Show that $ left| f- sum_{k=1}^N c_kv_k right|^2 $ can be written as…











up vote
1
down vote

favorite












Let $mathcal{H}$ denote a separable Hilbert space, with orthonormal basis ${v_k}_{k=1}^infty$. Let $N in mathbb{N}$, and consider the subspace $M := text{span} {v_k}_{k=1}^infty$.



Show that for any $f in mathcal{H}$ and any coefficients $c_1,...,c_N in mathbb{C}$,
begin{equation*}
left| f- sum_{k=1}^N c_kv_k right|^2 = sum_{k=1}^N |c_k - langle f,v_k rangle |^2 + sum_{k=N+1}^infty |langle f,v_k rangle |^2
end{equation*}



My attempt so far
begin{align}
left| f- sum_{k=1}^N c_kv_k right|^2 & = leftlangle f- sum_{k=1}^N c_kv_k, f- sum_{k=1}^N c_kv_k rightrangle \
& = leftlangle f, f- sum_{k=1}^N c_kv_k rightrangle -sum_{k=1}^N c_k leftlangle v_k, f- sum_{k=1}^N c_kv_k rightrangle \
& = langle f,f rangle - sum_{k=1}^N overline{c}_k langle f,v_k rangle - sum_{k=1}^N overline{c}_k langle v_k,f rangle + sum_{k=1}^N sum_{l=1}^N overline{c}_l c_k langle v_k,v_l rangle
end{align}
I'm not really sure if I'm on the right track. Can somebody help me with the next step. Thanks.










share|cite|improve this question
























  • By the definition of an orthonormal basis, there exists a sequence $ (lambda_{k})_{k in mathbb{N}} in {ell^{2}}(mathbb{N}) $ such that $$ lim_{n to infty} left| f - sum_{k = 1}^{n} lambda_{k} v_{k} right|_{mathcal{H}} = 0. $$
    – Berrick Caleb Fillmore
    Sep 18 '16 at 19:24








  • 1




    Hint: Use Parseval’s Identity.
    – Transcendental
    Sep 19 '16 at 3:16















up vote
1
down vote

favorite












Let $mathcal{H}$ denote a separable Hilbert space, with orthonormal basis ${v_k}_{k=1}^infty$. Let $N in mathbb{N}$, and consider the subspace $M := text{span} {v_k}_{k=1}^infty$.



Show that for any $f in mathcal{H}$ and any coefficients $c_1,...,c_N in mathbb{C}$,
begin{equation*}
left| f- sum_{k=1}^N c_kv_k right|^2 = sum_{k=1}^N |c_k - langle f,v_k rangle |^2 + sum_{k=N+1}^infty |langle f,v_k rangle |^2
end{equation*}



My attempt so far
begin{align}
left| f- sum_{k=1}^N c_kv_k right|^2 & = leftlangle f- sum_{k=1}^N c_kv_k, f- sum_{k=1}^N c_kv_k rightrangle \
& = leftlangle f, f- sum_{k=1}^N c_kv_k rightrangle -sum_{k=1}^N c_k leftlangle v_k, f- sum_{k=1}^N c_kv_k rightrangle \
& = langle f,f rangle - sum_{k=1}^N overline{c}_k langle f,v_k rangle - sum_{k=1}^N overline{c}_k langle v_k,f rangle + sum_{k=1}^N sum_{l=1}^N overline{c}_l c_k langle v_k,v_l rangle
end{align}
I'm not really sure if I'm on the right track. Can somebody help me with the next step. Thanks.










share|cite|improve this question
























  • By the definition of an orthonormal basis, there exists a sequence $ (lambda_{k})_{k in mathbb{N}} in {ell^{2}}(mathbb{N}) $ such that $$ lim_{n to infty} left| f - sum_{k = 1}^{n} lambda_{k} v_{k} right|_{mathcal{H}} = 0. $$
    – Berrick Caleb Fillmore
    Sep 18 '16 at 19:24








  • 1




    Hint: Use Parseval’s Identity.
    – Transcendental
    Sep 19 '16 at 3:16













up vote
1
down vote

favorite









up vote
1
down vote

favorite











Let $mathcal{H}$ denote a separable Hilbert space, with orthonormal basis ${v_k}_{k=1}^infty$. Let $N in mathbb{N}$, and consider the subspace $M := text{span} {v_k}_{k=1}^infty$.



Show that for any $f in mathcal{H}$ and any coefficients $c_1,...,c_N in mathbb{C}$,
begin{equation*}
left| f- sum_{k=1}^N c_kv_k right|^2 = sum_{k=1}^N |c_k - langle f,v_k rangle |^2 + sum_{k=N+1}^infty |langle f,v_k rangle |^2
end{equation*}



My attempt so far
begin{align}
left| f- sum_{k=1}^N c_kv_k right|^2 & = leftlangle f- sum_{k=1}^N c_kv_k, f- sum_{k=1}^N c_kv_k rightrangle \
& = leftlangle f, f- sum_{k=1}^N c_kv_k rightrangle -sum_{k=1}^N c_k leftlangle v_k, f- sum_{k=1}^N c_kv_k rightrangle \
& = langle f,f rangle - sum_{k=1}^N overline{c}_k langle f,v_k rangle - sum_{k=1}^N overline{c}_k langle v_k,f rangle + sum_{k=1}^N sum_{l=1}^N overline{c}_l c_k langle v_k,v_l rangle
end{align}
I'm not really sure if I'm on the right track. Can somebody help me with the next step. Thanks.










share|cite|improve this question















Let $mathcal{H}$ denote a separable Hilbert space, with orthonormal basis ${v_k}_{k=1}^infty$. Let $N in mathbb{N}$, and consider the subspace $M := text{span} {v_k}_{k=1}^infty$.



Show that for any $f in mathcal{H}$ and any coefficients $c_1,...,c_N in mathbb{C}$,
begin{equation*}
left| f- sum_{k=1}^N c_kv_k right|^2 = sum_{k=1}^N |c_k - langle f,v_k rangle |^2 + sum_{k=N+1}^infty |langle f,v_k rangle |^2
end{equation*}



My attempt so far
begin{align}
left| f- sum_{k=1}^N c_kv_k right|^2 & = leftlangle f- sum_{k=1}^N c_kv_k, f- sum_{k=1}^N c_kv_k rightrangle \
& = leftlangle f, f- sum_{k=1}^N c_kv_k rightrangle -sum_{k=1}^N c_k leftlangle v_k, f- sum_{k=1}^N c_kv_k rightrangle \
& = langle f,f rangle - sum_{k=1}^N overline{c}_k langle f,v_k rangle - sum_{k=1}^N overline{c}_k langle v_k,f rangle + sum_{k=1}^N sum_{l=1}^N overline{c}_l c_k langle v_k,v_l rangle
end{align}
I'm not really sure if I'm on the right track. Can somebody help me with the next step. Thanks.







hilbert-spaces norm inner-product-space






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Sep 18 '16 at 20:17

























asked Sep 18 '16 at 19:12









ANYN11

888




888












  • By the definition of an orthonormal basis, there exists a sequence $ (lambda_{k})_{k in mathbb{N}} in {ell^{2}}(mathbb{N}) $ such that $$ lim_{n to infty} left| f - sum_{k = 1}^{n} lambda_{k} v_{k} right|_{mathcal{H}} = 0. $$
    – Berrick Caleb Fillmore
    Sep 18 '16 at 19:24








  • 1




    Hint: Use Parseval’s Identity.
    – Transcendental
    Sep 19 '16 at 3:16


















  • By the definition of an orthonormal basis, there exists a sequence $ (lambda_{k})_{k in mathbb{N}} in {ell^{2}}(mathbb{N}) $ such that $$ lim_{n to infty} left| f - sum_{k = 1}^{n} lambda_{k} v_{k} right|_{mathcal{H}} = 0. $$
    – Berrick Caleb Fillmore
    Sep 18 '16 at 19:24








  • 1




    Hint: Use Parseval’s Identity.
    – Transcendental
    Sep 19 '16 at 3:16
















By the definition of an orthonormal basis, there exists a sequence $ (lambda_{k})_{k in mathbb{N}} in {ell^{2}}(mathbb{N}) $ such that $$ lim_{n to infty} left| f - sum_{k = 1}^{n} lambda_{k} v_{k} right|_{mathcal{H}} = 0. $$
– Berrick Caleb Fillmore
Sep 18 '16 at 19:24






By the definition of an orthonormal basis, there exists a sequence $ (lambda_{k})_{k in mathbb{N}} in {ell^{2}}(mathbb{N}) $ such that $$ lim_{n to infty} left| f - sum_{k = 1}^{n} lambda_{k} v_{k} right|_{mathcal{H}} = 0. $$
– Berrick Caleb Fillmore
Sep 18 '16 at 19:24






1




1




Hint: Use Parseval’s Identity.
– Transcendental
Sep 19 '16 at 3:16




Hint: Use Parseval’s Identity.
– Transcendental
Sep 19 '16 at 3:16










1 Answer
1






active

oldest

votes

















up vote
0
down vote













Since ${v_k}_{k=1}^infty$ is an orthonormal basis of $mathcal H$, Parseval's identity shows that for any vector $u$, the following equality holds:
$$
leftlVert urightrVert^2=sum_{k=1}^{+infty}leftlvert leftlangle u,v_krightranglerightrvert^2.
$$

Apply this to $u:= f-sum_{i=1}^N c_iv_i$. Then for all $kgeqslant 1$,
$$
leftlangle u,v_krightrangle=leftlangle f,v_krightrangle
-sum_{i=1}^N c_ileftlangle v_i,v_krightrangle.
$$

If $1leqslant kleqslant N$, then $sum_{i=1}^N c_ileftlangle v_i,v_krightrangle=c_k$ hence $leftlvert leftlangle u,v_krightranglerightrvert^2=leftlvert leftlangle f,v_krightrangle-c_krightrvert^2$ and if $kgeqslant N+1$, then $sum_{i=1}^N c_ileftlangle v_i,v_krightrangle=0$ hence
$leftlvert leftlangle u,v_krightranglerightrvert^2=leftlvert leftlangle f,v_krightrangle rightrvert^2$.






share|cite|improve this answer





















    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














     

    draft saved


    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1931912%2fshow-that-left-f-sum-k-1n-c-kv-k-right-2-can-be-written-as%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    0
    down vote













    Since ${v_k}_{k=1}^infty$ is an orthonormal basis of $mathcal H$, Parseval's identity shows that for any vector $u$, the following equality holds:
    $$
    leftlVert urightrVert^2=sum_{k=1}^{+infty}leftlvert leftlangle u,v_krightranglerightrvert^2.
    $$

    Apply this to $u:= f-sum_{i=1}^N c_iv_i$. Then for all $kgeqslant 1$,
    $$
    leftlangle u,v_krightrangle=leftlangle f,v_krightrangle
    -sum_{i=1}^N c_ileftlangle v_i,v_krightrangle.
    $$

    If $1leqslant kleqslant N$, then $sum_{i=1}^N c_ileftlangle v_i,v_krightrangle=c_k$ hence $leftlvert leftlangle u,v_krightranglerightrvert^2=leftlvert leftlangle f,v_krightrangle-c_krightrvert^2$ and if $kgeqslant N+1$, then $sum_{i=1}^N c_ileftlangle v_i,v_krightrangle=0$ hence
    $leftlvert leftlangle u,v_krightranglerightrvert^2=leftlvert leftlangle f,v_krightrangle rightrvert^2$.






    share|cite|improve this answer

























      up vote
      0
      down vote













      Since ${v_k}_{k=1}^infty$ is an orthonormal basis of $mathcal H$, Parseval's identity shows that for any vector $u$, the following equality holds:
      $$
      leftlVert urightrVert^2=sum_{k=1}^{+infty}leftlvert leftlangle u,v_krightranglerightrvert^2.
      $$

      Apply this to $u:= f-sum_{i=1}^N c_iv_i$. Then for all $kgeqslant 1$,
      $$
      leftlangle u,v_krightrangle=leftlangle f,v_krightrangle
      -sum_{i=1}^N c_ileftlangle v_i,v_krightrangle.
      $$

      If $1leqslant kleqslant N$, then $sum_{i=1}^N c_ileftlangle v_i,v_krightrangle=c_k$ hence $leftlvert leftlangle u,v_krightranglerightrvert^2=leftlvert leftlangle f,v_krightrangle-c_krightrvert^2$ and if $kgeqslant N+1$, then $sum_{i=1}^N c_ileftlangle v_i,v_krightrangle=0$ hence
      $leftlvert leftlangle u,v_krightranglerightrvert^2=leftlvert leftlangle f,v_krightrangle rightrvert^2$.






      share|cite|improve this answer























        up vote
        0
        down vote










        up vote
        0
        down vote









        Since ${v_k}_{k=1}^infty$ is an orthonormal basis of $mathcal H$, Parseval's identity shows that for any vector $u$, the following equality holds:
        $$
        leftlVert urightrVert^2=sum_{k=1}^{+infty}leftlvert leftlangle u,v_krightranglerightrvert^2.
        $$

        Apply this to $u:= f-sum_{i=1}^N c_iv_i$. Then for all $kgeqslant 1$,
        $$
        leftlangle u,v_krightrangle=leftlangle f,v_krightrangle
        -sum_{i=1}^N c_ileftlangle v_i,v_krightrangle.
        $$

        If $1leqslant kleqslant N$, then $sum_{i=1}^N c_ileftlangle v_i,v_krightrangle=c_k$ hence $leftlvert leftlangle u,v_krightranglerightrvert^2=leftlvert leftlangle f,v_krightrangle-c_krightrvert^2$ and if $kgeqslant N+1$, then $sum_{i=1}^N c_ileftlangle v_i,v_krightrangle=0$ hence
        $leftlvert leftlangle u,v_krightranglerightrvert^2=leftlvert leftlangle f,v_krightrangle rightrvert^2$.






        share|cite|improve this answer












        Since ${v_k}_{k=1}^infty$ is an orthonormal basis of $mathcal H$, Parseval's identity shows that for any vector $u$, the following equality holds:
        $$
        leftlVert urightrVert^2=sum_{k=1}^{+infty}leftlvert leftlangle u,v_krightranglerightrvert^2.
        $$

        Apply this to $u:= f-sum_{i=1}^N c_iv_i$. Then for all $kgeqslant 1$,
        $$
        leftlangle u,v_krightrangle=leftlangle f,v_krightrangle
        -sum_{i=1}^N c_ileftlangle v_i,v_krightrangle.
        $$

        If $1leqslant kleqslant N$, then $sum_{i=1}^N c_ileftlangle v_i,v_krightrangle=c_k$ hence $leftlvert leftlangle u,v_krightranglerightrvert^2=leftlvert leftlangle f,v_krightrangle-c_krightrvert^2$ and if $kgeqslant N+1$, then $sum_{i=1}^N c_ileftlangle v_i,v_krightrangle=0$ hence
        $leftlvert leftlangle u,v_krightranglerightrvert^2=leftlvert leftlangle f,v_krightrangle rightrvert^2$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Nov 14 at 10:33









        Davide Giraudo

        123k16149253




        123k16149253






























             

            draft saved


            draft discarded



















































             


            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1931912%2fshow-that-left-f-sum-k-1n-c-kv-k-right-2-can-be-written-as%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Plaza Victoria

            In PowerPoint, is there a keyboard shortcut for bulleted / numbered list?

            How to put 3 figures in Latex with 2 figures side by side and 1 below these side by side images but in...