Calculating operator norm $|Ax|$
up vote
1
down vote
favorite
a)
Consider $(mathbb{R}^n, |.|_infty)$ and $(L_b(mathbb{R}^n, mathbb{R}),|.|)$ which is the space of all linear and bounded functions from $mathbb{R}^n to mathbb{R}$ associated with the operator norm.
$(L_b(mathbb{R}^n, mathbb{R}),|.|)$ is isomorphic to $mathbb{R}^n$ if we interpret $A in (L_b(mathbb{R}^n, mathbb{R}),|.|)$ as a matrix $(a_1,dots a_n)$
I want to show that $|.|$ is equivalent to $|.|_1$ then.
The operator norm is defined as
$$|Ax|=supBig{frac{|Ax|_Y}{|x|_X}:x in Xsetminus{0}Big}=sup{|Ax|_Y:xin X, |x|_X=1}$$
Let $A=(a_1,dots,a_n)$ and $x=(x_1,dots,x_n)^T$. Then $Ax=sum_{i=1}^{n}a_ix_i$.
And $|sum_{i=1}^{n}a_ix_i|lesum_{i=1}^{n}|a_ix_i|lemax_{i=1,dots,n}|x_i|sum_{i=1}^{n}|a_i|=sum_{i=1}^{n}|a_i|=|A|_1$ because $max_{i=1,dots,n}|x_i|=1$. Therefore $|A|le|A|_1$.
For the other direction $"|A|ge|A|_1"$:
Choose $x$ so that $x_i=sgn(a_i), i=1,dots,n$. Then $|x|_infty=1$ and $|sum_{i=1}^{n}a_ix_i|=sum_{i=1}^{n}|a_ix_i|=sum_{i=1}^{n}|a_i|$.
Therefore $|A|ge|A|_1$.
Is that correct so far?
b)
To which norm is the operator norm on $L_b(mathbb{R}^n,mathbb{R})$ equivalent if we associate $mathbb{R}^n$ with $|.|_2$?
$|sum_{i=1}^{n}a_ix_i|lesum_{i=1}^{n}|a_ix_i|=sum_{i=1}^{n}sqrt{(a_ix_i)^2}$ but I don't know how to continue
calculus real-analysis linear-algebra analysis norm
add a comment |
up vote
1
down vote
favorite
a)
Consider $(mathbb{R}^n, |.|_infty)$ and $(L_b(mathbb{R}^n, mathbb{R}),|.|)$ which is the space of all linear and bounded functions from $mathbb{R}^n to mathbb{R}$ associated with the operator norm.
$(L_b(mathbb{R}^n, mathbb{R}),|.|)$ is isomorphic to $mathbb{R}^n$ if we interpret $A in (L_b(mathbb{R}^n, mathbb{R}),|.|)$ as a matrix $(a_1,dots a_n)$
I want to show that $|.|$ is equivalent to $|.|_1$ then.
The operator norm is defined as
$$|Ax|=supBig{frac{|Ax|_Y}{|x|_X}:x in Xsetminus{0}Big}=sup{|Ax|_Y:xin X, |x|_X=1}$$
Let $A=(a_1,dots,a_n)$ and $x=(x_1,dots,x_n)^T$. Then $Ax=sum_{i=1}^{n}a_ix_i$.
And $|sum_{i=1}^{n}a_ix_i|lesum_{i=1}^{n}|a_ix_i|lemax_{i=1,dots,n}|x_i|sum_{i=1}^{n}|a_i|=sum_{i=1}^{n}|a_i|=|A|_1$ because $max_{i=1,dots,n}|x_i|=1$. Therefore $|A|le|A|_1$.
For the other direction $"|A|ge|A|_1"$:
Choose $x$ so that $x_i=sgn(a_i), i=1,dots,n$. Then $|x|_infty=1$ and $|sum_{i=1}^{n}a_ix_i|=sum_{i=1}^{n}|a_ix_i|=sum_{i=1}^{n}|a_i|$.
Therefore $|A|ge|A|_1$.
Is that correct so far?
b)
To which norm is the operator norm on $L_b(mathbb{R}^n,mathbb{R})$ equivalent if we associate $mathbb{R}^n$ with $|.|_2$?
$|sum_{i=1}^{n}a_ix_i|lesum_{i=1}^{n}|a_ix_i|=sum_{i=1}^{n}sqrt{(a_ix_i)^2}$ but I don't know how to continue
calculus real-analysis linear-algebra analysis norm
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
a)
Consider $(mathbb{R}^n, |.|_infty)$ and $(L_b(mathbb{R}^n, mathbb{R}),|.|)$ which is the space of all linear and bounded functions from $mathbb{R}^n to mathbb{R}$ associated with the operator norm.
$(L_b(mathbb{R}^n, mathbb{R}),|.|)$ is isomorphic to $mathbb{R}^n$ if we interpret $A in (L_b(mathbb{R}^n, mathbb{R}),|.|)$ as a matrix $(a_1,dots a_n)$
I want to show that $|.|$ is equivalent to $|.|_1$ then.
The operator norm is defined as
$$|Ax|=supBig{frac{|Ax|_Y}{|x|_X}:x in Xsetminus{0}Big}=sup{|Ax|_Y:xin X, |x|_X=1}$$
Let $A=(a_1,dots,a_n)$ and $x=(x_1,dots,x_n)^T$. Then $Ax=sum_{i=1}^{n}a_ix_i$.
And $|sum_{i=1}^{n}a_ix_i|lesum_{i=1}^{n}|a_ix_i|lemax_{i=1,dots,n}|x_i|sum_{i=1}^{n}|a_i|=sum_{i=1}^{n}|a_i|=|A|_1$ because $max_{i=1,dots,n}|x_i|=1$. Therefore $|A|le|A|_1$.
For the other direction $"|A|ge|A|_1"$:
Choose $x$ so that $x_i=sgn(a_i), i=1,dots,n$. Then $|x|_infty=1$ and $|sum_{i=1}^{n}a_ix_i|=sum_{i=1}^{n}|a_ix_i|=sum_{i=1}^{n}|a_i|$.
Therefore $|A|ge|A|_1$.
Is that correct so far?
b)
To which norm is the operator norm on $L_b(mathbb{R}^n,mathbb{R})$ equivalent if we associate $mathbb{R}^n$ with $|.|_2$?
$|sum_{i=1}^{n}a_ix_i|lesum_{i=1}^{n}|a_ix_i|=sum_{i=1}^{n}sqrt{(a_ix_i)^2}$ but I don't know how to continue
calculus real-analysis linear-algebra analysis norm
a)
Consider $(mathbb{R}^n, |.|_infty)$ and $(L_b(mathbb{R}^n, mathbb{R}),|.|)$ which is the space of all linear and bounded functions from $mathbb{R}^n to mathbb{R}$ associated with the operator norm.
$(L_b(mathbb{R}^n, mathbb{R}),|.|)$ is isomorphic to $mathbb{R}^n$ if we interpret $A in (L_b(mathbb{R}^n, mathbb{R}),|.|)$ as a matrix $(a_1,dots a_n)$
I want to show that $|.|$ is equivalent to $|.|_1$ then.
The operator norm is defined as
$$|Ax|=supBig{frac{|Ax|_Y}{|x|_X}:x in Xsetminus{0}Big}=sup{|Ax|_Y:xin X, |x|_X=1}$$
Let $A=(a_1,dots,a_n)$ and $x=(x_1,dots,x_n)^T$. Then $Ax=sum_{i=1}^{n}a_ix_i$.
And $|sum_{i=1}^{n}a_ix_i|lesum_{i=1}^{n}|a_ix_i|lemax_{i=1,dots,n}|x_i|sum_{i=1}^{n}|a_i|=sum_{i=1}^{n}|a_i|=|A|_1$ because $max_{i=1,dots,n}|x_i|=1$. Therefore $|A|le|A|_1$.
For the other direction $"|A|ge|A|_1"$:
Choose $x$ so that $x_i=sgn(a_i), i=1,dots,n$. Then $|x|_infty=1$ and $|sum_{i=1}^{n}a_ix_i|=sum_{i=1}^{n}|a_ix_i|=sum_{i=1}^{n}|a_i|$.
Therefore $|A|ge|A|_1$.
Is that correct so far?
b)
To which norm is the operator norm on $L_b(mathbb{R}^n,mathbb{R})$ equivalent if we associate $mathbb{R}^n$ with $|.|_2$?
$|sum_{i=1}^{n}a_ix_i|lesum_{i=1}^{n}|a_ix_i|=sum_{i=1}^{n}sqrt{(a_ix_i)^2}$ but I don't know how to continue
calculus real-analysis linear-algebra analysis norm
calculus real-analysis linear-algebra analysis norm
edited Nov 15 at 15:14
asked Nov 15 at 10:19
conrad
657
657
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
1
down vote
All norms are equivalent in finite dimensional spaces.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
All norms are equivalent in finite dimensional spaces.
add a comment |
up vote
1
down vote
All norms are equivalent in finite dimensional spaces.
add a comment |
up vote
1
down vote
up vote
1
down vote
All norms are equivalent in finite dimensional spaces.
All norms are equivalent in finite dimensional spaces.
answered Nov 15 at 10:21
Kavi Rama Murthy
42.1k31751
42.1k31751
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999496%2fcalculating-operator-norm-ax%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown