Why can the first derivative of the sigmoid function can be simplified as shown below












0












$begingroup$


Can you explain how the formula$$dfrac{mathrm{e}^{-x}}{left(mathrm{e}^{-x}+1right)^2}$$



which is the first derivative of the sigmoid function can be simplified into



$$dfrac{mathrm{e}^{x}}{left(mathrm{e}^{x}+1right)^2}$$










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Can you explain how the formula$$dfrac{mathrm{e}^{-x}}{left(mathrm{e}^{-x}+1right)^2}$$



    which is the first derivative of the sigmoid function can be simplified into



    $$dfrac{mathrm{e}^{x}}{left(mathrm{e}^{x}+1right)^2}$$










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      Can you explain how the formula$$dfrac{mathrm{e}^{-x}}{left(mathrm{e}^{-x}+1right)^2}$$



      which is the first derivative of the sigmoid function can be simplified into



      $$dfrac{mathrm{e}^{x}}{left(mathrm{e}^{x}+1right)^2}$$










      share|cite|improve this question









      $endgroup$




      Can you explain how the formula$$dfrac{mathrm{e}^{-x}}{left(mathrm{e}^{-x}+1right)^2}$$



      which is the first derivative of the sigmoid function can be simplified into



      $$dfrac{mathrm{e}^{x}}{left(mathrm{e}^{x}+1right)^2}$$







      exponential-function






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 23 '18 at 20:18









      Jean-Pierre SchnyderJean-Pierre Schnyder

      1012




      1012






















          4 Answers
          4






          active

          oldest

          votes


















          2












          $begingroup$

          Expand it out, and then multiply by $frac{e^{2x}}{e^{2x}}$:
          $$
          frac{e^{-x}}{(e^{-x}+1)^2}=frac{e^{2x}}{e^{2x}}cdotfrac{e^{-x}}{e^{-2x}+2e^{-x}+1}=frac{e^{x}}{1+2e^{x}+e^{2x}}=frac{e^{x}}{(e^{x}+1)^2}
          $$






          share|cite|improve this answer









          $endgroup$





















            2












            $begingroup$

            Since you mention this is the first derivative of $$sigma(x):=frac{1}{1+e^{-x}}=1-frac{e^{-x}}{1+e^{-x}}=1-frac{1}{1+e^x}=1-sigma(-x)$$(where the penultimate $=$ multiplies numerator and denominator by $e^x$),$$sigma'(x)=frac{d}{dx}(1-sigma(-x))=sigma'(-x)$$is an even function, which gives the desired result.






            share|cite|improve this answer









            $endgroup$





















              0












              $begingroup$

              Multiply expression by $frac{ e^{2x} }{e^{2x} }$



              The numerator clearly becomes $e^{2x-x} = e^x $ and the denominator



              $$ (e^{-x}+1)^2 cdot (e^{x})^2 = ( (e^{-x}+1) e^x )^2 = (1 + e^x)^2 $$






              share|cite|improve this answer









              $endgroup$





















                0












                $begingroup$

                $$frac{e^{-x}}{(1+e^{-x})^2}=frac{e^{-x}}{(1+e^{-x})^2}frac{e^{2x}}{e^{2x}}=frac{e^{-x+2x}}{((1+e^{-x})e^x)^2}=frac{e^{x}}{(e^x+1)^2}$$






                share|cite|improve this answer









                $endgroup$














                  Your Answer








                  StackExchange.ready(function() {
                  var channelOptions = {
                  tags: "".split(" "),
                  id: "69"
                  };
                  initTagRenderer("".split(" "), "".split(" "), channelOptions);

                  StackExchange.using("externalEditor", function() {
                  // Have to fire editor after snippets, if snippets enabled
                  if (StackExchange.settings.snippets.snippetsEnabled) {
                  StackExchange.using("snippets", function() {
                  createEditor();
                  });
                  }
                  else {
                  createEditor();
                  }
                  });

                  function createEditor() {
                  StackExchange.prepareEditor({
                  heartbeatType: 'answer',
                  autoActivateHeartbeat: false,
                  convertImagesToLinks: true,
                  noModals: true,
                  showLowRepImageUploadWarning: true,
                  reputationToPostImages: 10,
                  bindNavPrevention: true,
                  postfix: "",
                  imageUploader: {
                  brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                  contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                  allowUrls: true
                  },
                  noCode: true, onDemand: true,
                  discardSelector: ".discard-answer"
                  ,immediatelyShowMarkdownHelp:true
                  });


