Show that $ left| f- sum_{k=1}^N c_kv_k right|^2 $ can be written as…
up vote
1
down vote
favorite
Let $mathcal{H}$ denote a separable Hilbert space, with orthonormal basis ${v_k}_{k=1}^infty$. Let $N in mathbb{N}$, and consider the subspace $M := text{span} {v_k}_{k=1}^infty$.
Show that for any $f in mathcal{H}$ and any coefficients $c_1,...,c_N in mathbb{C}$,
begin{equation*}
left| f- sum_{k=1}^N c_kv_k right|^2 = sum_{k=1}^N |c_k - langle f,v_k rangle |^2 + sum_{k=N+1}^infty |langle f,v_k rangle |^2
end{equation*}
My attempt so far
begin{align}
left| f- sum_{k=1}^N c_kv_k right|^2 & = leftlangle f- sum_{k=1}^N c_kv_k, f- sum_{k=1}^N c_kv_k rightrangle \
& = leftlangle f, f- sum_{k=1}^N c_kv_k rightrangle -sum_{k=1}^N c_k leftlangle v_k, f- sum_{k=1}^N c_kv_k rightrangle \
& = langle f,f rangle - sum_{k=1}^N overline{c}_k langle f,v_k rangle - sum_{k=1}^N overline{c}_k langle v_k,f rangle + sum_{k=1}^N sum_{l=1}^N overline{c}_l c_k langle v_k,v_l rangle
end{align}
I'm not really sure if I'm on the right track. Can somebody help me with the next step. Thanks.
hilbert-spaces norm inner-product-space
add a comment |
up vote
1
down vote
favorite
Let $mathcal{H}$ denote a separable Hilbert space, with orthonormal basis ${v_k}_{k=1}^infty$. Let $N in mathbb{N}$, and consider the subspace $M := text{span} {v_k}_{k=1}^infty$.
Show that for any $f in mathcal{H}$ and any coefficients $c_1,...,c_N in mathbb{C}$,
begin{equation*}
left| f- sum_{k=1}^N c_kv_k right|^2 = sum_{k=1}^N |c_k - langle f,v_k rangle |^2 + sum_{k=N+1}^infty |langle f,v_k rangle |^2
end{equation*}
My attempt so far
begin{align}
left| f- sum_{k=1}^N c_kv_k right|^2 & = leftlangle f- sum_{k=1}^N c_kv_k, f- sum_{k=1}^N c_kv_k rightrangle \
& = leftlangle f, f- sum_{k=1}^N c_kv_k rightrangle -sum_{k=1}^N c_k leftlangle v_k, f- sum_{k=1}^N c_kv_k rightrangle \
& = langle f,f rangle - sum_{k=1}^N overline{c}_k langle f,v_k rangle - sum_{k=1}^N overline{c}_k langle v_k,f rangle + sum_{k=1}^N sum_{l=1}^N overline{c}_l c_k langle v_k,v_l rangle
end{align}
I'm not really sure if I'm on the right track. Can somebody help me with the next step. Thanks.
hilbert-spaces norm inner-product-space
By the definition of an orthonormal basis, there exists a sequence $ (lambda_{k})_{k in mathbb{N}} in {ell^{2}}(mathbb{N}) $ such that $$ lim_{n to infty} left| f - sum_{k = 1}^{n} lambda_{k} v_{k} right|_{mathcal{H}} = 0. $$
– Berrick Caleb Fillmore
Sep 18 '16 at 19:24
1
Hint: Use Parseval’s Identity.
– Transcendental
Sep 19 '16 at 3:16
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Let $mathcal{H}$ denote a separable Hilbert space, with orthonormal basis ${v_k}_{k=1}^infty$. Let $N in mathbb{N}$, and consider the subspace $M := text{span} {v_k}_{k=1}^infty$.
Show that for any $f in mathcal{H}$ and any coefficients $c_1,...,c_N in mathbb{C}$,
begin{equation*}
left| f- sum_{k=1}^N c_kv_k right|^2 = sum_{k=1}^N |c_k - langle f,v_k rangle |^2 + sum_{k=N+1}^infty |langle f,v_k rangle |^2
end{equation*}
My attempt so far
begin{align}
left| f- sum_{k=1}^N c_kv_k right|^2 & = leftlangle f- sum_{k=1}^N c_kv_k, f- sum_{k=1}^N c_kv_k rightrangle \
& = leftlangle f, f- sum_{k=1}^N c_kv_k rightrangle -sum_{k=1}^N c_k leftlangle v_k, f- sum_{k=1}^N c_kv_k rightrangle \
& = langle f,f rangle - sum_{k=1}^N overline{c}_k langle f,v_k rangle - sum_{k=1}^N overline{c}_k langle v_k,f rangle + sum_{k=1}^N sum_{l=1}^N overline{c}_l c_k langle v_k,v_l rangle
end{align}
I'm not really sure if I'm on the right track. Can somebody help me with the next step. Thanks.
hilbert-spaces norm inner-product-space
Let $mathcal{H}$ denote a separable Hilbert space, with orthonormal basis ${v_k}_{k=1}^infty$. Let $N in mathbb{N}$, and consider the subspace $M := text{span} {v_k}_{k=1}^infty$.
Show that for any $f in mathcal{H}$ and any coefficients $c_1,...,c_N in mathbb{C}$,
begin{equation*}
left| f- sum_{k=1}^N c_kv_k right|^2 = sum_{k=1}^N |c_k - langle f,v_k rangle |^2 + sum_{k=N+1}^infty |langle f,v_k rangle |^2
end{equation*}
My attempt so far
begin{align}
left| f- sum_{k=1}^N c_kv_k right|^2 & = leftlangle f- sum_{k=1}^N c_kv_k, f- sum_{k=1}^N c_kv_k rightrangle \
& = leftlangle f, f- sum_{k=1}^N c_kv_k rightrangle -sum_{k=1}^N c_k leftlangle v_k, f- sum_{k=1}^N c_kv_k rightrangle \
& = langle f,f rangle - sum_{k=1}^N overline{c}_k langle f,v_k rangle - sum_{k=1}^N overline{c}_k langle v_k,f rangle + sum_{k=1}^N sum_{l=1}^N overline{c}_l c_k langle v_k,v_l rangle
end{align}
I'm not really sure if I'm on the right track. Can somebody help me with the next step. Thanks.
hilbert-spaces norm inner-product-space
hilbert-spaces norm inner-product-space
edited Sep 18 '16 at 20:17
asked Sep 18 '16 at 19:12
ANYN11
888
888
By the definition of an orthonormal basis, there exists a sequence $ (lambda_{k})_{k in mathbb{N}} in {ell^{2}}(mathbb{N}) $ such that $$ lim_{n to infty} left| f - sum_{k = 1}^{n} lambda_{k} v_{k} right|_{mathcal{H}} = 0. $$
– Berrick Caleb Fillmore
Sep 18 '16 at 19:24
1
Hint: Use Parseval’s Identity.
– Transcendental
Sep 19 '16 at 3:16
add a comment |
By the definition of an orthonormal basis, there exists a sequence $ (lambda_{k})_{k in mathbb{N}} in {ell^{2}}(mathbb{N}) $ such that $$ lim_{n to infty} left| f - sum_{k = 1}^{n} lambda_{k} v_{k} right|_{mathcal{H}} = 0. $$
– Berrick Caleb Fillmore
Sep 18 '16 at 19:24
1
Hint: Use Parseval’s Identity.
– Transcendental
Sep 19 '16 at 3:16
By the definition of an orthonormal basis, there exists a sequence $ (lambda_{k})_{k in mathbb{N}} in {ell^{2}}(mathbb{N}) $ such that $$ lim_{n to infty} left| f - sum_{k = 1}^{n} lambda_{k} v_{k} right|_{mathcal{H}} = 0. $$
– Berrick Caleb Fillmore
Sep 18 '16 at 19:24
By the definition of an orthonormal basis, there exists a sequence $ (lambda_{k})_{k in mathbb{N}} in {ell^{2}}(mathbb{N}) $ such that $$ lim_{n to infty} left| f - sum_{k = 1}^{n} lambda_{k} v_{k} right|_{mathcal{H}} = 0. $$
– Berrick Caleb Fillmore
Sep 18 '16 at 19:24
1
1
Hint: Use Parseval’s Identity.
– Transcendental
Sep 19 '16 at 3:16
Hint: Use Parseval’s Identity.
– Transcendental
Sep 19 '16 at 3:16
add a comment |
1 Answer
1
active
oldest
votes
up vote
0
down vote
Since ${v_k}_{k=1}^infty$ is an orthonormal basis of $mathcal H$, Parseval's identity shows that for any vector $u$, the following equality holds:
$$
leftlVert urightrVert^2=sum_{k=1}^{+infty}leftlvert leftlangle u,v_krightranglerightrvert^2.
$$
Apply this to $u:= f-sum_{i=1}^N c_iv_i$. Then for all $kgeqslant 1$,
$$
leftlangle u,v_krightrangle=leftlangle f,v_krightrangle
-sum_{i=1}^N c_ileftlangle v_i,v_krightrangle.
$$
If $1leqslant kleqslant N$, then $sum_{i=1}^N c_ileftlangle v_i,v_krightrangle=c_k$ hence $leftlvert leftlangle u,v_krightranglerightrvert^2=leftlvert leftlangle f,v_krightrangle-c_krightrvert^2$ and if $kgeqslant N+1$, then $sum_{i=1}^N c_ileftlangle v_i,v_krightrangle=0$ hence
$leftlvert leftlangle u,v_krightranglerightrvert^2=leftlvert leftlangle f,v_krightrangle rightrvert^2$.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
Since ${v_k}_{k=1}^infty$ is an orthonormal basis of $mathcal H$, Parseval's identity shows that for any vector $u$, the following equality holds:
$$
leftlVert urightrVert^2=sum_{k=1}^{+infty}leftlvert leftlangle u,v_krightranglerightrvert^2.
$$
Apply this to $u:= f-sum_{i=1}^N c_iv_i$. Then for all $kgeqslant 1$,
$$
leftlangle u,v_krightrangle=leftlangle f,v_krightrangle
-sum_{i=1}^N c_ileftlangle v_i,v_krightrangle.
$$
If $1leqslant kleqslant N$, then $sum_{i=1}^N c_ileftlangle v_i,v_krightrangle=c_k$ hence $leftlvert leftlangle u,v_krightranglerightrvert^2=leftlvert leftlangle f,v_krightrangle-c_krightrvert^2$ and if $kgeqslant N+1$, then $sum_{i=1}^N c_ileftlangle v_i,v_krightrangle=0$ hence
$leftlvert leftlangle u,v_krightranglerightrvert^2=leftlvert leftlangle f,v_krightrangle rightrvert^2$.
add a comment |
up vote
0
down vote
Since ${v_k}_{k=1}^infty$ is an orthonormal basis of $mathcal H$, Parseval's identity shows that for any vector $u$, the following equality holds:
$$
leftlVert urightrVert^2=sum_{k=1}^{+infty}leftlvert leftlangle u,v_krightranglerightrvert^2.
$$
Apply this to $u:= f-sum_{i=1}^N c_iv_i$. Then for all $kgeqslant 1$,
$$
leftlangle u,v_krightrangle=leftlangle f,v_krightrangle
-sum_{i=1}^N c_ileftlangle v_i,v_krightrangle.
$$
If $1leqslant kleqslant N$, then $sum_{i=1}^N c_ileftlangle v_i,v_krightrangle=c_k$ hence $leftlvert leftlangle u,v_krightranglerightrvert^2=leftlvert leftlangle f,v_krightrangle-c_krightrvert^2$ and if $kgeqslant N+1$, then $sum_{i=1}^N c_ileftlangle v_i,v_krightrangle=0$ hence
$leftlvert leftlangle u,v_krightranglerightrvert^2=leftlvert leftlangle f,v_krightrangle rightrvert^2$.
add a comment |
up vote
0
down vote
up vote
0
down vote
Since ${v_k}_{k=1}^infty$ is an orthonormal basis of $mathcal H$, Parseval's identity shows that for any vector $u$, the following equality holds:
$$
leftlVert urightrVert^2=sum_{k=1}^{+infty}leftlvert leftlangle u,v_krightranglerightrvert^2.
$$
Apply this to $u:= f-sum_{i=1}^N c_iv_i$. Then for all $kgeqslant 1$,
$$
leftlangle u,v_krightrangle=leftlangle f,v_krightrangle
-sum_{i=1}^N c_ileftlangle v_i,v_krightrangle.
$$
If $1leqslant kleqslant N$, then $sum_{i=1}^N c_ileftlangle v_i,v_krightrangle=c_k$ hence $leftlvert leftlangle u,v_krightranglerightrvert^2=leftlvert leftlangle f,v_krightrangle-c_krightrvert^2$ and if $kgeqslant N+1$, then $sum_{i=1}^N c_ileftlangle v_i,v_krightrangle=0$ hence
$leftlvert leftlangle u,v_krightranglerightrvert^2=leftlvert leftlangle f,v_krightrangle rightrvert^2$.
Since ${v_k}_{k=1}^infty$ is an orthonormal basis of $mathcal H$, Parseval's identity shows that for any vector $u$, the following equality holds:
$$
leftlVert urightrVert^2=sum_{k=1}^{+infty}leftlvert leftlangle u,v_krightranglerightrvert^2.
$$
Apply this to $u:= f-sum_{i=1}^N c_iv_i$. Then for all $kgeqslant 1$,
$$
leftlangle u,v_krightrangle=leftlangle f,v_krightrangle
-sum_{i=1}^N c_ileftlangle v_i,v_krightrangle.
$$
If $1leqslant kleqslant N$, then $sum_{i=1}^N c_ileftlangle v_i,v_krightrangle=c_k$ hence $leftlvert leftlangle u,v_krightranglerightrvert^2=leftlvert leftlangle f,v_krightrangle-c_krightrvert^2$ and if $kgeqslant N+1$, then $sum_{i=1}^N c_ileftlangle v_i,v_krightrangle=0$ hence
$leftlvert leftlangle u,v_krightranglerightrvert^2=leftlvert leftlangle f,v_krightrangle rightrvert^2$.
answered Nov 14 at 10:33
Davide Giraudo
123k16149253
123k16149253
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1931912%2fshow-that-left-f-sum-k-1n-c-kv-k-right-2-can-be-written-as%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
By the definition of an orthonormal basis, there exists a sequence $ (lambda_{k})_{k in mathbb{N}} in {ell^{2}}(mathbb{N}) $ such that $$ lim_{n to infty} left| f - sum_{k = 1}^{n} lambda_{k} v_{k} right|_{mathcal{H}} = 0. $$
– Berrick Caleb Fillmore
Sep 18 '16 at 19:24
1
Hint: Use Parseval’s Identity.
– Transcendental
Sep 19 '16 at 3:16