Why can the first derivative of the sigmoid function can be simplified as shown below
$begingroup$
Can you explain how the formula$$dfrac{mathrm{e}^{-x}}{left(mathrm{e}^{-x}+1right)^2}$$
which is the first derivative of the sigmoid function can be simplified into
$$dfrac{mathrm{e}^{x}}{left(mathrm{e}^{x}+1right)^2}$$
exponential-function
$endgroup$
add a comment |
$begingroup$
Can you explain how the formula$$dfrac{mathrm{e}^{-x}}{left(mathrm{e}^{-x}+1right)^2}$$
which is the first derivative of the sigmoid function can be simplified into
$$dfrac{mathrm{e}^{x}}{left(mathrm{e}^{x}+1right)^2}$$
exponential-function
$endgroup$
add a comment |
$begingroup$
Can you explain how the formula$$dfrac{mathrm{e}^{-x}}{left(mathrm{e}^{-x}+1right)^2}$$
which is the first derivative of the sigmoid function can be simplified into
$$dfrac{mathrm{e}^{x}}{left(mathrm{e}^{x}+1right)^2}$$
exponential-function
$endgroup$
Can you explain how the formula$$dfrac{mathrm{e}^{-x}}{left(mathrm{e}^{-x}+1right)^2}$$
which is the first derivative of the sigmoid function can be simplified into
$$dfrac{mathrm{e}^{x}}{left(mathrm{e}^{x}+1right)^2}$$
exponential-function
exponential-function
asked Dec 23 '18 at 20:18
Jean-Pierre SchnyderJean-Pierre Schnyder
1012
1012
add a comment |
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
Expand it out, and then multiply by $frac{e^{2x}}{e^{2x}}$:
$$
frac{e^{-x}}{(e^{-x}+1)^2}=frac{e^{2x}}{e^{2x}}cdotfrac{e^{-x}}{e^{-2x}+2e^{-x}+1}=frac{e^{x}}{1+2e^{x}+e^{2x}}=frac{e^{x}}{(e^{x}+1)^2}
$$
$endgroup$
add a comment |
$begingroup$
Since you mention this is the first derivative of $$sigma(x):=frac{1}{1+e^{-x}}=1-frac{e^{-x}}{1+e^{-x}}=1-frac{1}{1+e^x}=1-sigma(-x)$$(where the penultimate $=$ multiplies numerator and denominator by $e^x$),$$sigma'(x)=frac{d}{dx}(1-sigma(-x))=sigma'(-x)$$is an even function, which gives the desired result.
$endgroup$
add a comment |
$begingroup$
Multiply expression by $frac{ e^{2x} }{e^{2x} }$
The numerator clearly becomes $e^{2x-x} = e^x $ and the denominator
$$ (e^{-x}+1)^2 cdot (e^{x})^2 = ( (e^{-x}+1) e^x )^2 = (1 + e^x)^2 $$
$endgroup$
add a comment |
$begingroup$
$$frac{e^{-x}}{(1+e^{-x})^2}=frac{e^{-x}}{(1+e^{-x})^2}frac{e^{2x}}{e^{2x}}=frac{e^{-x+2x}}{((1+e^{-x})e^x)^2}=frac{e^{x}}{(e^x+1)^2}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050670%2fwhy-can-the-first-derivative-of-the-sigmoid-function-can-be-simplified-as-shown%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Expand it out, and then multiply by $frac{e^{2x}}{e^{2x}}$:
$$
frac{e^{-x}}{(e^{-x}+1)^2}=frac{e^{2x}}{e^{2x}}cdotfrac{e^{-x}}{e^{-2x}+2e^{-x}+1}=frac{e^{x}}{1+2e^{x}+e^{2x}}=frac{e^{x}}{(e^{x}+1)^2}
$$
$endgroup$
add a comment |
$begingroup$
Expand it out, and then multiply by $frac{e^{2x}}{e^{2x}}$:
$$
frac{e^{-x}}{(e^{-x}+1)^2}=frac{e^{2x}}{e^{2x}}cdotfrac{e^{-x}}{e^{-2x}+2e^{-x}+1}=frac{e^{x}}{1+2e^{x}+e^{2x}}=frac{e^{x}}{(e^{x}+1)^2}
$$
$endgroup$
add a comment |
$begingroup$
Expand it out, and then multiply by $frac{e^{2x}}{e^{2x}}$:
$$
frac{e^{-x}}{(e^{-x}+1)^2}=frac{e^{2x}}{e^{2x}}cdotfrac{e^{-x}}{e^{-2x}+2e^{-x}+1}=frac{e^{x}}{1+2e^{x}+e^{2x}}=frac{e^{x}}{(e^{x}+1)^2}
$$
$endgroup$
Expand it out, and then multiply by $frac{e^{2x}}{e^{2x}}$:
$$
frac{e^{-x}}{(e^{-x}+1)^2}=frac{e^{2x}}{e^{2x}}cdotfrac{e^{-x}}{e^{-2x}+2e^{-x}+1}=frac{e^{x}}{1+2e^{x}+e^{2x}}=frac{e^{x}}{(e^{x}+1)^2}
$$
answered Dec 23 '18 at 20:21
RandomNumberGuyRandomNumberGuy
662
662
add a comment |
add a comment |
$begingroup$
Since you mention this is the first derivative of $$sigma(x):=frac{1}{1+e^{-x}}=1-frac{e^{-x}}{1+e^{-x}}=1-frac{1}{1+e^x}=1-sigma(-x)$$(where the penultimate $=$ multiplies numerator and denominator by $e^x$),$$sigma'(x)=frac{d}{dx}(1-sigma(-x))=sigma'(-x)$$is an even function, which gives the desired result.
$endgroup$
add a comment |
$begingroup$
Since you mention this is the first derivative of $$sigma(x):=frac{1}{1+e^{-x}}=1-frac{e^{-x}}{1+e^{-x}}=1-frac{1}{1+e^x}=1-sigma(-x)$$(where the penultimate $=$ multiplies numerator and denominator by $e^x$),$$sigma'(x)=frac{d}{dx}(1-sigma(-x))=sigma'(-x)$$is an even function, which gives the desired result.
$endgroup$
add a comment |
$begingroup$
Since you mention this is the first derivative of $$sigma(x):=frac{1}{1+e^{-x}}=1-frac{e^{-x}}{1+e^{-x}}=1-frac{1}{1+e^x}=1-sigma(-x)$$(where the penultimate $=$ multiplies numerator and denominator by $e^x$),$$sigma'(x)=frac{d}{dx}(1-sigma(-x))=sigma'(-x)$$is an even function, which gives the desired result.
$endgroup$
Since you mention this is the first derivative of $$sigma(x):=frac{1}{1+e^{-x}}=1-frac{e^{-x}}{1+e^{-x}}=1-frac{1}{1+e^x}=1-sigma(-x)$$(where the penultimate $=$ multiplies numerator and denominator by $e^x$),$$sigma'(x)=frac{d}{dx}(1-sigma(-x))=sigma'(-x)$$is an even function, which gives the desired result.
answered Dec 23 '18 at 20:25
J.G.J.G.
34k23252
34k23252
add a comment |
add a comment |
$begingroup$
Multiply expression by $frac{ e^{2x} }{e^{2x} }$
The numerator clearly becomes $e^{2x-x} = e^x $ and the denominator
$$ (e^{-x}+1)^2 cdot (e^{x})^2 = ( (e^{-x}+1) e^x )^2 = (1 + e^x)^2 $$
$endgroup$
add a comment |
$begingroup$
Multiply expression by $frac{ e^{2x} }{e^{2x} }$
The numerator clearly becomes $e^{2x-x} = e^x $ and the denominator
$$ (e^{-x}+1)^2 cdot (e^{x})^2 = ( (e^{-x}+1) e^x )^2 = (1 + e^x)^2 $$
$endgroup$
add a comment |
$begingroup$
Multiply expression by $frac{ e^{2x} }{e^{2x} }$
The numerator clearly becomes $e^{2x-x} = e^x $ and the denominator
$$ (e^{-x}+1)^2 cdot (e^{x})^2 = ( (e^{-x}+1) e^x )^2 = (1 + e^x)^2 $$
$endgroup$
Multiply expression by $frac{ e^{2x} }{e^{2x} }$
The numerator clearly becomes $e^{2x-x} = e^x $ and the denominator
$$ (e^{-x}+1)^2 cdot (e^{x})^2 = ( (e^{-x}+1) e^x )^2 = (1 + e^x)^2 $$
answered Dec 23 '18 at 20:21
JamesJames
2,636425
2,636425
add a comment |
add a comment |
$begingroup$
$$frac{e^{-x}}{(1+e^{-x})^2}=frac{e^{-x}}{(1+e^{-x})^2}frac{e^{2x}}{e^{2x}}=frac{e^{-x+2x}}{((1+e^{-x})e^x)^2}=frac{e^{x}}{(e^x+1)^2}$$
$endgroup$
add a comment |
$begingroup$
$$frac{e^{-x}}{(1+e^{-x})^2}=frac{e^{-x}}{(1+e^{-x})^2}frac{e^{2x}}{e^{2x}}=frac{e^{-x+2x}}{((1+e^{-x})e^x)^2}=frac{e^{x}}{(e^x+1)^2}$$
$endgroup$
add a comment |
$begingroup$
$$frac{e^{-x}}{(1+e^{-x})^2}=frac{e^{-x}}{(1+e^{-x})^2}frac{e^{2x}}{e^{2x}}=frac{e^{-x+2x}}{((1+e^{-x})e^x)^2}=frac{e^{x}}{(e^x+1)^2}$$
$endgroup$
$$frac{e^{-x}}{(1+e^{-x})^2}=frac{e^{-x}}{(1+e^{-x})^2}frac{e^{2x}}{e^{2x}}=frac{e^{-x+2x}}{((1+e^{-x})e^x)^2}=frac{e^{x}}{(e^x+1)^2}$$
answered Dec 23 '18 at 20:22
mrtaurhomrtaurho
6,19771641
6,19771641
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050670%2fwhy-can-the-first-derivative-of-the-sigmoid-function-can-be-simplified-as-shown%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown