Convergence test for a series
up vote
0
down vote
favorite
Let S = $sum_{n=1}^{infty}{frac{n^k}{((n^3+n)^{frac{1}{3}}-n)}},forallspacespacespacespace kinmathbb{Z}.$ Say if this series converge of diverge.
My attempt:
$$S=sum_{n=1}^{infty}frac{(n^3+n)^{frac{2}{3}}+n(n^3+n)^{frac{1}{3}}+n^2}{n^{1-k}}$$
Ratio test in undecisive, and Raabe-Duhmal test gave me again $1$ so what test should I use? It is clear that the general term of these series $to0$ iff $1-k<2implies k>1$ and divergent for $k<1$.
sequences-and-series real-numbers numerical-calculus
add a comment |
up vote
0
down vote
favorite
Let S = $sum_{n=1}^{infty}{frac{n^k}{((n^3+n)^{frac{1}{3}}-n)}},forallspacespacespacespace kinmathbb{Z}.$ Say if this series converge of diverge.
My attempt:
$$S=sum_{n=1}^{infty}frac{(n^3+n)^{frac{2}{3}}+n(n^3+n)^{frac{1}{3}}+n^2}{n^{1-k}}$$
Ratio test in undecisive, and Raabe-Duhmal test gave me again $1$ so what test should I use? It is clear that the general term of these series $to0$ iff $1-k<2implies k>1$ and divergent for $k<1$.
sequences-and-series real-numbers numerical-calculus
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Let S = $sum_{n=1}^{infty}{frac{n^k}{((n^3+n)^{frac{1}{3}}-n)}},forallspacespacespacespace kinmathbb{Z}.$ Say if this series converge of diverge.
My attempt:
$$S=sum_{n=1}^{infty}frac{(n^3+n)^{frac{2}{3}}+n(n^3+n)^{frac{1}{3}}+n^2}{n^{1-k}}$$
Ratio test in undecisive, and Raabe-Duhmal test gave me again $1$ so what test should I use? It is clear that the general term of these series $to0$ iff $1-k<2implies k>1$ and divergent for $k<1$.
sequences-and-series real-numbers numerical-calculus
Let S = $sum_{n=1}^{infty}{frac{n^k}{((n^3+n)^{frac{1}{3}}-n)}},forallspacespacespacespace kinmathbb{Z}.$ Say if this series converge of diverge.
My attempt:
$$S=sum_{n=1}^{infty}frac{(n^3+n)^{frac{2}{3}}+n(n^3+n)^{frac{1}{3}}+n^2}{n^{1-k}}$$
Ratio test in undecisive, and Raabe-Duhmal test gave me again $1$ so what test should I use? It is clear that the general term of these series $to0$ iff $1-k<2implies k>1$ and divergent for $k<1$.
sequences-and-series real-numbers numerical-calculus
sequences-and-series real-numbers numerical-calculus
edited Nov 14 at 11:23
Crazy for maths
4968
4968
asked Nov 14 at 11:09
C. Cristi
1,449218
1,449218
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
up vote
1
down vote
accepted
Note thatbegin{align}frac1{sqrt[3]{n^3+n}-n}&=frac1{sqrt[3]{n^3+n}-sqrt[3]{n^3}}\&=frac{sqrt[3]{(n^3+n)^2}+sqrt[3]{(n^3+n)n^3}+sqrt[3]{(n^3)^2}}{n^3+n-n^3}\&=frac{sqrt[3]{(n^3+n)^2}+sqrt[3]{(n^3+n)n^3}+sqrt[3]{(n^3)^2}}n\&inleft[3n,frac{3sqrt[3]{(n^3+n)^2}}nright].end{align}This is enough to prove that the series converges if and only if $k<-2$.
