How do I solve $lim limits_{x to frac{π}{3}} frac{2 sin x - sqrt{3}}{cos frac{3x}{2}}$












3












$begingroup$


Alright, I know, there are easier ways to solve this, like L'hopitals Rule etc.



But I'm not solving it for the answer, just doing it for the fun so I tried using substitution method.



Put $t= x- dfrac{π}{3}$



$lim limits_{x to frac{π}{3}} dfrac{2 sin x - sqrt{3}}{cos frac{3x}{2}}$



$= limlimits_{t to 0} dfrac{2 sin left(t+frac{π}{3} right) - sqrt{3}}{cos left( frac{3t}{2} + frac{π}{2}right)}$



$= limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{ sin frac{3t}{2}}$



Where do I go from here, I'm not able to eliminate the $t$ fully from the Nr and Dr, any help?



Or any other alternative way that uses only the fact that $limlimits_{x to 0} dfrac{ sin x}{x} = 1$?



Thanks :)










share|cite|improve this question











$endgroup$

















    3












    $begingroup$


    Alright, I know, there are easier ways to solve this, like L'hopitals Rule etc.



    But I'm not solving it for the answer, just doing it for the fun so I tried using substitution method.



    Put $t= x- dfrac{π}{3}$



    $lim limits_{x to frac{π}{3}} dfrac{2 sin x - sqrt{3}}{cos frac{3x}{2}}$



    $= limlimits_{t to 0} dfrac{2 sin left(t+frac{π}{3} right) - sqrt{3}}{cos left( frac{3t}{2} + frac{π}{2}right)}$



    $= limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{ sin frac{3t}{2}}$



    Where do I go from here, I'm not able to eliminate the $t$ fully from the Nr and Dr, any help?



    Or any other alternative way that uses only the fact that $limlimits_{x to 0} dfrac{ sin x}{x} = 1$?



    Thanks :)










    share|cite|improve this question











    $endgroup$















      3












      3








      3


      1



      $begingroup$


      Alright, I know, there are easier ways to solve this, like L'hopitals Rule etc.



      But I'm not solving it for the answer, just doing it for the fun so I tried using substitution method.



      Put $t= x- dfrac{π}{3}$



      $lim limits_{x to frac{π}{3}} dfrac{2 sin x - sqrt{3}}{cos frac{3x}{2}}$



      $= limlimits_{t to 0} dfrac{2 sin left(t+frac{π}{3} right) - sqrt{3}}{cos left( frac{3t}{2} + frac{π}{2}right)}$



      $= limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{ sin frac{3t}{2}}$



      Where do I go from here, I'm not able to eliminate the $t$ fully from the Nr and Dr, any help?



      Or any other alternative way that uses only the fact that $limlimits_{x to 0} dfrac{ sin x}{x} = 1$?



      Thanks :)










      share|cite|improve this question











      $endgroup$




      Alright, I know, there are easier ways to solve this, like L'hopitals Rule etc.



      But I'm not solving it for the answer, just doing it for the fun so I tried using substitution method.



      Put $t= x- dfrac{π}{3}$



      $lim limits_{x to frac{π}{3}} dfrac{2 sin x - sqrt{3}}{cos frac{3x}{2}}$



      $= limlimits_{t to 0} dfrac{2 sin left(t+frac{π}{3} right) - sqrt{3}}{cos left( frac{3t}{2} + frac{π}{2}right)}$



      $= limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{ sin frac{3t}{2}}$



      Where do I go from here, I'm not able to eliminate the $t$ fully from the Nr and Dr, any help?



      Or any other alternative way that uses only the fact that $limlimits_{x to 0} dfrac{ sin x}{x} = 1$?



      Thanks :)







      limits limits-without-lhopital






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 28 '18 at 16:50









      Martin Sleziak

      45.1k10123277




      45.1k10123277










      asked Dec 23 '18 at 19:23









      William William

      1,253514




      1,253514






















          5 Answers
          5






          active

          oldest

          votes


















          6












          $begingroup$

          So we already have, after putting $;t:=x-fracpi3;$ :



          $$dfrac{2 sin left(t+frac{π}{3} right) - sqrt{3}}{cos left( frac{3t}{2} + frac{π}{2}right)}=frac{2left(sin tcdotfrac12+frac{sqrt3}2cos tright)-sqrt3}{-sinfrac{3t}2}=-frac{sin t}{sinfrac{3t}2}-sqrt3frac{cos t -1}{sinfrac{3t}2}=$$$${}$$



          $$=-frac23cdotfrac{frac{3t}2}{sinfrac{3t}2}cdotfrac{sin t}t+sqrt3cdotfrac23cdotfrac{frac{3t}2}{sinfrac{3t}2}cdotfrac{1-cos t}txrightarrow[tto0]{}-frac23cdot1cdot1+frac2{sqrt3}cdot1cdot0=-frac23$$






          share|cite|improve this answer











          $endgroup$









          • 1




            $begingroup$
            @AnkitKumar "Same"...same what? I don't get it? Ah! If you mean "same result", then yes: the correct one, I believe...
            $endgroup$
            – DonAntonio
            Dec 23 '18 at 19:39












          • $begingroup$
            @Clayton Indeed so. Thanks and corrected
            $endgroup$
            – DonAntonio
            Dec 23 '18 at 19:55



















          3












          $begingroup$

          $lim limits_{x to frac{π}{3}} dfrac{2 sin x - sqrt{3}}{cos frac{3x}{2}}=2lim limits_{x to frac{π}{3}} dfrac{sin x - sin cfrac pi 3}{cos frac{3x}{2}}$



          $=4lim limits_{x to frac{π}{3}} dfrac{cos (cfrac x2+cfrac pi 6) sin (cfrac x2 - cfrac pi 6)}{sin (frac pi 2-frac {3x}{2})}$



          $=4lim limits_{x to frac{π}{3}} dfrac{cos (cfrac x2+cfrac pi 6) (cfrac x2 - cfrac pi 6)}{frac pi 2-frac {3x}{2}}$



          $=-4/3lim limits_{x to frac{π}{3}} {cos (cfrac x2+cfrac pi 6) }$



          $=-4/3cos pi/3=-2/3$






          share|cite|improve this answer











          $endgroup$









          • 1




            $begingroup$
            There exists no $;pi;$ at the end....
            $endgroup$
            – DonAntonio
            Dec 23 '18 at 19:43












          • $begingroup$
            Thanks. Rush to conclusion, too many errors :(
            $endgroup$
            – Lance
            Dec 23 '18 at 19:44










          • $begingroup$
            Yes...and the final result is wrong, again: $$fracpi6+fracpi6=fracpi3;$$ and cosinus on this equals $;frac12;$ ...
            $endgroup$
            – DonAntonio
            Dec 23 '18 at 19:45










          • $begingroup$
            That's right. Thank you!
            $endgroup$
            – Lance
            Dec 23 '18 at 19:47



















          2












          $begingroup$

          To end your computation, you can split your expression in two:
          $$frac{sqrt{3}- sin t - sqrt{3} cos t}{ sin frac{3t}{2}} =-frac{sin t}{ sin frac{3t}{2}}+sqrt 3,frac{1- cos t}{sin frac{3t}{2}} $$
          Now it is standard that $;lim_{tto 0}dfrac{sin at}{sin bt}=dfrac ab$. On the other hand
          $$frac{1-cos t}{sinfrac{3t}{2}}=frac{2sin^2t}{sinfrac{3t}{2}}=2sin t,frac{sin t}{sinfrac{3t}{2}}.$$
          Can you conclude now?






          share|cite|improve this answer









          $endgroup$





















            2












            $begingroup$

            Just to give another approach, let's let $f(x)=2sin x$ and $g(x)=cos(3x/2)$ and use the fact(s) that $f'(x)=2cos x$, $g'(x)=-{3over2}sin(3x/2)$, $f(pi/3)=2sin(pi/3)=sqrt3$, and $g(pi/3)=cos(pi/2)=0$. From the definition of the derivative, it follows that



            $$lim_{xtopi/3}{2sin x-sqrt3over x-pi/3}=lim_{pi/3}{f(x)-f(pi/3)over x-pi/3}=f'(pi/3)=2cos(pi/3)=1$$



            and



            $$lim_{xtopi/3}{cos(3x/2)over x-pi/3}=lim_{xtopi/3}{g(x)-g(pi/3)over x-pi/3 }=g'(pi/3)=-{3over2}sin(pi/2)=-{3over2}$$



            Thus



            $$lim_{xtopi/3}{2sin x-sqrt2overcos(3x/2)}={displaystylelim_{xtopi/3}{2sin x-sqrt3over x-pi/3}overdisplaystylelim_{xtopi/3}{cos(3x/2)over x-pi/3}}={1over-{3over2}}=-{2over3}$$






            share|cite|improve this answer









            $endgroup$





















              1












              $begingroup$

              $$limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{ sin frac{3t}{2}}=limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{ sin frac{3t}{2}}cdotfrac{3t/2}{3t/2}$$
              $$=frac{2}{3} limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{ t} (1)$$
              Now, $1-cost=2sin^2(t/2)$
              $$limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{t}= limlimits_{t to 0}( frac{sqrt{3}(1-cos t)}{t}-frac{sint}{t})$$
              $$=limlimits_{t to 0}( frac{2sin^2(t/2)}{t}-frac{sint}{t})$$
              $$=limlimits_{t to 0}( frac{2sin^2(t/2)}{t^2/4}frac{t^2/4}{t}-frac{sint}{t})$$
              $$=0-1=-1$$
              Put -1 in (1) to get the final limit, $-2/3$.






              share|cite|improve this answer











              $endgroup$













              • $begingroup$
                Your last part is...um... so extremely wrong my man
                $endgroup$
                – William
                Dec 23 '18 at 19:38










              • $begingroup$
                It seems to be you erased a $;sinfrac{3t}2;$ in the denominator when going from line 1 to line 2. How come? And where does that $;frac23;$ come from?
                $endgroup$
                – DonAntonio
                Dec 23 '18 at 19:38






              • 1




                $begingroup$
                @AnkitKumar That you first took the limit and left some $;t,'$ s there. Had you separated the limits indication you'll have prodcut of limits it'd be correct, indeed. It seems to be just a confusion, yet a little more explanation would yield this as a correct solution, imo.
                $endgroup$
                – DonAntonio
                Dec 23 '18 at 19:47








              • 1




                $begingroup$
                @William I wrote the argument for that above, in the $sin^2(t/2)$ part
                $endgroup$
                – Ankit Kumar
                Dec 23 '18 at 19:51






              • 1




                $begingroup$
                Oh I see, you have solved it part by part, so yea, you end up with -2/3 in the end if you combine it all.
                $endgroup$
                – William
                Dec 23 '18 at 19:59












              Your Answer








              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050628%2fhow-do-i-solve-lim-limits-x-to-frac%25cf%25803-frac2-sin-x-sqrt3-cos%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              5 Answers
              5






              active

              oldest

              votes








              5 Answers
              5






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              6












              $begingroup$

              So we already have, after putting $;t:=x-fracpi3;$ :



              $$dfrac{2 sin left(t+frac{π}{3} right) - sqrt{3}}{cos left( frac{3t}{2} + frac{π}{2}right)}=frac{2left(sin tcdotfrac12+frac{sqrt3}2cos tright)-sqrt3}{-sinfrac{3t}2}=-frac{sin t}{sinfrac{3t}2}-sqrt3frac{cos t -1}{sinfrac{3t}2}=$$$${}$$



              $$=-frac23cdotfrac{frac{3t}2}{sinfrac{3t}2}cdotfrac{sin t}t+sqrt3cdotfrac23cdotfrac{frac{3t}2}{sinfrac{3t}2}cdotfrac{1-cos t}txrightarrow[tto0]{}-frac23cdot1cdot1+frac2{sqrt3}cdot1cdot0=-frac23$$






              share|cite|improve this answer











              $endgroup$









              • 1




                $begingroup$
                @AnkitKumar "Same"...same what? I don't get it? Ah! If you mean "same result", then yes: the correct one, I believe...
                $endgroup$
                – DonAntonio
                Dec 23 '18 at 19:39












              • $begingroup$
                @Clayton Indeed so. Thanks and corrected
                $endgroup$
                – DonAntonio
                Dec 23 '18 at 19:55
















              6












              $begingroup$

              So we already have, after putting $;t:=x-fracpi3;$ :



              $$dfrac{2 sin left(t+frac{π}{3} right) - sqrt{3}}{cos left( frac{3t}{2} + frac{π}{2}right)}=frac{2left(sin tcdotfrac12+frac{sqrt3}2cos tright)-sqrt3}{-sinfrac{3t}2}=-frac{sin t}{sinfrac{3t}2}-sqrt3frac{cos t -1}{sinfrac{3t}2}=$$$${}$$



              $$=-frac23cdotfrac{frac{3t}2}{sinfrac{3t}2}cdotfrac{sin t}t+sqrt3cdotfrac23cdotfrac{frac{3t}2}{sinfrac{3t}2}cdotfrac{1-cos t}txrightarrow[tto0]{}-frac23cdot1cdot1+frac2{sqrt3}cdot1cdot0=-frac23$$






              share|cite|improve this answer











              $endgroup$









              • 1




                $begingroup$
                @AnkitKumar "Same"...same what? I don't get it? Ah! If you mean "same result", then yes: the correct one, I believe...
                $endgroup$
                – DonAntonio
                Dec 23 '18 at 19:39












              • $begingroup$
                @Clayton Indeed so. Thanks and corrected
                $endgroup$
                – DonAntonio
                Dec 23 '18 at 19:55














              6












              6








              6





              $begingroup$

              So we already have, after putting $;t:=x-fracpi3;$ :



              $$dfrac{2 sin left(t+frac{π}{3} right) - sqrt{3}}{cos left( frac{3t}{2} + frac{π}{2}right)}=frac{2left(sin tcdotfrac12+frac{sqrt3}2cos tright)-sqrt3}{-sinfrac{3t}2}=-frac{sin t}{sinfrac{3t}2}-sqrt3frac{cos t -1}{sinfrac{3t}2}=$$$${}$$



              $$=-frac23cdotfrac{frac{3t}2}{sinfrac{3t}2}cdotfrac{sin t}t+sqrt3cdotfrac23cdotfrac{frac{3t}2}{sinfrac{3t}2}cdotfrac{1-cos t}txrightarrow[tto0]{}-frac23cdot1cdot1+frac2{sqrt3}cdot1cdot0=-frac23$$






              share|cite|improve this answer











              $endgroup$



              So we already have, after putting $;t:=x-fracpi3;$ :



              $$dfrac{2 sin left(t+frac{π}{3} right) - sqrt{3}}{cos left( frac{3t}{2} + frac{π}{2}right)}=frac{2left(sin tcdotfrac12+frac{sqrt3}2cos tright)-sqrt3}{-sinfrac{3t}2}=-frac{sin t}{sinfrac{3t}2}-sqrt3frac{cos t -1}{sinfrac{3t}2}=$$$${}$$



              $$=-frac23cdotfrac{frac{3t}2}{sinfrac{3t}2}cdotfrac{sin t}t+sqrt3cdotfrac23cdotfrac{frac{3t}2}{sinfrac{3t}2}cdotfrac{1-cos t}txrightarrow[tto0]{}-frac23cdot1cdot1+frac2{sqrt3}cdot1cdot0=-frac23$$







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited Dec 23 '18 at 19:54

























              answered Dec 23 '18 at 19:35









              DonAntonioDonAntonio

              180k1495233




              180k1495233








              • 1




                $begingroup$
                @AnkitKumar "Same"...same what? I don't get it? Ah! If you mean "same result", then yes: the correct one, I believe...
                $endgroup$
                – DonAntonio
                Dec 23 '18 at 19:39












              • $begingroup$
                @Clayton Indeed so. Thanks and corrected
                $endgroup$
                – DonAntonio
                Dec 23 '18 at 19:55














              • 1




                $begingroup$
                @AnkitKumar "Same"...same what? I don't get it? Ah! If you mean "same result", then yes: the correct one, I believe...
                $endgroup$
                – DonAntonio
                Dec 23 '18 at 19:39












              • $begingroup$
                @Clayton Indeed so. Thanks and corrected
                $endgroup$
                – DonAntonio
                Dec 23 '18 at 19:55








              1




              1




              $begingroup$
              @AnkitKumar "Same"...same what? I don't get it? Ah! If you mean "same result", then yes: the correct one, I believe...
              $endgroup$
              – DonAntonio
              Dec 23 '18 at 19:39






              $begingroup$
              @AnkitKumar "Same"...same what? I don't get it? Ah! If you mean "same result", then yes: the correct one, I believe...
              $endgroup$
              – DonAntonio
              Dec 23 '18 at 19:39














              $begingroup$
              @Clayton Indeed so. Thanks and corrected
              $endgroup$
              – DonAntonio
              Dec 23 '18 at 19:55




              $begingroup$
              @Clayton Indeed so. Thanks and corrected
              $endgroup$
              – DonAntonio
              Dec 23 '18 at 19:55











              3












              $begingroup$

              $lim limits_{x to frac{π}{3}} dfrac{2 sin x - sqrt{3}}{cos frac{3x}{2}}=2lim limits_{x to frac{π}{3}} dfrac{sin x - sin cfrac pi 3}{cos frac{3x}{2}}$



              $=4lim limits_{x to frac{π}{3}} dfrac{cos (cfrac x2+cfrac pi 6) sin (cfrac x2 - cfrac pi 6)}{sin (frac pi 2-frac {3x}{2})}$



              $=4lim limits_{x to frac{π}{3}} dfrac{cos (cfrac x2+cfrac pi 6) (cfrac x2 - cfrac pi 6)}{frac pi 2-frac {3x}{2}}$



              $=-4/3lim limits_{x to frac{π}{3}} {cos (cfrac x2+cfrac pi 6) }$



              $=-4/3cos pi/3=-2/3$






              share|cite|improve this answer











              $endgroup$









              • 1




                $begingroup$
                There exists no $;pi;$ at the end....
                $endgroup$
                – DonAntonio
                Dec 23 '18 at 19:43












              • $begingroup$
                Thanks. Rush to conclusion, too many errors :(
                $endgroup$
                – Lance
                Dec 23 '18 at 19:44










              • $begingroup$
                Yes...and the final result is wrong, again: $$fracpi6+fracpi6=fracpi3;$$ and cosinus on this equals $;frac12;$ ...
                $endgroup$
                – DonAntonio
                Dec 23 '18 at 19:45










              • $begingroup$
                That's right. Thank you!
                $endgroup$
                – Lance
                Dec 23 '18 at 19:47
















              3












              $begingroup$

              $lim limits_{x to frac{π}{3}} dfrac{2 sin x - sqrt{3}}{cos frac{3x}{2}}=2lim limits_{x to frac{π}{3}} dfrac{sin x - sin cfrac pi 3}{cos frac{3x}{2}}$



              $=4lim limits_{x to frac{π}{3}} dfrac{cos (cfrac x2+cfrac pi 6) sin (cfrac x2 - cfrac pi 6)}{sin (frac pi 2-frac {3x}{2})}$



              $=4lim limits_{x to frac{π}{3}} dfrac{cos (cfrac x2+cfrac pi 6) (cfrac x2 - cfrac pi 6)}{frac pi 2-frac {3x}{2}}$



              $=-4/3lim limits_{x to frac{π}{3}} {cos (cfrac x2+cfrac pi 6) }$



              $=-4/3cos pi/3=-2/3$






              share|cite|improve this answer











              $endgroup$









              • 1




                $begingroup$
                There exists no $;pi;$ at the end....
                $endgroup$
                – DonAntonio
                Dec 23 '18 at 19:43












              • $begingroup$
                Thanks. Rush to conclusion, too many errors :(
                $endgroup$
                – Lance
                Dec 23 '18 at 19:44










              • $begingroup$
                Yes...and the final result is wrong, again: $$fracpi6+fracpi6=fracpi3;$$ and cosinus on this equals $;frac12;$ ...
                $endgroup$
                – DonAntonio
                Dec 23 '18 at 19:45










              • $begingroup$
                That's right. Thank you!
                $endgroup$
                – Lance
                Dec 23 '18 at 19:47














              3












              3








              3





              $begingroup$

              $lim limits_{x to frac{π}{3}} dfrac{2 sin x - sqrt{3}}{cos frac{3x}{2}}=2lim limits_{x to frac{π}{3}} dfrac{sin x - sin cfrac pi 3}{cos frac{3x}{2}}$



              $=4lim limits_{x to frac{π}{3}} dfrac{cos (cfrac x2+cfrac pi 6) sin (cfrac x2 - cfrac pi 6)}{sin (frac pi 2-frac {3x}{2})}$



              $=4lim limits_{x to frac{π}{3}} dfrac{cos (cfrac x2+cfrac pi 6) (cfrac x2 - cfrac pi 6)}{frac pi 2-frac {3x}{2}}$



              $=-4/3lim limits_{x to frac{π}{3}} {cos (cfrac x2+cfrac pi 6) }$



              $=-4/3cos pi/3=-2/3$






              share|cite|improve this answer











              $endgroup$



              $lim limits_{x to frac{π}{3}} dfrac{2 sin x - sqrt{3}}{cos frac{3x}{2}}=2lim limits_{x to frac{π}{3}} dfrac{sin x - sin cfrac pi 3}{cos frac{3x}{2}}$



              $=4lim limits_{x to frac{π}{3}} dfrac{cos (cfrac x2+cfrac pi 6) sin (cfrac x2 - cfrac pi 6)}{sin (frac pi 2-frac {3x}{2})}$



              $=4lim limits_{x to frac{π}{3}} dfrac{cos (cfrac x2+cfrac pi 6) (cfrac x2 - cfrac pi 6)}{frac pi 2-frac {3x}{2}}$



              $=-4/3lim limits_{x to frac{π}{3}} {cos (cfrac x2+cfrac pi 6) }$



              $=-4/3cos pi/3=-2/3$







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited Dec 23 '18 at 19:46

























              answered Dec 23 '18 at 19:39









              LanceLance

              64239




              64239








              • 1




                $begingroup$
                There exists no $;pi;$ at the end....
                $endgroup$
                – DonAntonio
                Dec 23 '18 at 19:43












              • $begingroup$
                Thanks. Rush to conclusion, too many errors :(
                $endgroup$
                – Lance
                Dec 23 '18 at 19:44










              • $begingroup$
                Yes...and the final result is wrong, again: $$fracpi6+fracpi6=fracpi3;$$ and cosinus on this equals $;frac12;$ ...
                $endgroup$
                – DonAntonio
                Dec 23 '18 at 19:45










              • $begingroup$
                That's right. Thank you!
                $endgroup$
                – Lance
                Dec 23 '18 at 19:47














              • 1




                $begingroup$
                There exists no $;pi;$ at the end....
                $endgroup$
                – DonAntonio
                Dec 23 '18 at 19:43












              • $begingroup$
                Thanks. Rush to conclusion, too many errors :(
                $endgroup$
                – Lance
                Dec 23 '18 at 19:44










              • $begingroup$
                Yes...and the final result is wrong, again: $$fracpi6+fracpi6=fracpi3;$$ and cosinus on this equals $;frac12;$ ...
                $endgroup$
                – DonAntonio
                Dec 23 '18 at 19:45










              • $begingroup$
                That's right. Thank you!
                $endgroup$
                – Lance
                Dec 23 '18 at 19:47








              1




              1




              $begingroup$
              There exists no $;pi;$ at the end....
              $endgroup$
              – DonAntonio
              Dec 23 '18 at 19:43






              $begingroup$
              There exists no $;pi;$ at the end....
              $endgroup$
              – DonAntonio
              Dec 23 '18 at 19:43














              $begingroup$
              Thanks. Rush to conclusion, too many errors :(
              $endgroup$
              – Lance
              Dec 23 '18 at 19:44




              $begingroup$
              Thanks. Rush to conclusion, too many errors :(
              $endgroup$
              – Lance
              Dec 23 '18 at 19:44












              $begingroup$
              Yes...and the final result is wrong, again: $$fracpi6+fracpi6=fracpi3;$$ and cosinus on this equals $;frac12;$ ...
              $endgroup$
              – DonAntonio
              Dec 23 '18 at 19:45




              $begingroup$
              Yes...and the final result is wrong, again: $$fracpi6+fracpi6=fracpi3;$$ and cosinus on this equals $;frac12;$ ...
              $endgroup$
              – DonAntonio
              Dec 23 '18 at 19:45












              $begingroup$
              That's right. Thank you!
              $endgroup$
              – Lance
              Dec 23 '18 at 19:47




              $begingroup$
              That's right. Thank you!
              $endgroup$
              – Lance
              Dec 23 '18 at 19:47











              2












              $begingroup$

              To end your computation, you can split your expression in two:
              $$frac{sqrt{3}- sin t - sqrt{3} cos t}{ sin frac{3t}{2}} =-frac{sin t}{ sin frac{3t}{2}}+sqrt 3,frac{1- cos t}{sin frac{3t}{2}} $$
              Now it is standard that $;lim_{tto 0}dfrac{sin at}{sin bt}=dfrac ab$. On the other hand
              $$frac{1-cos t}{sinfrac{3t}{2}}=frac{2sin^2t}{sinfrac{3t}{2}}=2sin t,frac{sin t}{sinfrac{3t}{2}}.$$
              Can you conclude now?






              share|cite|improve this answer









              $endgroup$


















                2












                $begingroup$

                To end your computation, you can split your expression in two:
                $$frac{sqrt{3}- sin t - sqrt{3} cos t}{ sin frac{3t}{2}} =-frac{sin t}{ sin frac{3t}{2}}+sqrt 3,frac{1- cos t}{sin frac{3t}{2}} $$
                Now it is standard that $;lim_{tto 0}dfrac{sin at}{sin bt}=dfrac ab$. On the other hand
                $$frac{1-cos t}{sinfrac{3t}{2}}=frac{2sin^2t}{sinfrac{3t}{2}}=2sin t,frac{sin t}{sinfrac{3t}{2}}.$$
                Can you conclude now?






                share|cite|improve this answer









                $endgroup$
















                  2












                  2








                  2





                  $begingroup$

                  To end your computation, you can split your expression in two:
                  $$frac{sqrt{3}- sin t - sqrt{3} cos t}{ sin frac{3t}{2}} =-frac{sin t}{ sin frac{3t}{2}}+sqrt 3,frac{1- cos t}{sin frac{3t}{2}} $$
                  Now it is standard that $;lim_{tto 0}dfrac{sin at}{sin bt}=dfrac ab$. On the other hand
                  $$frac{1-cos t}{sinfrac{3t}{2}}=frac{2sin^2t}{sinfrac{3t}{2}}=2sin t,frac{sin t}{sinfrac{3t}{2}}.$$
                  Can you conclude now?






                  share|cite|improve this answer









                  $endgroup$



                  To end your computation, you can split your expression in two:
                  $$frac{sqrt{3}- sin t - sqrt{3} cos t}{ sin frac{3t}{2}} =-frac{sin t}{ sin frac{3t}{2}}+sqrt 3,frac{1- cos t}{sin frac{3t}{2}} $$
                  Now it is standard that $;lim_{tto 0}dfrac{sin at}{sin bt}=dfrac ab$. On the other hand
                  $$frac{1-cos t}{sinfrac{3t}{2}}=frac{2sin^2t}{sinfrac{3t}{2}}=2sin t,frac{sin t}{sinfrac{3t}{2}}.$$
                  Can you conclude now?







