Prove the reduction formula $I_n = frac{1}{n} cos^{n-1}(x) sin(x) + frac{n-1}{n} I_{n-2} for n geq 2$











up vote
4
down vote

favorite
2












Let $
$$ I_n = intcos^n{x} dx, ;text{ for } n=0,1,2,3, ldots$



Prove the reduction formula
$$I_n = frac{1}{n} cos^{n-1}(x) sin(x) + frac{n-1}{n} I_{n-2}, ; n geq 2.$$



How do I approach this question? Is there anything I should look out for?










share|cite|improve this question




















  • 1




    Sounds like an ideal usecase for complete induction. $n in lbrace0,1rbrace$ should be clear. For higher $n$ you may use the products rule to refer to $n-2$.
    – denklo
    Nov 14 at 11:27















up vote
4
down vote

favorite
2












Let $
$$ I_n = intcos^n{x} dx, ;text{ for } n=0,1,2,3, ldots$



Prove the reduction formula
$$I_n = frac{1}{n} cos^{n-1}(x) sin(x) + frac{n-1}{n} I_{n-2}, ; n geq 2.$$



How do I approach this question? Is there anything I should look out for?










share|cite|improve this question




















  • 1




    Sounds like an ideal usecase for complete induction. $n in lbrace0,1rbrace$ should be clear. For higher $n$ you may use the products rule to refer to $n-2$.
    – denklo
    Nov 14 at 11:27













up vote
4
down vote

favorite
2









up vote
4
down vote

favorite
2






2





Let $
$$ I_n = intcos^n{x} dx, ;text{ for } n=0,1,2,3, ldots$



Prove the reduction formula
$$I_n = frac{1}{n} cos^{n-1}(x) sin(x) + frac{n-1}{n} I_{n-2}, ; n geq 2.$$



How do I approach this question? Is there anything I should look out for?










share|cite|improve this question















Let $
$$ I_n = intcos^n{x} dx, ;text{ for } n=0,1,2,3, ldots$



Prove the reduction formula
$$I_n = frac{1}{n} cos^{n-1}(x) sin(x) + frac{n-1}{n} I_{n-2}, ; n geq 2.$$



How do I approach this question? Is there anything I should look out for?







integration






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 14 at 18:03









Bernard

115k637108




115k637108










asked Nov 14 at 11:21









Steve

1216




1216








  • 1




    Sounds like an ideal usecase for complete induction. $n in lbrace0,1rbrace$ should be clear. For higher $n$ you may use the products rule to refer to $n-2$.
    – denklo
    Nov 14 at 11:27














  • 1




    Sounds like an ideal usecase for complete induction. $n in lbrace0,1rbrace$ should be clear. For higher $n$ you may use the products rule to refer to $n-2$.
    – denklo
    Nov 14 at 11:27








1




1




Sounds like an ideal usecase for complete induction. $n in lbrace0,1rbrace$ should be clear. For higher $n$ you may use the products rule to refer to $n-2$.
– denklo
Nov 14 at 11:27




Sounds like an ideal usecase for complete induction. $n in lbrace0,1rbrace$ should be clear. For higher $n$ you may use the products rule to refer to $n-2$.
– denklo
Nov 14 at 11:27










5 Answers
5






active

oldest

votes

















up vote
6
down vote













You can conventionally use Integration by parts.



Here it another method:



$$dfrac{d(cos^mxsin x)}{dx}=cos^{m+1}x-mcos^{m-1}x(1-cos^2x)$$



Integrate both sides wrt $x$ to find $$cos^mxsin x+K=(m+1)I_{m+1}-mI_{m-1}$$






share|cite|improve this answer






























    up vote
    3
    down vote













    We use integration by parts;



    $$I_{n}=int cos^{n}(x)dx=int cos^{n-1}(x)cos(x)dx=intfrac{d}{dx}left(sin(x)cos^{n-1}(x)right)+(n-1)sin^{2}(x)cos^{n-2}(x)dx$$



    Then recalling $sin^{2}(x)+cos^{2}(x)=1$, we have;



    $$I_{n}=sin(x)cos^{n-1}(x)+(n-1)I_{n-2}-(n-1)I_{n}$$



    Then solving for $I_{n}$ gives the result.






    share|cite|improve this answer




























      up vote
      2
      down vote













      $$I_n=intcos^n(x)dx=intcos^{n-2}(x).cos^2(x)dx=intcos^{n-2}(x)left[1-sin^2(x)right]dx$$$$
      =I_{n-2}-intcos^{n-2}(x)sin^2(x)dx$$
      $$
      =I_{n-2}-frac{cos^{n-1}(x)sin(x)}{n-1}+intfrac{cos^n(x)}{n-1}dx$$

      so:
      $$I_n=I_{n-2}-frac{cos^{n-1}(x)sin(x)}{n-1}+frac{I_n}{n-1}$$
      $$I_n=frac{n-1}{n-2}I_{n-2}-frac{cos^{n-1}(x)sin(x)}{n-2}$$






      share|cite|improve this answer




























        up vote
        1
        down vote













        A bit more detailed, but essentially the same answer as some already given



        $$I_n=intcos^nt dt$$
        $$I_n=intcos^{n-1}t cos t dt$$
        Integration by parts:
        $$dv=cos t dtRightarrow v=sin t\u=cos^{n-1}tRightarrow du=-(n-1)cos^{n-2}t sin t dt$$
        $$I_n=uv-int vdu$$
        $$I_n=cos^{n-1}t sin t-intsin t (-(n-1)cos^{n-2}t sin t)dt$$
        $$I_n=cos^{n-1}t sin t+(n-1)intcos^{n-2}t sin^2t dt$$
        $$I_n=cos^{n-1}t sin t+(n-1)intcos^{n-2}t (1-cos^2t)dt$$
        $$I_n=cos^{n-1}t sin t+(n-1)intcos^{n-2}t dt-(n-1)intcos^nt dt$$
        $$I_n=cos^{n-1}t sin t+(n-1)I_{n-2}-(n-1)I_n$$
        $$I_n+(n-1)I_n=cos^{n-1}t sin t+(n-1)I_{n-2}$$
        $$nI_n=cos^{n-1}t sin t+(n-1)I_{n-2}$$
        $$I_n=frac{cos^{n-1}t sin t}n+frac{n-1}nI_{n-2}$$
        QED






        share|cite|improve this answer




























          up vote
          0
          down vote













          Nice explanation. What if you change to $$int_{0}^{frac{pi}{2}}cos^{n}xmathrm{d}x$$? What is then change?






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














             

            draft saved


            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2998151%2fprove-the-reduction-formula-i-n-frac1n-cosn-1x-sinx-fracn-1%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            5 Answers
            5






            active

            oldest

            votes








            5 Answers
            5






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            6
            down vote













            You can conventionally use Integration by parts.



            Here it another method:



            $$dfrac{d(cos^mxsin x)}{dx}=cos^{m+1}x-mcos^{m-1}x(1-cos^2x)$$



            Integrate both sides wrt $x$ to find $$cos^mxsin x+K=(m+1)I_{m+1}-mI_{m-1}$$






            share|cite|improve this answer



























              up vote
              6
              down vote













              You can conventionally use Integration by parts.



              Here it another method:



              $$dfrac{d(cos^mxsin x)}{dx}=cos^{m+1}x-mcos^{m-1}x(1-cos^2x)$$



              Integrate both sides wrt $x$ to find $$cos^mxsin x+K=(m+1)I_{m+1}-mI_{m-1}$$






              share|cite|improve this answer

























                up vote
                6
                down vote










                up vote
                6
                down vote









                You can conventionally use Integration by parts.



                Here it another method:



                $$dfrac{d(cos^mxsin x)}{dx}=cos^{m+1}x-mcos^{m-1}x(1-cos^2x)$$



                Integrate both sides wrt $x$ to find $$cos^mxsin x+K=(m+1)I_{m+1}-mI_{m-1}$$






                share|cite|improve this answer














                You can conventionally use Integration by parts.



                Here it another method:



                $$dfrac{d(cos^mxsin x)}{dx}=cos^{m+1}x-mcos^{m-1}x(1-cos^2x)$$



                Integrate both sides wrt $x$ to find $$cos^mxsin x+K=(m+1)I_{m+1}-mI_{m-1}$$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Nov 15 at 13:53

























                answered Nov 14 at 11:29









                lab bhattacharjee

                219k15154270




                219k15154270






















                    up vote
                    3
                    down vote













                    We use integration by parts;



                    $$I_{n}=int cos^{n}(x)dx=int cos^{n-1}(x)cos(x)dx=intfrac{d}{dx}left(sin(x)cos^{n-1}(x)right)+(n-1)sin^{2}(x)cos^{n-2}(x)dx$$



                    Then recalling $sin^{2}(x)+cos^{2}(x)=1$, we have;



                    $$I_{n}=sin(x)cos^{n-1}(x)+(n-1)I_{n-2}-(n-1)I_{n}$$



                    Then solving for $I_{n}$ gives the result.






                    share|cite|improve this answer

























                      up vote
                      3
                      down vote













                      We use integration by parts;



                      $$I_{n}=int cos^{n}(x)dx=int cos^{n-1}(x)cos(x)dx=intfrac{d}{dx}left(sin(x)cos^{n-1}(x)right)+(n-1)sin^{2}(x)cos^{n-2}(x)dx$$



                      Then recalling $sin^{2}(x)+cos^{2}(x)=1$, we have;



                      $$I_{n}=sin(x)cos^{n-1}(x)+(n-1)I_{n-2}-(n-1)I_{n}$$



                      Then solving for $I_{n}$ gives the result.






                      share|cite|improve this answer























                        up vote
                        3
                        down vote










                        up vote
                        3
                        down vote









                        We use integration by parts;



                        $$I_{n}=int cos^{n}(x)dx=int cos^{n-1}(x)cos(x)dx=intfrac{d}{dx}left(sin(x)cos^{n-1}(x)right)+(n-1)sin^{2}(x)cos^{n-2}(x)dx$$



                        Then recalling $sin^{2}(x)+cos^{2}(x)=1$, we have;



                        $$I_{n}=sin(x)cos^{n-1}(x)+(n-1)I_{n-2}-(n-1)I_{n}$$



                        Then solving for $I_{n}$ gives the result.






                        share|cite|improve this answer












                        We use integration by parts;



                        $$I_{n}=int cos^{n}(x)dx=int cos^{n-1}(x)cos(x)dx=intfrac{d}{dx}left(sin(x)cos^{n-1}(x)right)+(n-1)sin^{2}(x)cos^{n-2}(x)dx$$



                        Then recalling $sin^{2}(x)+cos^{2}(x)=1$, we have;



                        $$I_{n}=sin(x)cos^{n-1}(x)+(n-1)I_{n-2}-(n-1)I_{n}$$



                        Then solving for $I_{n}$ gives the result.







                        share|cite|improve this answer












                        share|cite|improve this answer



                        share|cite|improve this answer










                        answered Nov 14 at 11:35









                        CoffeeCrow

                        556215




                        556215






















                            up vote
                            2
                            down vote













                            $$I_n=intcos^n(x)dx=intcos^{n-2}(x).cos^2(x)dx=intcos^{n-2}(x)left[1-sin^2(x)right]dx$$$$
                            =I_{n-2}-intcos^{n-2}(x)sin^2(x)dx$$
                            $$
                            =I_{n-2}-frac{cos^{n-1}(x)sin(x)}{n-1}+intfrac{cos^n(x)}{n-1}dx$$

                            so:
                            $$I_n=I_{n-2}-frac{cos^{n-1}(x)sin(x)}{n-1}+frac{I_n}{n-1}$$
                            $$I_n=frac{n-1}{n-2}I_{n-2}-frac{cos^{n-1}(x)sin(x)}{n-2}$$






                            share|cite|improve this answer

























                              up vote
                              2
                              down vote













                              $$I_n=intcos^n(x)dx=intcos^{n-2}(x).cos^2(x)dx=intcos^{n-2}(x)left[1-sin^2(x)right]dx$$$$
                              =I_{n-2}-intcos^{n-2}(x)sin^2(x)dx$$
                              $$
                              =I_{n-2}-frac{cos^{n-1}(x)sin(x)}{n-1}+intfrac{cos^n(x)}{n-1}dx$$

                              so:
                              $$I_n=I_{n-2}-frac{cos^{n-1}(x)sin(x)}{n-1}+frac{I_n}{n-1}$$
                              $$I_n=frac{n-1}{n-2}I_{n-2}-frac{cos^{n-1}(x)sin(x)}{n-2}$$






                              share|cite|improve this answer























                                up vote
                                2
                                down vote










                                up vote
                                2
                                down vote









                                $$I_n=intcos^n(x)dx=intcos^{n-2}(x).cos^2(x)dx=intcos^{n-2}(x)left[1-sin^2(x)right]dx$$$$
                                =I_{n-2}-intcos^{n-2}(x)sin^2(x)dx$$
                                $$
                                =I_{n-2}-frac{cos^{n-1}(x)sin(x)}{n-1}+intfrac{cos^n(x)}{n-1}dx$$

                                so:
                                $$I_n=I_{n-2}-frac{cos^{n-1}(x)sin(x)}{n-1}+frac{I_n}{n-1}$$
                                $$I_n=frac{n-1}{n-2}I_{n-2}-frac{cos^{n-1}(x)sin(x)}{n-2}$$






                                share|cite|improve this answer












                                $$I_n=intcos^n(x)dx=intcos^{n-2}(x).cos^2(x)dx=intcos^{n-2}(x)left[1-sin^2(x)right]dx$$$$
                                =I_{n-2}-intcos^{n-2}(x)sin^2(x)dx$$
                                $$
                                =I_{n-2}-frac{cos^{n-1}(x)sin(x)}{n-1}+intfrac{cos^n(x)}{n-1}dx$$

                                so:
                                $$I_n=I_{n-2}-frac{cos^{n-1}(x)sin(x)}{n-1}+frac{I_n}{n-1}$$
                                $$I_n=frac{n-1}{n-2}I_{n-2}-frac{cos^{n-1}(x)sin(x)}{n-2}$$







                                share|cite|improve this answer












                                share|cite|improve this answer



                                share|cite|improve this answer










                                answered Nov 14 at 12:40









                                Henry Lee

                                1,626117




                                1,626117






















                                    up vote
                                    1
                                    down vote













                                    A bit more detailed, but essentially the same answer as some already given



                                    $$I_n=intcos^nt dt$$
                                    $$I_n=intcos^{n-1}t cos t dt$$
                                    Integration by parts:
                                    $$dv=cos t dtRightarrow v=sin t\u=cos^{n-1}tRightarrow du=-(n-1)cos^{n-2}t sin t dt$$
                                    $$I_n=uv-int vdu$$
                                    $$I_n=cos^{n-1}t sin t-intsin t (-(n-1)cos^{n-2}t sin t)dt$$
                                    $$I_n=cos^{n-1}t sin t+(n-1)intcos^{n-2}t sin^2t dt$$
                                    $$I_n=cos^{n-1}t sin t+(n-1)intcos^{n-2}t (1-cos^2t)dt$$
                                    $$I_n=cos^{n-1}t sin t+(n-1)intcos^{n-2}t dt-(n-1)intcos^nt dt$$
                                    $$I_n=cos^{n-1}t sin t+(n-1)I_{n-2}-(n-1)I_n$$
                                    $$I_n+(n-1)I_n=cos^{n-1}t sin t+(n-1)I_{n-2}$$
                                    $$nI_n=cos^{n-1}t sin t+(n-1)I_{n-2}$$
                                    $$I_n=frac{cos^{n-1}t sin t}n+frac{n-1}nI_{n-2}$$
                                    QED






                                    share|cite|improve this answer

























                                      up vote
                                      1
                                      down vote













                                      A bit more detailed, but essentially the same answer as some already given



                                      $$I_n=intcos^nt dt$$
                                      $$I_n=intcos^{n-1}t cos t dt$$
                                      Integration by parts:
                                      $$dv=cos t dtRightarrow v=sin t\u=cos^{n-1}tRightarrow du=-(n-1)cos^{n-2}t sin t dt$$
                                      $$I_n=uv-int vdu$$
                                      $$I_n=cos^{n-1}t sin t-intsin t (-(n-1)cos^{n-2}t sin t)dt$$
                                      $$I_n=cos^{n-1}t sin t+(n-1)intcos^{n-2}t sin^2t dt$$
                                      $$I_n=cos^{n-1}t sin t+(n-1)intcos^{n-2}t (1-cos^2t)dt$$
                                      $$I_n=cos^{n-1}t sin t+(n-1)intcos^{n-2}t dt-(n-1)intcos^nt dt$$
                                      $$I_n=cos^{n-1}t sin t+(n-1)I_{n-2}-(n-1)I_n$$
                                      $$I_n+(n-1)I_n=cos^{n-1}t sin t+(n-1)I_{n-2}$$
                                      $$nI_n=cos^{n-1}t sin t+(n-1)I_{n-2}$$
                                      $$I_n=frac{cos^{n-1}t sin t}n+frac{n-1}nI_{n-2}$$
                                      QED






                                      share|cite|improve this answer























                                        up vote
                                        1
                                        down vote










                                        up vote
                                        1
                                        down vote









                                        A bit more detailed, but essentially the same answer as some already given



                                        $$I_n=intcos^nt dt$$
                                        $$I_n=intcos^{n-1}t cos t dt$$
                                        Integration by parts:
                                        $$dv=cos t dtRightarrow v=sin t\u=cos^{n-1}tRightarrow du=-(n-1)cos^{n-2}t sin t dt$$
                                        $$I_n=uv-int vdu$$
                                        $$I_n=cos^{n-1}t sin t-intsin t (-(n-1)cos^{n-2}t sin t)dt$$
                                        $$I_n=cos^{n-1}t sin t+(n-1)intcos^{n-2}t sin^2t dt$$
                                        $$I_n=cos^{n-1}t sin t+(n-1)intcos^{n-2}t (1-cos^2t)dt$$
                                        $$I_n=cos^{n-1}t sin t+(n-1)intcos^{n-2}t dt-(n-1)intcos^nt dt$$
                                        $$I_n=cos^{n-1}t sin t+(n-1)I_{n-2}-(n-1)I_n$$
                                        $$I_n+(n-1)I_n=cos^{n-1}t sin t+(n-1)I_{n-2}$$
                                        $$nI_n=cos^{n-1}t sin t+(n-1)I_{n-2}$$
                                        $$I_n=frac{cos^{n-1}t sin t}n+frac{n-1}nI_{n-2}$$
                                        QED






                                        share|cite|improve this answer












                                        A bit more detailed, but essentially the same answer as some already given



                                        $$I_n=intcos^nt dt$$
                                        $$I_n=intcos^{n-1}t cos t dt$$
                                        Integration by parts:
                                        $$dv=cos t dtRightarrow v=sin t\u=cos^{n-1}tRightarrow du=-(n-1)cos^{n-2}t sin t dt$$
                                        $$I_n=uv-int vdu$$
                                        $$I_n=cos^{n-1}t sin t-intsin t (-(n-1)cos^{n-2}t sin t)dt$$
                                        $$I_n=cos^{n-1}t sin t+(n-1)intcos^{n-2}t sin^2t dt$$
                                        $$I_n=cos^{n-1}t sin t+(n-1)intcos^{n-2}t (1-cos^2t)dt$$
                                        $$I_n=cos^{n-1}t sin t+(n-1)intcos^{n-2}t dt-(n-1)intcos^nt dt$$
                                        $$I_n=cos^{n-1}t sin t+(n-1)I_{n-2}-(n-1)I_n$$
                                        $$I_n+(n-1)I_n=cos^{n-1}t sin t+(n-1)I_{n-2}$$
                                        $$nI_n=cos^{n-1}t sin t+(n-1)I_{n-2}$$
                                        $$I_n=frac{cos^{n-1}t sin t}n+frac{n-1}nI_{n-2}$$
                                        QED







                                        share|cite|improve this answer












                                        share|cite|improve this answer



                                        share|cite|improve this answer










                                        answered Nov 14 at 17:52









                                        clathratus

                                        1,804219




                                        1,804219






















                                            up vote
                                            0
                                            down vote













                                            Nice explanation. What if you change to $$int_{0}^{frac{pi}{2}}cos^{n}xmathrm{d}x$$? What is then change?






                                            share|cite|improve this answer

























                                              up vote
                                              0
                                              down vote













                                              Nice explanation. What if you change to $$int_{0}^{frac{pi}{2}}cos^{n}xmathrm{d}x$$? What is then change?






                                              share|cite|improve this answer























                                                up vote
                                                0
                                                down vote










                                                up vote
                                                0
                                                down vote









                                                Nice explanation. What if you change to $$int_{0}^{frac{pi}{2}}cos^{n}xmathrm{d}x$$? What is then change?






                                                share|cite|improve this answer












                                                Nice explanation. What if you change to $$int_{0}^{frac{pi}{2}}cos^{n}xmathrm{d}x$$? What is then change?







                                                share|cite|improve this answer












                                                share|cite|improve this answer



                                                share|cite|improve this answer










                                                answered Nov 16 at 11:34









                                                Andrej

                                                69110




                                                69110






























                                                     

                                                    draft saved


                                                    draft discarded



















































                                                     


                                                    draft saved


                                                    draft discarded














                                                    StackExchange.ready(
                                                    function () {
                                                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2998151%2fprove-the-reduction-formula-i-n-frac1n-cosn-1x-sinx-fracn-1%23new-answer', 'question_page');
                                                    }
                                                    );

                                                    Post as a guest















                                                    Required, but never shown





















































                                                    Required, but never shown














                                                    Required, but never shown












                                                    Required, but never shown







                                                    Required, but never shown

































                                                    Required, but never shown














                                                    Required, but never shown












                                                    Required, but never shown







                                                    Required, but never shown







                                                    Popular posts from this blog

                                                    Plaza Victoria

                                                    Puebla de Zaragoza

                                                    Musa