Prove the reduction formula $I_n = frac{1}{n} cos^{n-1}(x) sin(x) + frac{n-1}{n} I_{n-2} for n geq 2$
up vote
4
down vote
favorite
Let $
$$ I_n = intcos^n{x} dx, ;text{ for } n=0,1,2,3, ldots$
Prove the reduction formula
$$I_n = frac{1}{n} cos^{n-1}(x) sin(x) + frac{n-1}{n} I_{n-2}, ; n geq 2.$$
How do I approach this question? Is there anything I should look out for?
integration
add a comment |
up vote
4
down vote
favorite
Let $
$$ I_n = intcos^n{x} dx, ;text{ for } n=0,1,2,3, ldots$
Prove the reduction formula
$$I_n = frac{1}{n} cos^{n-1}(x) sin(x) + frac{n-1}{n} I_{n-2}, ; n geq 2.$$
How do I approach this question? Is there anything I should look out for?
integration
1
Sounds like an ideal usecase for complete induction. $n in lbrace0,1rbrace$ should be clear. For higher $n$ you may use the products rule to refer to $n-2$.
– denklo
Nov 14 at 11:27
add a comment |
up vote
4
down vote
favorite
up vote
4
down vote
favorite
Let $
$$ I_n = intcos^n{x} dx, ;text{ for } n=0,1,2,3, ldots$
Prove the reduction formula
$$I_n = frac{1}{n} cos^{n-1}(x) sin(x) + frac{n-1}{n} I_{n-2}, ; n geq 2.$$
How do I approach this question? Is there anything I should look out for?
integration
Let $
$$ I_n = intcos^n{x} dx, ;text{ for } n=0,1,2,3, ldots$
Prove the reduction formula
$$I_n = frac{1}{n} cos^{n-1}(x) sin(x) + frac{n-1}{n} I_{n-2}, ; n geq 2.$$
How do I approach this question? Is there anything I should look out for?
integration
integration
edited Nov 14 at 18:03
Bernard
115k637108
115k637108
asked Nov 14 at 11:21
Steve
1216
1216
1
Sounds like an ideal usecase for complete induction. $n in lbrace0,1rbrace$ should be clear. For higher $n$ you may use the products rule to refer to $n-2$.
– denklo
Nov 14 at 11:27
add a comment |
1
Sounds like an ideal usecase for complete induction. $n in lbrace0,1rbrace$ should be clear. For higher $n$ you may use the products rule to refer to $n-2$.
– denklo
Nov 14 at 11:27
1
1
Sounds like an ideal usecase for complete induction. $n in lbrace0,1rbrace$ should be clear. For higher $n$ you may use the products rule to refer to $n-2$.
– denklo
Nov 14 at 11:27
Sounds like an ideal usecase for complete induction. $n in lbrace0,1rbrace$ should be clear. For higher $n$ you may use the products rule to refer to $n-2$.
– denklo
Nov 14 at 11:27
add a comment |
5 Answers
5
active
oldest
votes
up vote
6
down vote
You can conventionally use Integration by parts.
Here it another method:
$$dfrac{d(cos^mxsin x)}{dx}=cos^{m+1}x-mcos^{m-1}x(1-cos^2x)$$
Integrate both sides wrt $x$ to find $$cos^mxsin x+K=(m+1)I_{m+1}-mI_{m-1}$$
add a comment |
up vote
3
down vote
We use integration by parts;
$$I_{n}=int cos^{n}(x)dx=int cos^{n-1}(x)cos(x)dx=intfrac{d}{dx}left(sin(x)cos^{n-1}(x)right)+(n-1)sin^{2}(x)cos^{n-2}(x)dx$$
Then recalling $sin^{2}(x)+cos^{2}(x)=1$, we have;
$$I_{n}=sin(x)cos^{n-1}(x)+(n-1)I_{n-2}-(n-1)I_{n}$$
Then solving for $I_{n}$ gives the result.
add a comment |
up vote
2
down vote
$$I_n=intcos^n(x)dx=intcos^{n-2}(x).cos^2(x)dx=intcos^{n-2}(x)left[1-sin^2(x)right]dx$$$$
=I_{n-2}-intcos^{n-2}(x)sin^2(x)dx$$$$
=I_{n-2}-frac{cos^{n-1}(x)sin(x)}{n-1}+intfrac{cos^n(x)}{n-1}dx$$
so:
$$I_n=I_{n-2}-frac{cos^{n-1}(x)sin(x)}{n-1}+frac{I_n}{n-1}$$
$$I_n=frac{n-1}{n-2}I_{n-2}-frac{cos^{n-1}(x)sin(x)}{n-2}$$
add a comment |
up vote
1
down vote
A bit more detailed, but essentially the same answer as some already given
$$I_n=intcos^nt dt$$
$$I_n=intcos^{n-1}t cos t dt$$
Integration by parts:
$$dv=cos t dtRightarrow v=sin t\u=cos^{n-1}tRightarrow du=-(n-1)cos^{n-2}t sin t dt$$
$$I_n=uv-int vdu$$
$$I_n=cos^{n-1}t sin t-intsin t (-(n-1)cos^{n-2}t sin t)dt$$
$$I_n=cos^{n-1}t sin t+(n-1)intcos^{n-2}t sin^2t dt$$
$$I_n=cos^{n-1}t sin t+(n-1)intcos^{n-2}t (1-cos^2t)dt$$
$$I_n=cos^{n-1}t sin t+(n-1)intcos^{n-2}t dt-(n-1)intcos^nt dt$$
$$I_n=cos^{n-1}t sin t+(n-1)I_{n-2}-(n-1)I_n$$
$$I_n+(n-1)I_n=cos^{n-1}t sin t+(n-1)I_{n-2}$$
$$nI_n=cos^{n-1}t sin t+(n-1)I_{n-2}$$
$$I_n=frac{cos^{n-1}t sin t}n+frac{n-1}nI_{n-2}$$
QED
add a comment |
up vote
0
down vote
Nice explanation. What if you change to $$int_{0}^{frac{pi}{2}}cos^{n}xmathrm{d}x$$? What is then change?
add a comment |
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
6
down vote
You can conventionally use Integration by parts.
Here it another method:
$$dfrac{d(cos^mxsin x)}{dx}=cos^{m+1}x-mcos^{m-1}x(1-cos^2x)$$
Integrate both sides wrt $x$ to find $$cos^mxsin x+K=(m+1)I_{m+1}-mI_{m-1}$$
add a comment |
up vote
6
down vote
You can conventionally use Integration by parts.
Here it another method:
$$dfrac{d(cos^mxsin x)}{dx}=cos^{m+1}x-mcos^{m-1}x(1-cos^2x)$$
Integrate both sides wrt $x$ to find $$cos^mxsin x+K=(m+1)I_{m+1}-mI_{m-1}$$
add a comment |
up vote
6
down vote
up vote
6
down vote
You can conventionally use Integration by parts.
Here it another method:
$$dfrac{d(cos^mxsin x)}{dx}=cos^{m+1}x-mcos^{m-1}x(1-cos^2x)$$
Integrate both sides wrt $x$ to find $$cos^mxsin x+K=(m+1)I_{m+1}-mI_{m-1}$$
You can conventionally use Integration by parts.
Here it another method:
$$dfrac{d(cos^mxsin x)}{dx}=cos^{m+1}x-mcos^{m-1}x(1-cos^2x)$$
Integrate both sides wrt $x$ to find $$cos^mxsin x+K=(m+1)I_{m+1}-mI_{m-1}$$
edited Nov 15 at 13:53
answered Nov 14 at 11:29
lab bhattacharjee
219k15154270
219k15154270
add a comment |
add a comment |
up vote
3
down vote
We use integration by parts;
$$I_{n}=int cos^{n}(x)dx=int cos^{n-1}(x)cos(x)dx=intfrac{d}{dx}left(sin(x)cos^{n-1}(x)right)+(n-1)sin^{2}(x)cos^{n-2}(x)dx$$
Then recalling $sin^{2}(x)+cos^{2}(x)=1$, we have;
$$I_{n}=sin(x)cos^{n-1}(x)+(n-1)I_{n-2}-(n-1)I_{n}$$
Then solving for $I_{n}$ gives the result.
add a comment |
up vote
3
down vote
We use integration by parts;
$$I_{n}=int cos^{n}(x)dx=int cos^{n-1}(x)cos(x)dx=intfrac{d}{dx}left(sin(x)cos^{n-1}(x)right)+(n-1)sin^{2}(x)cos^{n-2}(x)dx$$
Then recalling $sin^{2}(x)+cos^{2}(x)=1$, we have;
$$I_{n}=sin(x)cos^{n-1}(x)+(n-1)I_{n-2}-(n-1)I_{n}$$
Then solving for $I_{n}$ gives the result.
add a comment |
up vote
3
down vote
up vote
3
down vote
We use integration by parts;
$$I_{n}=int cos^{n}(x)dx=int cos^{n-1}(x)cos(x)dx=intfrac{d}{dx}left(sin(x)cos^{n-1}(x)right)+(n-1)sin^{2}(x)cos^{n-2}(x)dx$$
Then recalling $sin^{2}(x)+cos^{2}(x)=1$, we have;
$$I_{n}=sin(x)cos^{n-1}(x)+(n-1)I_{n-2}-(n-1)I_{n}$$
Then solving for $I_{n}$ gives the result.
We use integration by parts;
$$I_{n}=int cos^{n}(x)dx=int cos^{n-1}(x)cos(x)dx=intfrac{d}{dx}left(sin(x)cos^{n-1}(x)right)+(n-1)sin^{2}(x)cos^{n-2}(x)dx$$
Then recalling $sin^{2}(x)+cos^{2}(x)=1$, we have;
$$I_{n}=sin(x)cos^{n-1}(x)+(n-1)I_{n-2}-(n-1)I_{n}$$
Then solving for $I_{n}$ gives the result.
answered Nov 14 at 11:35
CoffeeCrow
556215
556215
add a comment |
add a comment |
up vote
2
down vote
$$I_n=intcos^n(x)dx=intcos^{n-2}(x).cos^2(x)dx=intcos^{n-2}(x)left[1-sin^2(x)right]dx$$$$
=I_{n-2}-intcos^{n-2}(x)sin^2(x)dx$$$$
=I_{n-2}-frac{cos^{n-1}(x)sin(x)}{n-1}+intfrac{cos^n(x)}{n-1}dx$$
so:
$$I_n=I_{n-2}-frac{cos^{n-1}(x)sin(x)}{n-1}+frac{I_n}{n-1}$$
$$I_n=frac{n-1}{n-2}I_{n-2}-frac{cos^{n-1}(x)sin(x)}{n-2}$$
add a comment |
up vote
2
down vote
$$I_n=intcos^n(x)dx=intcos^{n-2}(x).cos^2(x)dx=intcos^{n-2}(x)left[1-sin^2(x)right]dx$$$$
=I_{n-2}-intcos^{n-2}(x)sin^2(x)dx$$$$
=I_{n-2}-frac{cos^{n-1}(x)sin(x)}{n-1}+intfrac{cos^n(x)}{n-1}dx$$
so:
$$I_n=I_{n-2}-frac{cos^{n-1}(x)sin(x)}{n-1}+frac{I_n}{n-1}$$
$$I_n=frac{n-1}{n-2}I_{n-2}-frac{cos^{n-1}(x)sin(x)}{n-2}$$
add a comment |
up vote
2
down vote
up vote
2
down vote
$$I_n=intcos^n(x)dx=intcos^{n-2}(x).cos^2(x)dx=intcos^{n-2}(x)left[1-sin^2(x)right]dx$$$$
=I_{n-2}-intcos^{n-2}(x)sin^2(x)dx$$$$
=I_{n-2}-frac{cos^{n-1}(x)sin(x)}{n-1}+intfrac{cos^n(x)}{n-1}dx$$
so:
$$I_n=I_{n-2}-frac{cos^{n-1}(x)sin(x)}{n-1}+frac{I_n}{n-1}$$
$$I_n=frac{n-1}{n-2}I_{n-2}-frac{cos^{n-1}(x)sin(x)}{n-2}$$
$$I_n=intcos^n(x)dx=intcos^{n-2}(x).cos^2(x)dx=intcos^{n-2}(x)left[1-sin^2(x)right]dx$$$$
=I_{n-2}-intcos^{n-2}(x)sin^2(x)dx$$$$
=I_{n-2}-frac{cos^{n-1}(x)sin(x)}{n-1}+intfrac{cos^n(x)}{n-1}dx$$
so:
$$I_n=I_{n-2}-frac{cos^{n-1}(x)sin(x)}{n-1}+frac{I_n}{n-1}$$
$$I_n=frac{n-1}{n-2}I_{n-2}-frac{cos^{n-1}(x)sin(x)}{n-2}$$
answered Nov 14 at 12:40
Henry Lee
1,626117
1,626117
add a comment |
add a comment |
up vote
1
down vote
A bit more detailed, but essentially the same answer as some already given
$$I_n=intcos^nt dt$$
$$I_n=intcos^{n-1}t cos t dt$$
Integration by parts:
$$dv=cos t dtRightarrow v=sin t\u=cos^{n-1}tRightarrow du=-(n-1)cos^{n-2}t sin t dt$$
$$I_n=uv-int vdu$$
$$I_n=cos^{n-1}t sin t-intsin t (-(n-1)cos^{n-2}t sin t)dt$$
$$I_n=cos^{n-1}t sin t+(n-1)intcos^{n-2}t sin^2t dt$$
$$I_n=cos^{n-1}t sin t+(n-1)intcos^{n-2}t (1-cos^2t)dt$$
$$I_n=cos^{n-1}t sin t+(n-1)intcos^{n-2}t dt-(n-1)intcos^nt dt$$
$$I_n=cos^{n-1}t sin t+(n-1)I_{n-2}-(n-1)I_n$$
$$I_n+(n-1)I_n=cos^{n-1}t sin t+(n-1)I_{n-2}$$
$$nI_n=cos^{n-1}t sin t+(n-1)I_{n-2}$$
$$I_n=frac{cos^{n-1}t sin t}n+frac{n-1}nI_{n-2}$$
QED
add a comment |
up vote
1
down vote
A bit more detailed, but essentially the same answer as some already given
$$I_n=intcos^nt dt$$
$$I_n=intcos^{n-1}t cos t dt$$
Integration by parts:
$$dv=cos t dtRightarrow v=sin t\u=cos^{n-1}tRightarrow du=-(n-1)cos^{n-2}t sin t dt$$
$$I_n=uv-int vdu$$
$$I_n=cos^{n-1}t sin t-intsin t (-(n-1)cos^{n-2}t sin t)dt$$
$$I_n=cos^{n-1}t sin t+(n-1)intcos^{n-2}t sin^2t dt$$
$$I_n=cos^{n-1}t sin t+(n-1)intcos^{n-2}t (1-cos^2t)dt$$
$$I_n=cos^{n-1}t sin t+(n-1)intcos^{n-2}t dt-(n-1)intcos^nt dt$$
$$I_n=cos^{n-1}t sin t+(n-1)I_{n-2}-(n-1)I_n$$
$$I_n+(n-1)I_n=cos^{n-1}t sin t+(n-1)I_{n-2}$$
$$nI_n=cos^{n-1}t sin t+(n-1)I_{n-2}$$
$$I_n=frac{cos^{n-1}t sin t}n+frac{n-1}nI_{n-2}$$
QED
add a comment |
up vote
1
down vote
up vote
1
down vote
A bit more detailed, but essentially the same answer as some already given
$$I_n=intcos^nt dt$$
$$I_n=intcos^{n-1}t cos t dt$$
Integration by parts:
$$dv=cos t dtRightarrow v=sin t\u=cos^{n-1}tRightarrow du=-(n-1)cos^{n-2}t sin t dt$$
$$I_n=uv-int vdu$$
$$I_n=cos^{n-1}t sin t-intsin t (-(n-1)cos^{n-2}t sin t)dt$$
$$I_n=cos^{n-1}t sin t+(n-1)intcos^{n-2}t sin^2t dt$$
$$I_n=cos^{n-1}t sin t+(n-1)intcos^{n-2}t (1-cos^2t)dt$$
$$I_n=cos^{n-1}t sin t+(n-1)intcos^{n-2}t dt-(n-1)intcos^nt dt$$
$$I_n=cos^{n-1}t sin t+(n-1)I_{n-2}-(n-1)I_n$$
$$I_n+(n-1)I_n=cos^{n-1}t sin t+(n-1)I_{n-2}$$
$$nI_n=cos^{n-1}t sin t+(n-1)I_{n-2}$$
$$I_n=frac{cos^{n-1}t sin t}n+frac{n-1}nI_{n-2}$$
QED
A bit more detailed, but essentially the same answer as some already given
$$I_n=intcos^nt dt$$
$$I_n=intcos^{n-1}t cos t dt$$
Integration by parts:
$$dv=cos t dtRightarrow v=sin t\u=cos^{n-1}tRightarrow du=-(n-1)cos^{n-2}t sin t dt$$
$$I_n=uv-int vdu$$
$$I_n=cos^{n-1}t sin t-intsin t (-(n-1)cos^{n-2}t sin t)dt$$
$$I_n=cos^{n-1}t sin t+(n-1)intcos^{n-2}t sin^2t dt$$
$$I_n=cos^{n-1}t sin t+(n-1)intcos^{n-2}t (1-cos^2t)dt$$
$$I_n=cos^{n-1}t sin t+(n-1)intcos^{n-2}t dt-(n-1)intcos^nt dt$$
$$I_n=cos^{n-1}t sin t+(n-1)I_{n-2}-(n-1)I_n$$
$$I_n+(n-1)I_n=cos^{n-1}t sin t+(n-1)I_{n-2}$$
$$nI_n=cos^{n-1}t sin t+(n-1)I_{n-2}$$
$$I_n=frac{cos^{n-1}t sin t}n+frac{n-1}nI_{n-2}$$
QED
answered Nov 14 at 17:52
clathratus
1,804219
1,804219
add a comment |
add a comment |
up vote
0
down vote
Nice explanation. What if you change to $$int_{0}^{frac{pi}{2}}cos^{n}xmathrm{d}x$$? What is then change?
add a comment |
up vote
0
down vote
Nice explanation. What if you change to $$int_{0}^{frac{pi}{2}}cos^{n}xmathrm{d}x$$? What is then change?
add a comment |
up vote
0
down vote
up vote
0
down vote
Nice explanation. What if you change to $$int_{0}^{frac{pi}{2}}cos^{n}xmathrm{d}x$$? What is then change?
Nice explanation. What if you change to $$int_{0}^{frac{pi}{2}}cos^{n}xmathrm{d}x$$? What is then change?
answered Nov 16 at 11:34
Andrej
69110
69110
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2998151%2fprove-the-reduction-formula-i-n-frac1n-cosn-1x-sinx-fracn-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
Sounds like an ideal usecase for complete induction. $n in lbrace0,1rbrace$ should be clear. For higher $n$ you may use the products rule to refer to $n-2$.
– denklo
Nov 14 at 11:27