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 23 '18 at 19:46









                  BernardBernard

                  124k742117




                  124k742117























                      2












                      $begingroup$

                      Just to give another approach, let's let $f(x)=2sin x$ and $g(x)=cos(3x/2)$ and use the fact(s) that $f'(x)=2cos x$, $g'(x)=-{3over2}sin(3x/2)$, $f(pi/3)=2sin(pi/3)=sqrt3$, and $g(pi/3)=cos(pi/2)=0$. From the definition of the derivative, it follows that



                      $$lim_{xtopi/3}{2sin x-sqrt3over x-pi/3}=lim_{pi/3}{f(x)-f(pi/3)over x-pi/3}=f'(pi/3)=2cos(pi/3)=1$$



                      and



                      $$lim_{xtopi/3}{cos(3x/2)over x-pi/3}=lim_{xtopi/3}{g(x)-g(pi/3)over x-pi/3 }=g'(pi/3)=-{3over2}sin(pi/2)=-{3over2}$$



                      Thus



                      $$lim_{xtopi/3}{2sin x-sqrt2overcos(3x/2)}={displaystylelim_{xtopi/3}{2sin x-sqrt3over x-pi/3}overdisplaystylelim_{xtopi/3}{cos(3x/2)over x-pi/3}}={1over-{3over2}}=-{2over3}$$






                      share|cite|improve this answer









                      $endgroup$


















                        2












                        $begingroup$

                        Just to give another approach, let's let $f(x)=2sin x$ and $g(x)=cos(3x/2)$ and use the fact(s) that $f'(x)=2cos x$, $g'(x)=-{3over2}sin(3x/2)$, $f(pi/3)=2sin(pi/3)=sqrt3$, and $g(pi/3)=cos(pi/2)=0$. From the definition of the derivative, it follows that



                        $$lim_{xtopi/3}{2sin x-sqrt3over x-pi/3}=lim_{pi/3}{f(x)-f(pi/3)over x-pi/3}=f'(pi/3)=2cos(pi/3)=1$$



                        and



                        $$lim_{xtopi/3}{cos(3x/2)over x-pi/3}=lim_{xtopi/3}{g(x)-g(pi/3)over x-pi/3 }=g'(pi/3)=-{3over2}sin(pi/2)=-{3over2}$$



                        Thus



                        $$lim_{xtopi/3}{2sin x-sqrt2overcos(3x/2)}={displaystylelim_{xtopi/3}{2sin x-sqrt3over x-pi/3}overdisplaystylelim_{xtopi/3}{cos(3x/2)over x-pi/3}}={1over-{3over2}}=-{2over3}$$






                        share|cite|improve this answer









                        $endgroup$
















                          2












                          2








                          2





                          $begingroup$

                          Just to give another approach, let's let $f(x)=2sin x$ and $g(x)=cos(3x/2)$ and use the fact(s) that $f'(x)=2cos x$, $g'(x)=-{3over2}sin(3x/2)$, $f(pi/3)=2sin(pi/3)=sqrt3$, and $g(pi/3)=cos(pi/2)=0$. From the definition of the derivative, it follows that



                          $$lim_{xtopi/3}{2sin x-sqrt3over x-pi/3}=lim_{pi/3}{f(x)-f(pi/3)over x-pi/3}=f'(pi/3)=2cos(pi/3)=1$$



                          and



                          $$lim_{xtopi/3}{cos(3x/2)over x-pi/3}=lim_{xtopi/3}{g(x)-g(pi/3)over x-pi/3 }=g'(pi/3)=-{3over2}sin(pi/2)=-{3over2}$$



                          Thus



                          $$lim_{xtopi/3}{2sin x-sqrt2overcos(3x/2)}={displaystylelim_{xtopi/3}{2sin x-sqrt3over x-pi/3}overdisplaystylelim_{xtopi/3}{cos(3x/2)over x-pi/3}}={1over-{3over2}}=-{2over3}$$






                          share|cite|improve this answer









                          $endgroup$



                          Just to give another approach, let's let $f(x)=2sin x$ and $g(x)=cos(3x/2)$ and use the fact(s) that $f'(x)=2cos x$, $g'(x)=-{3over2}sin(3x/2)$, $f(pi/3)=2sin(pi/3)=sqrt3$, and $g(pi/3)=cos(pi/2)=0$. From the definition of the derivative, it follows that



                          $$lim_{xtopi/3}{2sin x-sqrt3over x-pi/3}=lim_{pi/3}{f(x)-f(pi/3)over x-pi/3}=f'(pi/3)=2cos(pi/3)=1$$



                          and



                          $$lim_{xtopi/3}{cos(3x/2)over x-pi/3}=lim_{xtopi/3}{g(x)-g(pi/3)over x-pi/3 }=g'(pi/3)=-{3over2}sin(pi/2)=-{3over2}$$



                          Thus



                          $$lim_{xtopi/3}{2sin x-sqrt2overcos(3x/2)}={displaystylelim_{xtopi/3}{2sin x-sqrt3over x-pi/3}overdisplaystylelim_{xtopi/3}{cos(3x/2)over x-pi/3}}={1over-{3over2}}=-{2over3}$$







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Dec 23 '18 at 20:47









                          Barry CipraBarry Cipra

                          60.8k655129




                          60.8k655129























                              1












                              $begingroup$

                              $$limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{ sin frac{3t}{2}}=limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{ sin frac{3t}{2}}cdotfrac{3t/2}{3t/2}$$
                              $$=frac{2}{3} limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{ t} (1)$$
                              Now, $1-cost=2sin^2(t/2)$
                              $$limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{t}= limlimits_{t to 0}( frac{sqrt{3}(1-cos t)}{t}-frac{sint}{t})$$
                              $$=limlimits_{t to 0}( frac{2sin^2(t/2)}{t}-frac{sint}{t})$$
                              $$=limlimits_{t to 0}( frac{2sin^2(t/2)}{t^2/4}frac{t^2/4}{t}-frac{sint}{t})$$
                              $$=0-1=-1$$
                              Put -1 in (1) to get the final limit, $-2/3$.






                              share|cite|improve this answer











                              $endgroup$













                              • $begingroup$
                                Your last part is...um... so extremely wrong my man
                                $endgroup$
                                – William
                                Dec 23 '18 at 19:38










                              • $begingroup$
                                It seems to be you erased a $;sinfrac{3t}2;$ in the denominator when going from line 1 to line 2. How come? And where does that $;frac23;$ come from?
                                $endgroup$
                                – DonAntonio
                                Dec 23 '18 at 19:38






                              • 1




                                $begingroup$
                                @AnkitKumar That you first took the limit and left some $;t,'$ s there. Had you separated the limits indication you'll have prodcut of limits it'd be correct, indeed. It seems to be just a confusion, yet a little more explanation would yield this as a correct solution, imo.
                                $endgroup$
                                – DonAntonio
                                Dec 23 '18 at 19:47








                              • 1




                                $begingroup$
                                @William I wrote the argument for that above, in the $sin^2(t/2)$ part
                                $endgroup$
                                – Ankit Kumar
                                Dec 23 '18 at 19:51






                              • 1




                                $begingroup$
                                Oh I see, you have solved it part by part, so yea, you end up with -2/3 in the end if you combine it all.
                                $endgroup$
                                – William
                                Dec 23 '18 at 19:59
















                              1












                              $begingroup$

                              $$limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{ sin frac{3t}{2}}=limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{ sin frac{3t}{2}}cdotfrac{3t/2}{3t/2}$$
                              $$=frac{2}{3} limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{ t} (1)$$
                              Now, $1-cost=2sin^2(t/2)$
                              $$limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{t}= limlimits_{t to 0}( frac{sqrt{3}(1-cos t)}{t}-frac{sint}{t})$$
                              $$=limlimits_{t to 0}( frac{2sin^2(t/2)}{t}-frac{sint}{t})$$
                              $$=limlimits_{t to 0}( frac{2sin^2(t/2)}{t^2/4}frac{t^2/4}{t}-frac{sint}{t})$$
                              $$=0-1=-1$$
                              Put -1 in (1) to get the final limit, $-2/3$.






                              share|cite|improve this answer











                              $endgroup$













                              • $begingroup$
                                Your last part is...um... so extremely wrong my man
                                $endgroup$
                                – William
                                Dec 23 '18 at 19:38










                              • $begingroup$
                                It seems to be you erased a $;sinfrac{3t}2;$ in the denominator when going from line 1 to line 2. How come? And where does that $;frac23;$ come from?
                                $endgroup$
                                – DonAntonio
                                Dec 23 '18 at 19:38






                              • 1




                                $begingroup$
                                @AnkitKumar That you first took the limit and left some $;t,'$ s there. Had you separated the limits indication you'll have prodcut of limits it'd be correct, indeed. It seems to be just a confusion, yet a little more explanation would yield this as a correct solution, imo.
                                $endgroup$
                                – DonAntonio
                                Dec 23 '18 at 19:47








                              • 1




                                $begingroup$
                                @William I wrote the argument for that above, in the $sin^2(t/2)$ part
                                $endgroup$
                                – Ankit Kumar
                                Dec 23 '18 at 19:51






                              • 1




                                $begingroup$
                                Oh I see, you have solved it part by part, so yea, you end up with -2/3 in the end if you combine it all.
                                $endgroup$
                                – William
                                Dec 23 '18 at 19:59














                              1












                              1








                              1





                              $begingroup$

                              $$limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{ sin frac{3t}{2}}=limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{ sin frac{3t}{2}}cdotfrac{3t/2}{3t/2}$$
                              $$=frac{2}{3} limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{ t} (1)$$
                              Now, $1-cost=2sin^2(t/2)$
                              $$limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{t}= limlimits_{t to 0}( frac{sqrt{3}(1-cos t)}{t}-frac{sint}{t})$$
                              $$=limlimits_{t to 0}( frac{2sin^2(t/2)}{t}-frac{sint}{t})$$
                              $$=limlimits_{t to 0}( frac{2sin^2(t/2)}{t^2/4}frac{t^2/4}{t}-frac{sint}{t})$$
                              $$=0-1=-1$$
                              Put -1 in (1) to get the final limit, $-2/3$.






                              share|cite|improve this answer











                              $endgroup$



                              $$limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{ sin frac{3t}{2}}=limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{ sin frac{3t}{2}}cdotfrac{3t/2}{3t/2}$$
                              $$=frac{2}{3} limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{ t} (1)$$
                              Now, $1-cost=2sin^2(t/2)$
                              $$limlimits_{t to 0} dfrac{sqrt{3}- sin t - sqrt{3} cos t}{t}= limlimits_{t to 0}( frac{sqrt{3}(1-cos t)}{t}-frac{sint}{t})$$
                              $$=limlimits_{t to 0}( frac{2sin^2(t/2)}{t}-frac{sint}{t})$$
                              $$=limlimits_{t to 0}( frac{2sin^2(t/2)}{t^2/4}frac{t^2/4}{t}-frac{sint}{t})$$
                              $$=0-1=-1$$
                              Put -1 in (1) to get the final limit, $-2/3$.







                              share|cite|improve this answer














                              share|cite|improve this answer



                              share|cite|improve this answer








                              edited Dec 23 '18 at 20:07

























                              answered Dec 23 '18 at 19:36









                              Ankit KumarAnkit Kumar

                              1,540221




                              1,540221












                              • $begingroup$
                                Your last part is...um... so extremely wrong my man
                                $endgroup$
                                – William
                                Dec 23 '18 at 19:38










                              • $begingroup$
                                It seems to be you erased a $;sinfrac{3t}2;$ in the denominator when going from line 1 to line 2. How come? And where does that $;frac23;$ come from?
                                $endgroup$
                                – DonAntonio
                                Dec 23 '18 at 19:38






                              • 1




                                $begingroup$
                                @AnkitKumar That you first took the limit and left some $;t,'$ s there. Had you separated the limits indication you'll have prodcut of limits it'd be correct, indeed. It seems to be just a confusion, yet a little more explanation would yield this as a correct solution, imo.
                                $endgroup$
                                – DonAntonio
                                Dec 23 '18 at 19:47








                              • 1




                                $begingroup$
                                @William I wrote the argument for that above, in the $sin^2(t/2)$ part
                                $endgroup$
                                – Ankit Kumar
                                Dec 23 '18 at 19:51






                              • 1




                                $begingroup$
                                Oh I see, you have solved it part by part, so yea, you end up with -2/3 in the end if you combine it all.
                                $endgroup$
                                – William
                                Dec 23 '18 at 19:59


















                              • $begingroup$
                                Your last part is...um... so extremely wrong my man
                                $endgroup$
                                – William
                                Dec 23 '18 at 19:38










                              • $begingroup$
                                It seems to be you erased a $;sinfrac{3t}2;$ in the denominator when going from line 1 to line 2. How come? And where does that $;frac23;$ come from?
                                $endgroup$
                                – DonAntonio
                                Dec 23 '18 at 19:38






                              • 1




                                $begingroup$
                                @AnkitKumar That you first took the limit and left some $;t,'$ s there. Had you separated the limits indication you'll have prodcut of limits it'd be correct, indeed. It seems to be just a confusion, yet a little more explanation would yield this as a correct solution, imo.
                                $endgroup$
                                – DonAntonio
                                Dec 23 '18 at 19:47








                              • 1




                                $begingroup$
                                @William I wrote the argument for that above, in the $sin^2(t/2)$ part
                                $endgroup$
                                – Ankit Kumar
                                Dec 23 '18 at 19:51






                              • 1




                                $begingroup$
                                Oh I see, you have solved it part by part, so yea, you end up with -2/3 in the end if you combine it all.
                                $endgroup$
                                – William
                                Dec 23 '18 at 19:59
















                              $begingroup$
                              Your last part is...um... so extremely wrong my man
                              $endgroup$
                              – William
                              Dec 23 '18 at 19:38




                              $begingroup$
                              Your last part is...um... so extremely wrong my man
                              $endgroup$
                              – William
                              Dec 23 '18 at 19:38












                              $begingroup$
                              It seems to be you erased a $;sinfrac{3t}2;$ in the denominator when going from line 1 to line 2. How come? And where does that $;frac23;$ come from?
                              $endgroup$
                              – DonAntonio
                              Dec 23 '18 at 19:38




                              $begingroup$
                              It seems to be you erased a $;sinfrac{3t}2;$ in the denominator when going from line 1 to line 2. How come? And where does that $;frac23;$ come from?
                              $endgroup$
                              – DonAntonio
                              Dec 23 '18 at 19:38




                              1




                              1




                              $begingroup$
                              @AnkitKumar That you first took the limit and left some $;t,'$ s there. Had you separated the limits indication you'll have prodcut of limits it'd be correct, indeed. It seems to be just a confusion, yet a little more explanation would yield this as a correct solution, imo.
                              $endgroup$
                              – DonAntonio
                              Dec 23 '18 at 19:47






                              $begingroup$
                              @AnkitKumar That you first took the limit and left some $;t,'$ s there. Had you separated the limits indication you'll have prodcut of limits it'd be correct, indeed. It seems to be just a confusion, yet a little more explanation would yield this as a correct solution, imo.
                              $endgroup$
                              – DonAntonio
                              Dec 23 '18 at 19:47






                              1




                              1




                              $begingroup$
                              @William I wrote the argument for that above, in the $sin^2(t/2)$ part
                              $endgroup$
                              – Ankit Kumar
                              Dec 23 '18 at 19:51




                              $begingroup$
                              @William I wrote the argument for that above, in the $sin^2(t/2)$ part
                              $endgroup$
                              – Ankit Kumar
                              Dec 23 '18 at 19:51




                              1




                              1




                              $begingroup$
                              Oh I see, you have solved it part by part, so yea, you end up with -2/3 in the end if you combine it all.
                              $endgroup$
                              – William
                              Dec 23 '18 at 19:59




                              $begingroup$
                              Oh I see, you have solved it part by part, so yea, you end up with -2/3 in the end if you combine it all.
                              $endgroup$
                              – William
                              Dec 23 '18 at 19:59


















                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050628%2fhow-do-i-solve-lim-limits-x-to-frac%25cf%25803-frac2-sin-x-sqrt3-cos%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Plaza Victoria

                              Puebla de Zaragoza

                              Musa