                  }
                  });














                  draft saved

                  draft discarded


















                  StackExchange.ready(
                  function () {
                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050670%2fwhy-can-the-first-derivative-of-the-sigmoid-function-can-be-simplified-as-shown%23new-answer', 'question_page');
                  }
                  );

                  Post as a guest















                  Required, but never shown

























                  4 Answers
                  4






                  active

                  oldest

                  votes








                  4 Answers
                  4






                  active

                  oldest

                  votes









                  active

                  oldest

                  votes






                  active

                  oldest

                  votes









                  2












                  $begingroup$

                  Expand it out, and then multiply by $frac{e^{2x}}{e^{2x}}$:
                  $$
                  frac{e^{-x}}{(e^{-x}+1)^2}=frac{e^{2x}}{e^{2x}}cdotfrac{e^{-x}}{e^{-2x}+2e^{-x}+1}=frac{e^{x}}{1+2e^{x}+e^{2x}}=frac{e^{x}}{(e^{x}+1)^2}
                  $$






                  share|cite|improve this answer









                  $endgroup$


















                    2












                    $begingroup$

                    Expand it out, and then multiply by $frac{e^{2x}}{e^{2x}}$:
                    $$
                    frac{e^{-x}}{(e^{-x}+1)^2}=frac{e^{2x}}{e^{2x}}cdotfrac{e^{-x}}{e^{-2x}+2e^{-x}+1}=frac{e^{x}}{1+2e^{x}+e^{2x}}=frac{e^{x}}{(e^{x}+1)^2}
                    $$






                    share|cite|improve this answer









                    $endgroup$
















                      2












                      2








                      2





                      $begingroup$

                      Expand it out, and then multiply by $frac{e^{2x}}{e^{2x}}$:
                      $$
                      frac{e^{-x}}{(e^{-x}+1)^2}=frac{e^{2x}}{e^{2x}}cdotfrac{e^{-x}}{e^{-2x}+2e^{-x}+1}=frac{e^{x}}{1+2e^{x}+e^{2x}}=frac{e^{x}}{(e^{x}+1)^2}
                      $$






                      share|cite|improve this answer









                      $endgroup$



                      Expand it out, and then multiply by $frac{e^{2x}}{e^{2x}}$:
                      $$
                      frac{e^{-x}}{(e^{-x}+1)^2}=frac{e^{2x}}{e^{2x}}cdotfrac{e^{-x}}{e^{-2x}+2e^{-x}+1}=frac{e^{x}}{1+2e^{x}+e^{2x}}=frac{e^{x}}{(e^{x}+1)^2}
                      $$







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered Dec 23 '18 at 20:21









                      RandomNumberGuyRandomNumberGuy

                      662




                      662























                          2












                          $begingroup$

                          Since you mention this is the first derivative of $$sigma(x):=frac{1}{1+e^{-x}}=1-frac{e^{-x}}{1+e^{-x}}=1-frac{1}{1+e^x}=1-sigma(-x)$$(where the penultimate $=$ multiplies numerator and denominator by $e^x$),$$sigma'(x)=frac{d}{dx}(1-sigma(-x))=sigma'(-x)$$is an even function, which gives the desired result.






                          share|cite|improve this answer









                          $endgroup$


















                            2












                            $begingroup$

                            Since you mention this is the first derivative of $$sigma(x):=frac{1}{1+e^{-x}}=1-frac{e^{-x}}{1+e^{-x}}=1-frac{1}{1+e^x}=1-sigma(-x)$$(where the penultimate $=$ multiplies numerator and denominator by $e^x$),$$sigma'(x)=frac{d}{dx}(1-sigma(-x))=sigma'(-x)$$is an even function, which gives the desired result.






                            share|cite|improve this answer









                            $endgroup$
















                              2












                              2








                              2





                              $begingroup$

                              Since you mention this is the first derivative of $$sigma(x):=frac{1}{1+e^{-x}}=1-frac{e^{-x}}{1+e^{-x}}=1-frac{1}{1+e^x}=1-sigma(-x)$$(where the penultimate $=$ multiplies numerator and denominator by $e^x$),$$sigma'(x)=frac{d}{dx}(1-sigma(-x))=sigma'(-x)$$is an even function, which gives the desired result.






                              share|cite|improve this answer









                              $endgroup$



                              Since you mention this is the first derivative of $$sigma(x):=frac{1}{1+e^{-x}}=1-frac{e^{-x}}{1+e^{-x}}=1-frac{1}{1+e^x}=1-sigma(-x)$$(where the penultimate $=$ multiplies numerator and denominator by $e^x$),$$sigma'(x)=frac{d}{dx}(1-sigma(-x))=sigma'(-x)$$is an even function, which gives the desired result.







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered Dec 23 '18 at 20:25









                              J.G.J.G.

                              34k23252




                              34k23252























                                  0












                                  $begingroup$

                                  Multiply expression by $frac{ e^{2x} }{e^{2x} }$



                                  The numerator clearly becomes $e^{2x-x} = e^x $ and the denominator



                                  $$ (e^{-x}+1)^2 cdot (e^{x})^2 = ( (e^{-x}+1) e^x )^2 = (1 + e^x)^2 $$






                                  share|cite|improve this answer









                                  $endgroup$


















                                    0












                                    $begingroup$

                                    Multiply expression by $frac{ e^{2x} }{e^{2x} }$



                                    The numerator clearly becomes $e^{2x-x} = e^x $ and the denominator



                                    $$ (e^{-x}+1)^2 cdot (e^{x})^2 = ( (e^{-x}+1) e^x )^2 = (1 + e^x)^2 $$






                                    share|cite|improve this answer









                                    $endgroup$
















                                      0












                                      0








                                      0





                                      $begingroup$

                                      Multiply expression by $frac{ e^{2x} }{e^{2x} }$



                                      The numerator clearly becomes $e^{2x-x} = e^x $ and the denominator



                                      $$ (e^{-x}+1)^2 cdot (e^{x})^2 = ( (e^{-x}+1) e^x )^2 = (1 + e^x)^2 $$






                                      share|cite|improve this answer









                                      $endgroup$



                                      Multiply expression by $frac{ e^{2x} }{e^{2x} }$



                                      The numerator clearly becomes $e^{2x-x} = e^x $ and the denominator



                                      $$ (e^{-x}+1)^2 cdot (e^{x})^2 = ( (e^{-x}+1) e^x )^2 = (1 + e^x)^2 $$







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered Dec 23 '18 at 20:21









                                      JamesJames

                                      2,636425




                                      2,636425























                                          0












                                          $begingroup$

                                          $$frac{e^{-x}}{(1+e^{-x})^2}=frac{e^{-x}}{(1+e^{-x})^2}frac{e^{2x}}{e^{2x}}=frac{e^{-x+2x}}{((1+e^{-x})e^x)^2}=frac{e^{x}}{(e^x+1)^2}$$






                                          share|cite|improve this answer









                                          $endgroup$


















                                            0












                                            $begingroup$

                                            $$frac{e^{-x}}{(1+e^{-x})^2}=frac{e^{-x}}{(1+e^{-x})^2}frac{e^{2x}}{e^{2x}}=frac{e^{-x+2x}}{((1+e^{-x})e^x)^2}=frac{e^{x}}{(e^x+1)^2}$$






                                            share|cite|improve this answer









                                            $endgroup$
















                                              0












                                              0








                                              0





                                              $begingroup$

                                              $$frac{e^{-x}}{(1+e^{-x})^2}=frac{e^{-x}}{(1+e^{-x})^2}frac{e^{2x}}{e^{2x}}=frac{e^{-x+2x}}{((1+e^{-x})e^x)^2}=frac{e^{x}}{(e^x+1)^2}$$






                                              share|cite|improve this answer









                                              $endgroup$



                                              $$frac{e^{-x}}{(1+e^{-x})^2}=frac{e^{-x}}{(1+e^{-x})^2}frac{e^{2x}}{e^{2x}}=frac{e^{-x+2x}}{((1+e^{-x})e^x)^2}=frac{e^{x}}{(e^x+1)^2}$$







                                              share|cite|improve this answer












                                              share|cite|improve this answer



                                              share|cite|improve this answer










                                              answered Dec 23 '18 at 20:22









                                              mrtaurhomrtaurho

                                              6,19771641




                                              6,19771641






























                                                  draft saved

                                                  draft discarded




















































                                                  Thanks for contributing an answer to Mathematics Stack Exchange!


                                                  • Please be sure to answer the question. Provide details and share your research!

                                                  But avoid



                                                  • Asking for help, clarification, or responding to other answers.

                                                  • Making statements based on opinion; back them up with references or personal experience.


                                                  Use MathJax to format equations. MathJax reference.


                                                  To learn more, see our tips on writing great answers.




                                                  draft saved


                                                  draft discarded














                                                  StackExchange.ready(
                                                  function () {
                                                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050670%2fwhy-can-the-first-derivative-of-the-sigmoid-function-can-be-simplified-as-shown%23new-answer', 'question_page');
                                                  }
                                                  );

                                                  Post as a guest















                                                  Required, but never shown





















































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown

































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown







                                                  Popular posts from this blog

                                                  Plaza Victoria

                                                  Puebla de Zaragoza

                                                  Musa