup$
Thanks. Rush to conclusion, too many errors :(
$endgroup$
– Lance
Dec 23 '18 at 19:44
$begingroup$
Yes...and the final result is wrong, again: $$fracpi6+fracpi6=fracpi3;$$ and cosinus on this equals $;frac12;$ ...
$endgroup$
– DonAntonio
Dec 23 '18 at 19:45
$begingroup$
That's right. Thank you!
$endgroup$
– Lance
Dec 23 '18 at 19:47
add a comment |
$begingroup$
$lim limits_{x to frac{π}{3}} dfrac{2 sin x - sqrt{3}}{cos frac{3x}{2}}=2lim limits_{x to frac{π}{3}} dfrac{sin x - sin cfrac pi 3}{cos frac{3x}{2}}$
$=4lim limits_{x to frac{π}{3}} dfrac{cos (cfrac x2+cfrac pi 6) sin (cfrac x2 - cfrac pi 6)}{sin (frac pi 2-frac {3x}{2})}$
$=4lim limits_{x to frac{π}{3}} dfrac{cos (cfrac x2+cfrac pi 6) (cfrac x2 - cfrac pi 6)}{frac pi 2-frac {3x}{2}}$
$=-4/3lim limits_{x to frac{π}{3}} {cos (cfrac x2+cfrac pi 6) }$
$=-4/3cos pi/3=-2/3$
$endgroup$
$lim limits_{x to frac{π}{3}} dfrac{2 sin x - sqrt{3}}{cos frac{3x}{2}}=2lim limits_{x to frac{π}{3}} dfrac{sin x - sin cfrac pi 3}{cos frac{3x}{2}}$
$=4lim limits_{x to frac{π}{3}} dfrac{cos (cfrac x2+cfrac pi 6) sin (cfrac x2 - cfrac pi 6)}{sin (frac pi 2-frac {3x}{2})}$
$=4lim limits_{x to frac{π}{3}} dfrac{cos (cfrac x2+cfrac pi 6) (cfrac x2 - cfrac pi 6)}{frac pi 2-frac {3x}{2}}$
$=-4/3lim limits_{x to frac{π}{3}} {cos (cfrac x2+cfrac pi 6) }$
$=-4/3cos pi/3=-2/3$
edited Dec 23 '18 at 19:46
answered Dec 23 '18 at 19:39
LanceLance
64239
64239
1
$begingroup$
There exists no $;pi;$ at the end....
$endgroup$
– DonAntonio
Dec 23 '18 at 19:43
$begingroup$
Thanks. Rush to conclusion, too many errors :(
$endgroup$
– Lance
Dec 23 '18 at 19:44
$begingroup$
Yes...and the final result is wrong, again: $$fracpi6+fracpi6=fracpi3;$$ and cosinus on this equals $;frac12;$ ...
$endgroup$
– DonAntonio
Dec 23 '18 at 19:45
$begingroup$
That's right. Thank you!
$endgroup$
– Lance
Dec 23 '18 at 19:47
add a comment |
1
$begingroup$
There exists no $;pi;$ at the end....
$endgroup$
– DonAntonio
Dec 23 '18 at 19:43
$begingroup$
Thanks. Rush to conclusion, too many errors :(
$endgroup$
– Lance
Dec 23 '18 at 19:44
$begingroup$
Yes...and the final result is wrong, again: $$fracpi6+fracpi6=fracpi3;$$ and cosinus on this equals $;frac12;$ ...
$endgroup$
– DonAntonio
Dec 23 '18 at 19:45
$begingroup$
That's right. Thank you!
$endgroup$
– Lance
Dec 23 '18 at 19:47
1
1
$begingroup$
There exists no $;pi;$ at the end....
$endgroup$
– DonAntonio
Dec 23 '18 at 19:43
$begingroup$
There exists no $;pi;$ at the end....
$endgroup$
– DonAntonio
Dec 23 '18 at 19:43
$begingroup$
Thanks. Rush to conclusion, too many errors :(
$endgroup$
– Lance
Dec 23 '18 at 19:44
$begingroup$
Thanks. Rush to conclusion, too many errors :(
$endgroup$
– Lance
Dec 23 '18 at 19:44
$begingroup$
Yes...and the final result is wrong, again: $$fracpi6+fracpi6=fracpi3;$$ and cosinus on this equals $;frac12;$ ...
$endgroup$
– DonAntonio
Dec 23 '18 at 19:45
$begingroup$
Yes...and the final result is wrong, again: $$fracpi6+fracpi6=fracpi3;$$ and cosinus on this equals $;frac12;$ ...
$endgroup$
– DonAntonio
Dec 23 '18 at 19:45
$begingroup$
That's right. Thank you!
$endgroup$
– Lance
Dec 23 '18 at 19:47
$begingroup$
That's right. Thank you!
$endgroup$
– Lance
Dec 23 '18 at 19:47
add a comment |
$begingroup$
To end your computation, you can split your expression in two:
$$frac{sqrt{3}- sin t - sqrt{3} cos t}{ sin frac{3t}{2}} =-frac{sin t}{ sin frac{3t}{2}}+sqrt 3,frac{1- cos t}{sin frac{3t}{2}} $$
Now it is standard that $;lim_{tto 0}dfrac{sin at}{sin bt}=dfrac ab$. On the other hand
$$frac{1-cos t}{sinfrac{3t}{2}}=frac{2sin^2t}{sinfrac{3t}{2}}=2sin t,frac{sin t}{sinfrac{3t}{2}}.$$
Can you conclude now?
$endgroup$
add a comment |
$begingroup$
To end your computation, you can split your expression in two:
$$frac{sqrt{3}- sin t - sqrt{3} cos t}{ sin frac{3t}{2}} =-frac{sin t}{ sin frac{3t}{2}}+sqrt 3,frac{1- cos t}{sin frac{3t}{2}} $$
Now it is standard that $;lim_{tto 0}dfrac{sin at}{sin bt}=dfrac ab$. On the other hand
$$frac{1-cos t}{sinfrac{3t}{2}}=frac{2sin^2t}{sinfrac{3t}{2}}=2sin t,frac{sin t}{sinfrac{3t}{2}}.$$
Can you conclude now?
$endgroup$
add a comment |
$begingroup$
To end your computation, you can split your expression in two:
$$frac{sqrt{3}- sin t - sqrt{3} cos t}{ sin frac{3t}{2}} =-frac{sin t}{ sin frac{3t}{2}}+sqrt 3,frac{1- cos t}{sin frac{3t}{2}} $$
Now it is standard that $;lim_{tto 0}dfrac{sin at}{sin bt}=dfrac ab$. On the other hand
$$frac{1-cos t}{sinfrac{3t}{2}}=frac{2sin^2t}{sinfrac{3t}{2}}=2sin t,frac{sin t}{sinfrac{3t}{2}}.$$
Can you conclude now?
$endgroup$
To end your computation, you can split your expression in two:
$$frac{sqrt{3}- sin t - sqrt{3} cos t}{ sin frac{3t}{2}} =-frac{sin t}{ sin frac{3t}{2}}+sqrt 3,frac{1- cos t}{sin frac{3t}{2}} $$
Now it is standard that $;lim_{tto 0}dfrac{sin at}{sin bt}=dfrac ab$. On the other hand
$$frac{1-cos t}{sinfrac{3t}{2}}=frac{2sin^2t}{sinfrac{3t}{2}}=2sin t,frac{sin t}{sinfrac{3t}{2}}.$$
Can you conclude now?
answered Dec 23 '18 at 19:46
BernardBernard
124k742117
124k742117
add a comment |
add a comment |
$begingroup$
Just to give another approach, let's let $f(x)=2sin x$ and $g(x)=cos(3x/2)$ and use the fact(s) that $f'(x)=2cos x$, $g'(x)=-{3over2}sin(3x/2)$, $f(pi/3)=2sin(pi/3)=sqrt3$, and $g(pi/3)=cos(pi/2)=0$. From the definition of the derivative, it follows that
$$lim_{xtopi/3}{2sin x-sqrt3over x-pi/3}=lim_{pi/3}{f(x)-f(pi/3)over x-pi/3}=f'(pi/3)=2cos(pi/3)=1$$
and
$$lim_{xtopi/3}{cos(3x/2)over x-pi/3}=lim_{xtopi/3}{g(x)-g(pi/3)over x-pi/3 }=g'(pi/3)=-{3over2}sin(pi/2)=-{3over2}$$
Thus
$$lim_{xtopi/3}{2sin x-sqrt2overcos(3x/2)}={displaystylelim_{xtopi/3}{2sin x-sqrt3over x-pi/3}overdisplaystylelim_{xtopi/3}{cos(3x/2)over x-pi/3}}={1over-{3over2}}=-{2over3}$$
$endgroup$
add a comment |
$begingroup$