add a comment |
up vote
0
down vote
May be, you could start considering that, for large values of $n$,
$$(n^3+n)^{frac{2}{3}}+n(n^3+n)^{frac{1}{3}}+n^2=3 n^2+1-frac{2}{9 n^2}+Oleft(frac{1}{n^4}right)$$
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
Note thatbegin{align}frac1{sqrt[3]{n^3+n}-n}&=frac1{sqrt[3]{n^3+n}-sqrt[3]{n^3}}\&=frac{sqrt[3]{(n^3+n)^2}+sqrt[3]{(n^3+n)n^3}+sqrt[3]{(n^3)^2}}{n^3+n-n^3}\&=frac{sqrt[3]{(n^3+n)^2}+sqrt[3]{(n^3+n)n^3}+sqrt[3]{(n^3)^2}}n\&inleft[3n,frac{3sqrt[3]{(n^3+n)^2}}nright].end{align}This is enough to prove that the series converges if and only if $k<-2$.
add a comment |
up vote
1
down vote
accepted
Note thatbegin{align}frac1{sqrt[3]{n^3+n}-n}&=frac1{sqrt[3]{n^3+n}-sqrt[3]{n^3}}\&=frac{sqrt[3]{(n^3+n)^2}+sqrt[3]{(n^3+n)n^3}+sqrt[3]{(n^3)^2}}{n^3+n-n^3}\&=frac{sqrt[3]{(n^3+n)^2}+sqrt[3]{(n^3+n)n^3}+sqrt[3]{(n^3)^2}}n\&inleft[3n,frac{3sqrt[3]{(n^3+n)^2}}nright].end{align}This is enough to prove that the series converges if and only if $k<-2$.
add a comment |
up vote
1
down vote
accepted
up vote
1
down vote
accepted
Note thatbegin{align}frac1{sqrt[3]{n^3+n}-n}&=frac1{sqrt[3]{n^3+n}-sqrt[3]{n^3}}\&=frac{sqrt[3]{(n^3+n)^2}+sqrt[3]{(n^3+n)n^3}+sqrt[3]{(n^3)^2}}{n^3+n-n^3}\&=frac{sqrt[3]{(n^3+n)^2}+sqrt[3]{(n^3+n)n^3}+sqrt[3]{(n^3)^2}}n\&inleft[3n,frac{3sqrt[3]{(n^3+n)^2}}nright].end{align}This is enough to prove that the series converges if and only if $k<-2$.
Note thatbegin{align}frac1{sqrt[3]{n^3+n}-n}&=frac1{sqrt[3]{n^3+n}-sqrt[3]{n^3}}\&=frac{sqrt[3]{(n^3+n)^2}+sqrt[3]{(n^3+n)n^3}+sqrt[3]{(n^3)^2}}{n^3+n-n^3}\&=frac{sqrt[3]{(n^3+n)^2}+sqrt[3]{(n^3+n)n^3}+sqrt[3]{(n^3)^2}}n\&inleft[3n,frac{3sqrt[3]{(n^3+n)^2}}nright].end{align}This is enough to prove that the series converges if and only if $k<-2$.
edited Nov 14 at 11:30
answered Nov 14 at 11:19
José Carlos Santos
139k18111203
139k18111203
add a comment |
add a comment |
up vote
0
down vote
May be, you could start considering that, for large values of $n$,
$$(n^3+n)^{frac{2}{3}}+n(n^3+n)^{frac{1}{3}}+n^2=3 n^2+1-frac{2}{9 n^2}+Oleft(frac{1}{n^4}right)$$
add a comment |
up vote
0
down vote
May be, you could start considering that, for large values of $n$,
$$(n^3+n)^{frac{2}{3}}+n(n^3+n)^{frac{1}{3}}+n^2=3 n^2+1-frac{2}{9 n^2}+Oleft(frac{1}{n^4}right)$$
add a comment |
up vote
0
down vote
up vote
0
down vote
May be, you could start considering that, for large values of $n$,
$$(n^3+n)^{frac{2}{3}}+n(n^3+n)^{frac{1}{3}}+n^2=3 n^2+1-frac{2}{9 n^2}+Oleft(frac{1}{n^4}right)$$
May be, you could start considering that, for large values of $n$,
$$(n^3+n)^{frac{2}{3}}+n(n^3+n)^{frac{1}{3}}+n^2=3 n^2+1-frac{2}{9 n^2}+Oleft(frac{1}{n^4}right)$$
edited Nov 14 at 11:45
answered Nov 14 at 11:35
Claude Leibovici
116k1156131
116k1156131
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2998137%2fconvergence-test-for-a-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown