Calculating operator norm $|Ax|$











up vote
1
down vote

favorite












a)
Consider $(mathbb{R}^n, |.|_infty)$ and $(L_b(mathbb{R}^n, mathbb{R}),|.|)$ which is the space of all linear and bounded functions from $mathbb{R}^n to mathbb{R}$ associated with the operator norm.



$(L_b(mathbb{R}^n, mathbb{R}),|.|)$ is isomorphic to $mathbb{R}^n$ if we interpret $A in (L_b(mathbb{R}^n, mathbb{R}),|.|)$ as a matrix $(a_1,dots a_n)$



I want to show that $|.|$ is equivalent to $|.|_1$ then.



The operator norm is defined as



$$|Ax|=supBig{frac{|Ax|_Y}{|x|_X}:x in Xsetminus{0}Big}=sup{|Ax|_Y:xin X, |x|_X=1}$$



Let $A=(a_1,dots,a_n)$ and $x=(x_1,dots,x_n)^T$. Then $Ax=sum_{i=1}^{n}a_ix_i$.



And $|sum_{i=1}^{n}a_ix_i|lesum_{i=1}^{n}|a_ix_i|lemax_{i=1,dots,n}|x_i|sum_{i=1}^{n}|a_i|=sum_{i=1}^{n}|a_i|=|A|_1$ because $max_{i=1,dots,n}|x_i|=1$. Therefore $|A|le|A|_1$.



For the other direction $"|A|ge|A|_1"$:



Choose $x$ so that $x_i=sgn(a_i), i=1,dots,n$. Then $|x|_infty=1$ and $|sum_{i=1}^{n}a_ix_i|=sum_{i=1}^{n}|a_ix_i|=sum_{i=1}^{n}|a_i|$.
Therefore $|A|ge|A|_1$.



Is that correct so far?



b)



To which norm is the operator norm on $L_b(mathbb{R}^n,mathbb{R})$ equivalent if we associate $mathbb{R}^n$ with $|.|_2$?



$|sum_{i=1}^{n}a_ix_i|lesum_{i=1}^{n}|a_ix_i|=sum_{i=1}^{n}sqrt{(a_ix_i)^2}$ but I don't know how to continue










share|cite|improve this question




























    up vote
    1
    down vote

    favorite












    a)
    Consider $(mathbb{R}^n, |.|_infty)$ and $(L_b(mathbb{R}^n, mathbb{R}),|.|)$ which is the space of all linear and bounded functions from $mathbb{R}^n to mathbb{R}$ associated with the operator norm.



    $(L_b(mathbb{R}^n, mathbb{R}),|.|)$ is isomorphic to $mathbb{R}^n$ if we interpret $A in (L_b(mathbb{R}^n, mathbb{R}),|.|)$ as a matrix $(a_1,dots a_n)$



    I want to show that $|.|$ is equivalent to $|.|_1$ then.



    The operator norm is defined as



    $$|Ax|=supBig{frac{|Ax|_Y}{|x|_X}:x in Xsetminus{0}Big}=sup{|Ax|_Y:xin X, |x|_X=1}$$



    Let $A=(a_1,dots,a_n)$ and $x=(x_1,dots,x_n)^T$. Then $Ax=sum_{i=1}^{n}a_ix_i$.



    And $|sum_{i=1}^{n}a_ix_i|lesum_{i=1}^{n}|a_ix_i|lemax_{i=1,dots,n}|x_i|sum_{i=1}^{n}|a_i|=sum_{i=1}^{n}|a_i|=|A|_1$ because $max_{i=1,dots,n}|x_i|=1$. Therefore $|A|le|A|_1$.



    For the other direction $"|A|ge|A|_1"$:



    Choose $x$ so that $x_i=sgn(a_i), i=1,dots,n$. Then $|x|_infty=1$ and $|sum_{i=1}^{n}a_ix_i|=sum_{i=1}^{n}|a_ix_i|=sum_{i=1}^{n}|a_i|$.
    Therefore $|A|ge|A|_1$.



    Is that correct so far?



    b)



    To which norm is the operator norm on $L_b(mathbb{R}^n,mathbb{R})$ equivalent if we associate $mathbb{R}^n$ with $|.|_2$?



    $|sum_{i=1}^{n}a_ix_i|lesum_{i=1}^{n}|a_ix_i|=sum_{i=1}^{n}sqrt{(a_ix_i)^2}$ but I don't know how to continue










    share|cite|improve this question


























      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite











      a)
      Consider $(mathbb{R}^n, |.|_infty)$ and $(L_b(mathbb{R}^n, mathbb{R}),|.|)$ which is the space of all linear and bounded functions from $mathbb{R}^n to mathbb{R}$ associated with the operator norm.



      $(L_b(mathbb{R}^n, mathbb{R}),|.|)$ is isomorphic to $mathbb{R}^n$ if we interpret $A in (L_b(mathbb{R}^n, mathbb{R}),|.|)$ as a matrix $(a_1,dots a_n)$



      I want to show that $|.|$ is equivalent to $|.|_1$ then.



      The operator norm is defined as



      $$|Ax|=supBig{frac{|Ax|_Y}{|x|_X}:x in Xsetminus{0}Big}=sup{|Ax|_Y:xin X, |x|_X=1}$$



      Let $A=(a_1,dots,a_n)$ and $x=(x_1,dots,x_n)^T$. Then $Ax=sum_{i=1}^{n}a_ix_i$.



      And $|sum_{i=1}^{n}a_ix_i|lesum_{i=1}^{n}|a_ix_i|lemax_{i=1,dots,n}|x_i|sum_{i=1}^{n}|a_i|=sum_{i=1}^{n}|a_i|=|A|_1$ because $max_{i=1,dots,n}|x_i|=1$. Therefore $|A|le|A|_1$.



      For the other direction $"|A|ge|A|_1"$:



      Choose $x$ so that $x_i=sgn(a_i), i=1,dots,n$. Then $|x|_infty=1$ and $|sum_{i=1}^{n}a_ix_i|=sum_{i=1}^{n}|a_ix_i|=sum_{i=1}^{n}|a_i|$.
      Therefore $|A|ge|A|_1$.



      Is that correct so far?



      b)



      To which norm is the operator norm on $L_b(mathbb{R}^n,mathbb{R})$ equivalent if we associate $mathbb{R}^n$ with $|.|_2$?



      $|sum_{i=1}^{n}a_ix_i|lesum_{i=1}^{n}|a_ix_i|=sum_{i=1}^{n}sqrt{(a_ix_i)^2}$ but I don't know how to continue










      share|cite|improve this question















      a)
      Consider $(mathbb{R}^n, |.|_infty)$ and $(L_b(mathbb{R}^n, mathbb{R}),|.|)$ which is the space of all linear and bounded functions from $mathbb{R}^n to mathbb{R}$ associated with the operator norm.



      $(L_b(mathbb{R}^n, mathbb{R}),|.|)$ is isomorphic to $mathbb{R}^n$ if we interpret $A in (L_b(mathbb{R}^n, mathbb{R}),|.|)$ as a matrix $(a_1,dots a_n)$



      I want to show that $|.|$ is equivalent to $|.|_1$ then.



      The operator norm is defined as



      $$|Ax|=supBig{frac{|Ax|_Y}{|x|_X}:x in Xsetminus{0}Big}=sup{|Ax|_Y:xin X, |x|_X=1}$$



      Let $A=(a_1,dots,a_n)$ and $x=(x_1,dots,x_n)^T$. Then $Ax=sum_{i=1}^{n}a_ix_i$.



      And $|sum_{i=1}^{n}a_ix_i|lesum_{i=1}^{n}|a_ix_i|lemax_{i=1,dots,n}|x_i|sum_{i=1}^{n}|a_i|=sum_{i=1}^{n}|a_i|=|A|_1$ because $max_{i=1,dots,n}|x_i|=1$. Therefore $|A|le|A|_1$.



      For the other direction $"|A|ge|A|_1"$:



      Choose $x$ so that $x_i=sgn(a_i), i=1,dots,n$. Then $|x|_infty=1$ and $|sum_{i=1}^{n}a_ix_i|=sum_{i=1}^{n}|a_ix_i|=sum_{i=1}^{n}|a_i|$.
      Therefore $|A|ge|A|_1$.



      Is that correct so far?



      b)



      To which norm is the operator norm on $L_b(mathbb{R}^n,mathbb{R})$ equivalent if we associate $mathbb{R}^n$ with $|.|_2$?



      $|sum_{i=1}^{n}a_ix_i|lesum_{i=1}^{n}|a_ix_i|=sum_{i=1}^{n}sqrt{(a_ix_i)^2}$ but I don't know how to continue







      calculus real-analysis linear-algebra analysis norm






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 15 at 15:14

























      asked Nov 15 at 10:19









      conrad

      657




      657






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          1
          down vote













          All norms are equivalent in finite dimensional spaces.






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














             

            draft saved


            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999496%2fcalculating-operator-norm-ax%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            1
            down vote













            All norms are equivalent in finite dimensional spaces.






            share|cite|improve this answer

























              up vote
              1
              down vote













              All norms are equivalent in finite dimensional spaces.






              share|cite|improve this answer























                up vote
                1
                down vote










                up vote
                1
                down vote









                All norms are equivalent in finite dimensional spaces.






                share|cite|improve this answer












                All norms are equivalent in finite dimensional spaces.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Nov 15 at 10:21









                Kavi Rama Murthy

                42.1k31751




                42.1k31751






























                     

                    draft saved


                    draft discarded



















































                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999496%2fcalculating-operator-norm-ax%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Plaza Victoria

                    In PowerPoint, is there a keyboard shortcut for bulleted / numbered list?

                    How to put 3 figures in Latex with 2 figures side by side and 1 below these side by side images but in...