Just to give another approach, let's let $f(x)=2sin x$ and $g(x)=cos(3x/2)$ and use the fact(s) that $f'(x)=2cos x$, $g'(x)=-{3over2}sin(3x/2)$, $f(pi/3)=2sin(pi/3)=sqrt3$, and $g(pi/3)=cos(pi/2)=0$. From the definition of the derivative, it follows that
$$lim_{xtopi/3}{2sin x-sqrt3over x-pi/3}=lim_{pi/3}{f(x)-f(pi/3)over x-pi/3}=f'(pi/3)=2cos(pi/3)=1$$
and
$$lim_{xtopi/3}{cos(3x/2)over x-pi/3}=lim_{xtopi/3}{g(x)-g(pi/3)over x-pi/3 }=g'(pi/3)=-{3over2}sin(pi/2)=-{3over2}$$
Thus
$$lim_{xtopi/3}{2sin x-sqrt2overcos(3x/2)}={displaystylelim_{xtopi/3}{2sin x-sqrt3over x-pi/3}overdisplaystylelim_{xtopi/3}{cos(3x/2)over x-pi/3}}={1over-{3over2}}=-{2over3}$$
$endgroup$
add a comment |
$begingroup$
Just to give another approach, let's let $f(x)=2sin x$ and $g(x)=cos(3x/2)$ and use the fact(s) that $f'(x)=2cos x$, $g'(x)=-{3over2}sin(3x/2)$, $f(pi/3)=2sin(pi/3)=sqrt3$, and $g(pi/3)=cos(pi/2)=0$. From the definition of the derivative, it follows that
$$lim_{xtopi/3}{2sin x-sqrt3over x-pi/3}=lim_{pi/3}{f(x)-f(pi/3)over x-pi/3}=f'(pi/3)=2cos(pi/3)=1$$
and
$$lim_{xtopi/3}{cos(3x/2)over x-pi/3}=lim_{xtopi/3}{g(x)-g(pi/3)over x-pi/3 }=g'(pi/3)=-{3over2}sin(pi/2)=-{3over2}$$
Thus
$$lim_{xtopi/3}{2sin x-sqrt2overcos(3x/2)}={displaystylelim_{xtopi/3}{2sin x-sqrt3over x-pi/3}overdisplaystylelim_{xtopi/3}{cos(3x/2)over x-pi/3}}={1over-{3over2}}=-{2over3}$$
$endgroup$
Just to give another approach, let's let $f(x)=2sin x$ and $g(x)=cos(3x/2)$ and use the fact(s) that $f'(x)=2cos x$, $g'(x)=-{3over2}sin(3x/2)$, $f(pi/3)=2sin(pi/3)=sqrt3$, and $g(pi/3)=cos(pi/2)=0$. From the definition of the derivative, it follows that
$$lim_{xtopi/3}{2sin x-sqrt3over x-pi/3}=lim_{pi/3}{f(x)-f(pi/3)over x-pi/3}=f'(pi/3)=2cos(pi/3)=1$$
and
$$lim_{xtopi/3}{cos(3x/2)over x-pi/3}=lim_{xtopi/3}{g(x)-g(pi/3)over x-pi/3 }=g'(pi/3)=-{3over2}sin(pi/2)=-{3over2}$$
Thus
$$lim_{xtopi/3}{2sin x-sqrt2overcos(3x/2)}={displaystylelim_{xtopi/3}{2sin x-sqrt3over x-pi/3}overdisplaystylelim_{xtopi/3}{cos(3x/2)over x-pi/3}}={1over-{3over2}}=-{2over3}$$
answered Dec 23 '18 at 20:47
Barry CipraBarry Cipra
60.8k655129
60.8k655129
add a comment |
add a comment |
$begingroup$
$$limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{ sin frac{3t}{2}}=limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{ sin frac{3t}{2}}cdotfrac{3t/2}{3t/2}$$
$$=frac{2}{3} limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{ t} (1)$$
Now, $1-cost=2sin^2(t/2)$
$$limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{t}= limlimits_{t to 0}( frac{sqrt{3}(1-cos t)}{t}-frac{sint}{t})$$
$$=limlimits_{t to 0}( frac{2sin^2(t/2)}{t}-frac{sint}{t})$$
$$=limlimits_{t to 0}( frac{2sin^2(t/2)}{t^2/4}frac{t^2/4}{t}-frac{sint}{t})$$
$$=0-1=-1$$
Put -1 in (1) to get the final limit, $-2/3$.
$endgroup$
$begingroup$
Your last part is...um... so extremely wrong my man
$endgroup$
– William
Dec 23 '18 at 19:38
$begingroup$
It seems to be you erased a $;sinfrac{3t}2;$ in the denominator when going from line 1 to line 2. How come? And where does that $;frac23;$ come from?
$endgroup$
– DonAntonio
Dec 23 '18 at 19:38
1
$begingroup$
@AnkitKumar That you first took the limit and left some $;t,'$ s there. Had you separated the limits indication you'll have prodcut of limits it'd be correct, indeed. It seems to be just a confusion, yet a little more explanation would yield this as a correct solution, imo.
$endgroup$
– DonAntonio
Dec 23 '18 at 19:47
1
$begingroup$
@William I wrote the argument for that above, in the $sin^2(t/2)$ part
$endgroup$
– Ankit Kumar
Dec 23 '18 at 19:51
1
$begingroup$
Oh I see, you have solved it part by part, so yea, you end up with -2/3 in the end if you combine it all.
$endgroup$
– William
Dec 23 '18 at 19:59
|
show 11 more comments
$begingroup$
$$limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{ sin frac{3t}{2}}=limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{ sin frac{3t}{2}}cdotfrac{3t/2}{3t/2}$$
$$=frac{2}{3} limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{ t} (1)$$
Now, $1-cost=2sin^2(t/2)$
$$limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{t}= limlimits_{t to 0}( frac{sqrt{3}(1-cos t)}{t}-frac{sint}{t})$$
$$=limlimits_{t to 0}( frac{2sin^2(t/2)}{t}-frac{sint}{t})$$
$$=limlimits_{t to 0}( frac{2sin^2(t/2)}{t^2/4}frac{t^2/4}{t}-frac{sint}{t})$$
$$=0-1=-1$$
Put -1 in (1) to get the final limit, $-2/3$.
$endgroup$
$begingroup$
Your last part is...um... so extremely wrong my man
$endgroup$
– William
Dec 23 '18 at 19:38
$begingroup$
It seems to be you erased a $;sinfrac{3t}2;$ in the denominator when going from line 1 to line 2. How come? And where does that $;frac23;$ come from?
$endgroup$
– DonAntonio
Dec 23 '18 at 19:38
1
$begingroup$
@AnkitKumar That you first took the limit and left some $;t,'$ s there. Had you separated the limits indication you'll have prodcut of limits it'd be correct, indeed. It seems to be just a confusion, yet a little more explanation would yield this as a correct solution, imo.
$endgroup$
– DonAntonio
Dec 23 '18 at 19:47
1
$begingroup$
@William I wrote the argument for that above, in the $sin^2(t/2)$ part
$endgroup$
– Ankit Kumar
Dec 23 '18 at 19:51
1
$begingroup$
Oh I see, you have solved it part by part, so yea, you end up with -2/3 in the end if you combine it all.
$endgroup$
– William
Dec 23 '18 at 19:59
|
show 11 more comments
$begingroup$
$$limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{ sin frac{3t}{2}}=limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{ sin frac{3t}{2}}cdotfrac{3t/2}{3t/2}$$
$$=frac{2}{3} limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{ t} (1)$$
Now, $1-cost=2sin^2(t/2)$
$$limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{t}= limlimits_{t to 0}( frac{sqrt{3}(1-cos t)}{t}-frac{sint}{t})$$
$$=limlimits_{t to 0}( frac{2sin^2(t/2)}{t}-frac{sint}{t})$$
$$=limlimits_{t to 0}( frac{2sin^2(t/2)}{t^2/4}frac{t^2/4}{t}-frac{sint}{t})$$
$$=0-1=-1$$
Put -1 in (1) to get the final limit, $-2/3$.
$endgroup$
$$limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{ sin frac{3t}{2}}=limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{ sin frac{3t}{2}}cdotfrac{3t/2}{3t/2}$$
$$=frac{2}{3} limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{ t} (1)$$
Now, $1-cost=2sin^2(t/2)$
$$limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{t}= limlimits_{t to 0}( frac{sqrt{3}(1-cos t)}{t}-frac{sint}{t})$$
$$=limlimits_{t to 0}( frac{2sin^2(t/2)}{t}-frac{sint}{t})$$
$$=limlimits_{t to 0}( frac{2sin^2(t/2)}{t^2/4}frac{t^2/4}{t}-frac{sint}{t})$$
$$=0-1=-1$$
Put -1 in (1) to get the final limit, $-2/3$.
edited Dec 23 '18 at 20:07
answered Dec 23 '18 at 19:36
Ankit KumarAnkit Kumar
1,540221
1,540221
$begingroup$
Your last part is...um... so extremely wrong my man
$endgroup$
– William
Dec 23 '18 at 19:38
$begingroup$
It seems to be you erased a $;sinfrac{3t}2;$ in the denominator when going from line 1 to line 2. How come? And where does that $;frac23;$ come from?
$endgroup$
– DonAntonio
Dec 23 '18 at 19:38
1
$begingroup$
@AnkitKumar That you first took the limit and left some $;t,'$ s there. Had you separated the limits indication you'll have prodcut of limits it'd be correct, indeed. It seems to be just a confusion, yet a little more explanation would yield this as a correct solution, imo.
$endgroup$
– DonAntonio
Dec 23 '18 at 19:47
1
$begingroup$
@William I wrote the argument for that above, in the $sin^2(t/2)$ part
$endgroup$
– Ankit Kumar
Dec 23 '18 at 19:51
1
$begingroup$
Oh I see, you have solved it part by part, so yea, you end up with -2/3 in the end if you combine it all.
$endgroup$
– William
Dec 23 '18 at 19:59
|
show 11 more comments
$begingroup$
Your last part is...um... so extremely wrong my man
$endgroup$
– William
Dec 23 '18 at 19:38
$begingroup$
It seems to be you erased a $;sinfrac{3t}2;$ in the denominator when going from line 1 to line 2. How come? And where does that $;frac23;$ come from?
$endgroup$
– DonAntonio
Dec 23 '18 at 19:38
1
$begingroup$
@AnkitKumar That you first took the limit and left some $;t,'$ s there. Had you separated the limits indication you'll have prodcut of limits it'd be correct, indeed. It seems to be just a confusion, yet a little more explanation would yield this as a correct solution, imo.
$endgroup$
– DonAntonio
Dec 23 '18 at 19:47
1
$begingroup$
@William I wrote the argument for that above, in the $sin^2(t/2)$ part
$endgroup$
– Ankit Kumar
Dec 23 '18 at 19:51
1
$begingroup$
Oh I see, you have solved it part by part, so yea, you end up with -2/3 in the end if you combine it all.
$endgroup$
– William
Dec 23 '18 at 19:59
$begingroup$
Your last part is...um... so extremely wrong my man
$endgroup$
– William
Dec 23 '18 at 19:38
$begingroup$
Your last part is...um... so extremely wrong my man
$endgroup$
– William
Dec 23 '18 at 19:38
$begingroup$
It seems to be you erased a $;sinfrac{3t}2;$ in the denominator when going from line 1 to line 2. How come? And where does that $;frac23;$ come from?
$endgroup$
– DonAntonio
Dec 23 '18 at 19:38
$begingroup$
It seems to be you erased a $;sinfrac{3t}2;$ in the denominator when going from line 1 to line 2. How come? And where does that $;frac23;$ come from?
$endgroup$
– DonAntonio
Dec 23 '18 at 19:38
1
1
$begingroup$
@AnkitKumar That you first took the limit and left some $;t,'$ s there. Had you separated the limits indication you'll have prodcut of limits it'd be correct, indeed. It seems to be just a confusion, yet a little more explanation would yield this as a correct solution, imo.
$endgroup$
– DonAntonio
Dec 23 '18 at 19:47
$begingroup$
@AnkitKumar That you first took the limit and left some $;t,'$ s there. Had you separated the limits indication you'll have prodcut of limits it'd be correct, indeed. It seems to be just a confusion, yet a little more explanation would yield this as a correct solution, imo.
$endgroup$
– DonAntonio
Dec 23 '18 at 19:47
1
1
$begingroup$
@William I wrote the argument for that above, in the $sin^2(t/2)$ part
$endgroup$
– Ankit Kumar
Dec 23 '18 at 19:51
$begingroup$
@William I wrote the argument for that above, in the $sin^2(t/2)$ part
$endgroup$
– Ankit Kumar
Dec 23 '18 at 19:51
1
1
$begingroup$
Oh I see, you have solved it part by part, so yea, you end up with -2/3 in the end if you combine it all.
$endgroup$
– William
Dec 23 '18 at 19:59
$begingroup$
Oh I see, you have solved it part by part, so yea, you end up with -2/3 in the end if you combine it all.
$endgroup$
– William
Dec 23 '18 at 19:59
|
show 11 more comments
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050628%2fhow-do-i-solve-lim-limits-x-to-frac%25cf%25803-frac2-sin-x-sqrt3-cos%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown