Lemma relating to alpha equivalence of lambda terms
$begingroup$
From Type Theory and Formal Proof, An Introduction by Rob Nederpelt and Herman Geuvers:
Lemma 1.7.1 Let $M_{1} =_{alpha} N_{1}$ and $M_{2} =_{alpha} N_{2}$. Then also:
(1) $M_{1}N_{1} =_{alpha} M_{2}N_{2}$,
(2) $lambda x . M_{1} =_{alpha} lambda x . M_{2}$,
(3) $M_{1}[x := N_{1}] =_{alpha} M_{2}[x := N_{2}]$.
Why does this hold? There does not seem to be a stated connection between $M_{1}$ and $M_{2}$ or $N_{1}$ and $N_{2}$.
lambda-calculus
$endgroup$
add a comment |
$begingroup$
From Type Theory and Formal Proof, An Introduction by Rob Nederpelt and Herman Geuvers:
Lemma 1.7.1 Let $M_{1} =_{alpha} N_{1}$ and $M_{2} =_{alpha} N_{2}$. Then also:
(1) $M_{1}N_{1} =_{alpha} M_{2}N_{2}$,
(2) $lambda x . M_{1} =_{alpha} lambda x . M_{2}$,
(3) $M_{1}[x := N_{1}] =_{alpha} M_{2}[x := N_{2}]$.
Why does this hold? There does not seem to be a stated connection between $M_{1}$ and $M_{2}$ or $N_{1}$ and $N_{2}$.
lambda-calculus
$endgroup$
1
$begingroup$
It is just a typo. The hypothesis of lemma 1.7.1 should be $M_1 =_alpha M_2$ and $N_1 =_alpha N_2$.
$endgroup$
– Taroccoesbrocco
Dec 21 '18 at 3:56
$begingroup$
I see. Thank you!
$endgroup$
– user695931
Dec 21 '18 at 4:04
add a comment |
$begingroup$
From Type Theory and Formal Proof, An Introduction by Rob Nederpelt and Herman Geuvers:
Lemma 1.7.1 Let $M_{1} =_{alpha} N_{1}$ and $M_{2} =_{alpha} N_{2}$. Then also:
(1) $M_{1}N_{1} =_{alpha} M_{2}N_{2}$,
(2) $lambda x . M_{1} =_{alpha} lambda x . M_{2}$,
(3) $M_{1}[x := N_{1}] =_{alpha} M_{2}[x := N_{2}]$.
Why does this hold? There does not seem to be a stated connection between $M_{1}$ and $M_{2}$ or $N_{1}$ and $N_{2}$.
lambda-calculus
$endgroup$
From Type Theory and Formal Proof, An Introduction by Rob Nederpelt and Herman Geuvers:
Lemma 1.7.1 Let $M_{1} =_{alpha} N_{1}$ and $M_{2} =_{alpha} N_{2}$. Then also:
(1) $M_{1}N_{1} =_{alpha} M_{2}N_{2}$,
(2) $lambda x . M_{1} =_{alpha} lambda x . M_{2}$,
(3) $M_{1}[x := N_{1}] =_{alpha} M_{2}[x := N_{2}]$.
Why does this hold? There does not seem to be a stated connection between $M_{1}$ and $M_{2}$ or $N_{1}$ and $N_{2}$.
lambda-calculus
lambda-calculus
asked Dec 21 '18 at 2:31
user695931user695931
17511
17511
1
$begingroup$
It is just a typo. The hypothesis of lemma 1.7.1 should be $M_1 =_alpha M_2$ and $N_1 =_alpha N_2$.
$endgroup$
– Taroccoesbrocco
Dec 21 '18 at 3:56
$begingroup$
I see. Thank you!
$endgroup$
– user695931
Dec 21 '18 at 4:04
add a comment |
1
$begingroup$
It is just a typo. The hypothesis of lemma 1.7.1 should be $M_1 =_alpha M_2$ and $N_1 =_alpha N_2$.
$endgroup$
– Taroccoesbrocco
Dec 21 '18 at 3:56
$begingroup$
I see. Thank you!
$endgroup$
– user695931
Dec 21 '18 at 4:04
1
1
$begingroup$
It is just a typo. The hypothesis of lemma 1.7.1 should be $M_1 =_alpha M_2$ and $N_1 =_alpha N_2$.
$endgroup$
– Taroccoesbrocco
Dec 21 '18 at 3:56
$begingroup$
It is just a typo. The hypothesis of lemma 1.7.1 should be $M_1 =_alpha M_2$ and $N_1 =_alpha N_2$.
$endgroup$
– Taroccoesbrocco
Dec 21 '18 at 3:56
$begingroup$
I see. Thank you!
$endgroup$
– user695931
Dec 21 '18 at 4:04
$begingroup$
I see. Thank you!
$endgroup$
– user695931
Dec 21 '18 at 4:04
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048122%2flemma-relating-to-alpha-equivalence-of-lambda-terms%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048122%2flemma-relating-to-alpha-equivalence-of-lambda-terms%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
It is just a typo. The hypothesis of lemma 1.7.1 should be $M_1 =_alpha M_2$ and $N_1 =_alpha N_2$.
$endgroup$
– Taroccoesbrocco
Dec 21 '18 at 3:56
$begingroup$
I see. Thank you!
$endgroup$
– user695931
Dec 21 '18 at 4:04