How to evaluate $lim_{n to infty} frac{(1+sqrt 2)^n+(1-sqrt 2)^n}{(1+sqrt 2)^n-(1-sqrt 2)^n}$?
up vote
2
down vote
favorite
Evaluate $$lim_{n to infty} frac{(1+sqrt 2)^n+(1-sqrt 2)^n}{(1+sqrt 2)^n-(1-sqrt 2)^n}.$$
I tried to expand using Newton's Binomial Theorem, but it didn't work.
calculus sequences-and-series limits
add a comment |
up vote
2
down vote
favorite
Evaluate $$lim_{n to infty} frac{(1+sqrt 2)^n+(1-sqrt 2)^n}{(1+sqrt 2)^n-(1-sqrt 2)^n}.$$
I tried to expand using Newton's Binomial Theorem, but it didn't work.
calculus sequences-and-series limits
8
Divide throughout by $(1+sqrt{2})^n$ and observe that $left|dfrac{1-sqrt{2}}{1+sqrt{2}}right| < 1$.
– Muralidharan
Nov 15 at 16:22
@Muralidharan you might post your comment as an answer :)
– Nosrati
Nov 15 at 16:27
observe that $|1-sqrt{2}|<1$
– Vasya
Nov 15 at 16:51
add a comment |
up vote
2
down vote
favorite
up vote
2
down vote
favorite
Evaluate $$lim_{n to infty} frac{(1+sqrt 2)^n+(1-sqrt 2)^n}{(1+sqrt 2)^n-(1-sqrt 2)^n}.$$
I tried to expand using Newton's Binomial Theorem, but it didn't work.
calculus sequences-and-series limits
Evaluate $$lim_{n to infty} frac{(1+sqrt 2)^n+(1-sqrt 2)^n}{(1+sqrt 2)^n-(1-sqrt 2)^n}.$$
I tried to expand using Newton's Binomial Theorem, but it didn't work.
calculus sequences-and-series limits
calculus sequences-and-series limits
edited Nov 15 at 16:41
amWhy
191k27223438
191k27223438
asked Nov 15 at 16:17
user69503
566
566
8
Divide throughout by $(1+sqrt{2})^n$ and observe that $left|dfrac{1-sqrt{2}}{1+sqrt{2}}right| < 1$.
– Muralidharan
Nov 15 at 16:22
@Muralidharan you might post your comment as an answer :)
– Nosrati
Nov 15 at 16:27
observe that $|1-sqrt{2}|<1$
– Vasya
Nov 15 at 16:51
add a comment |
8
Divide throughout by $(1+sqrt{2})^n$ and observe that $left|dfrac{1-sqrt{2}}{1+sqrt{2}}right| < 1$.
– Muralidharan
Nov 15 at 16:22
@Muralidharan you might post your comment as an answer :)
– Nosrati
Nov 15 at 16:27
observe that $|1-sqrt{2}|<1$
– Vasya
Nov 15 at 16:51
8
8
Divide throughout by $(1+sqrt{2})^n$ and observe that $left|dfrac{1-sqrt{2}}{1+sqrt{2}}right| < 1$.
– Muralidharan
Nov 15 at 16:22
Divide throughout by $(1+sqrt{2})^n$ and observe that $left|dfrac{1-sqrt{2}}{1+sqrt{2}}right| < 1$.
– Muralidharan
Nov 15 at 16:22
@Muralidharan you might post your comment as an answer :)
– Nosrati
Nov 15 at 16:27
@Muralidharan you might post your comment as an answer :)
– Nosrati
Nov 15 at 16:27
observe that $|1-sqrt{2}|<1$
– Vasya
Nov 15 at 16:51
observe that $|1-sqrt{2}|<1$
– Vasya
Nov 15 at 16:51
add a comment |
3 Answers
3
active
oldest
votes
up vote
5
down vote
$lim_{n to infty} frac{(1+sqrt 2)^n+(1-sqrt 2)^n}{(1+sqrt 2)^n-(1-sqrt 2)^n}$
$= lim_{nto infty }frac{1+a^n}{1-a^n} $ such that
$a=frac{(1-2^{frac{1}{2}})}{(1+2^{frac{1}{2}})} $ , $|a|<1$. So
lim is equal to $frac{1-0}{1+0}=1$
3
Dadrahm.Maybe you could add |a| <1.
– Peter Szilas
Nov 15 at 16:49
Thank you . . .
– Dadrahm
Nov 15 at 17:43
Dahdram.A pleasure +.
– Peter Szilas
Nov 15 at 17:55
add a comment |
up vote
1
down vote
Roughly, $|1-sqrt 2| lt 1$, so a high power of it will go to $0$. $1+sqrt 2 gt 1$, so a high power of it will be large and positive. We can ignore the two small terms and be left with the fixed ratio $1$. Depending on what theorems you have proved about limits that may be enough.
add a comment |
up vote
1
down vote
We have that
- $|1-sqrt 2|<1 implies (1-sqrt 2)^n to 0$
therefore
$$frac{(1+sqrt 2)^n+(1-sqrt 2)^n}{(1+sqrt 2)^n-(1-sqrt 2)^n}sim frac{(1+sqrt 2)^n}{(1+sqrt 2)^n}=1$$
or more rigoursly
$$frac{(1+sqrt 2)^n+(1-sqrt 2)^n}{(1+sqrt 2)^n-(1-sqrt 2)^n}= frac{(1+sqrt 2)^n}{(1+sqrt 2)^n}frac{1+frac{(1-sqrt 2)^n}{(1+sqrt 2)^n}}{1-frac{(1-sqrt 2)^n}{(1+sqrt 2)^n}}to frac{1+0}{1-0}$$
add a comment |
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
5
down vote
$lim_{n to infty} frac{(1+sqrt 2)^n+(1-sqrt 2)^n}{(1+sqrt 2)^n-(1-sqrt 2)^n}$
$= lim_{nto infty }frac{1+a^n}{1-a^n} $ such that
$a=frac{(1-2^{frac{1}{2}})}{(1+2^{frac{1}{2}})} $ , $|a|<1$. So
lim is equal to $frac{1-0}{1+0}=1$
3
Dadrahm.Maybe you could add |a| <1.
– Peter Szilas
Nov 15 at 16:49
Thank you . . .
– Dadrahm
Nov 15 at 17:43
Dahdram.A pleasure +.
– Peter Szilas
Nov 15 at 17:55
add a comment |
up vote
5
down vote
$lim_{n to infty} frac{(1+sqrt 2)^n+(1-sqrt 2)^n}{(1+sqrt 2)^n-(1-sqrt 2)^n}$
$= lim_{nto infty }frac{1+a^n}{1-a^n} $ such that
$a=frac{(1-2^{frac{1}{2}})}{(1+2^{frac{1}{2}})} $ , $|a|<1$. So
lim is equal to $frac{1-0}{1+0}=1$
3
Dadrahm.Maybe you could add |a| <1.
– Peter Szilas
Nov 15 at 16:49
Thank you . . .
– Dadrahm
Nov 15 at 17:43
Dahdram.A pleasure +.
– Peter Szilas
Nov 15 at 17:55
add a comment |
up vote
5
down vote
up vote
5
down vote
$lim_{n to infty} frac{(1+sqrt 2)^n+(1-sqrt 2)^n}{(1+sqrt 2)^n-(1-sqrt 2)^n}$
$= lim_{nto infty }frac{1+a^n}{1-a^n} $ such that
$a=frac{(1-2^{frac{1}{2}})}{(1+2^{frac{1}{2}})} $ , $|a|<1$. So
lim is equal to $frac{1-0}{1+0}=1$
$lim_{n to infty} frac{(1+sqrt 2)^n+(1-sqrt 2)^n}{(1+sqrt 2)^n-(1-sqrt 2)^n}$
$= lim_{nto infty }frac{1+a^n}{1-a^n} $ such that
$a=frac{(1-2^{frac{1}{2}})}{(1+2^{frac{1}{2}})} $ , $|a|<1$. So
lim is equal to $frac{1-0}{1+0}=1$
edited Nov 15 at 17:42
answered Nov 15 at 16:42
Dadrahm
3448
3448
3
Dadrahm.Maybe you could add |a| <1.
– Peter Szilas
Nov 15 at 16:49
Thank you . . .
– Dadrahm
Nov 15 at 17:43
Dahdram.A pleasure +.
– Peter Szilas
Nov 15 at 17:55
add a comment |
3
Dadrahm.Maybe you could add |a| <1.
– Peter Szilas
Nov 15 at 16:49
Thank you . . .
– Dadrahm
Nov 15 at 17:43
Dahdram.A pleasure +.
– Peter Szilas
Nov 15 at 17:55
3
3
Dadrahm.Maybe you could add |a| <1.
– Peter Szilas
Nov 15 at 16:49
Dadrahm.Maybe you could add |a| <1.
– Peter Szilas
Nov 15 at 16:49
Thank you . . .
– Dadrahm
Nov 15 at 17:43
Thank you . . .
– Dadrahm
Nov 15 at 17:43
Dahdram.A pleasure +.
– Peter Szilas
Nov 15 at 17:55
Dahdram.A pleasure +.
– Peter Szilas
Nov 15 at 17:55
add a comment |
up vote
1
down vote
Roughly, $|1-sqrt 2| lt 1$, so a high power of it will go to $0$. $1+sqrt 2 gt 1$, so a high power of it will be large and positive. We can ignore the two small terms and be left with the fixed ratio $1$. Depending on what theorems you have proved about limits that may be enough.
add a comment |
up vote
1
down vote
Roughly, $|1-sqrt 2| lt 1$, so a high power of it will go to $0$. $1+sqrt 2 gt 1$, so a high power of it will be large and positive. We can ignore the two small terms and be left with the fixed ratio $1$. Depending on what theorems you have proved about limits that may be enough.
add a comment |
up vote
1
down vote
up vote
1
down vote
Roughly, $|1-sqrt 2| lt 1$, so a high power of it will go to $0$. $1+sqrt 2 gt 1$, so a high power of it will be large and positive. We can ignore the two small terms and be left with the fixed ratio $1$. Depending on what theorems you have proved about limits that may be enough.
Roughly, $|1-sqrt 2| lt 1$, so a high power of it will go to $0$. $1+sqrt 2 gt 1$, so a high power of it will be large and positive. We can ignore the two small terms and be left with the fixed ratio $1$. Depending on what theorems you have proved about limits that may be enough.
answered Nov 15 at 16:54
Ross Millikan
287k23195364
287k23195364
add a comment |
add a comment |
up vote
1
down vote
We have that
- $|1-sqrt 2|<1 implies (1-sqrt 2)^n to 0$
therefore
$$frac{(1+sqrt 2)^n+(1-sqrt 2)^n}{(1+sqrt 2)^n-(1-sqrt 2)^n}sim frac{(1+sqrt 2)^n}{(1+sqrt 2)^n}=1$$
or more rigoursly
$$frac{(1+sqrt 2)^n+(1-sqrt 2)^n}{(1+sqrt 2)^n-(1-sqrt 2)^n}= frac{(1+sqrt 2)^n}{(1+sqrt 2)^n}frac{1+frac{(1-sqrt 2)^n}{(1+sqrt 2)^n}}{1-frac{(1-sqrt 2)^n}{(1+sqrt 2)^n}}to frac{1+0}{1-0}$$
add a comment |
up vote
1
down vote
We have that
- $|1-sqrt 2|<1 implies (1-sqrt 2)^n to 0$
therefore
$$frac{(1+sqrt 2)^n+(1-sqrt 2)^n}{(1+sqrt 2)^n-(1-sqrt 2)^n}sim frac{(1+sqrt 2)^n}{(1+sqrt 2)^n}=1$$
or more rigoursly
$$frac{(1+sqrt 2)^n+(1-sqrt 2)^n}{(1+sqrt 2)^n-(1-sqrt 2)^n}= frac{(1+sqrt 2)^n}{(1+sqrt 2)^n}frac{1+frac{(1-sqrt 2)^n}{(1+sqrt 2)^n}}{1-frac{(1-sqrt 2)^n}{(1+sqrt 2)^n}}to frac{1+0}{1-0}$$
add a comment |
up vote
1
down vote
up vote
1
down vote
We have that
- $|1-sqrt 2|<1 implies (1-sqrt 2)^n to 0$
therefore
$$frac{(1+sqrt 2)^n+(1-sqrt 2)^n}{(1+sqrt 2)^n-(1-sqrt 2)^n}sim frac{(1+sqrt 2)^n}{(1+sqrt 2)^n}=1$$
or more rigoursly
$$frac{(1+sqrt 2)^n+(1-sqrt 2)^n}{(1+sqrt 2)^n-(1-sqrt 2)^n}= frac{(1+sqrt 2)^n}{(1+sqrt 2)^n}frac{1+frac{(1-sqrt 2)^n}{(1+sqrt 2)^n}}{1-frac{(1-sqrt 2)^n}{(1+sqrt 2)^n}}to frac{1+0}{1-0}$$
We have that
- $|1-sqrt 2|<1 implies (1-sqrt 2)^n to 0$
therefore
$$frac{(1+sqrt 2)^n+(1-sqrt 2)^n}{(1+sqrt 2)^n-(1-sqrt 2)^n}sim frac{(1+sqrt 2)^n}{(1+sqrt 2)^n}=1$$
or more rigoursly
$$frac{(1+sqrt 2)^n+(1-sqrt 2)^n}{(1+sqrt 2)^n-(1-sqrt 2)^n}= frac{(1+sqrt 2)^n}{(1+sqrt 2)^n}frac{1+frac{(1-sqrt 2)^n}{(1+sqrt 2)^n}}{1-frac{(1-sqrt 2)^n}{(1+sqrt 2)^n}}to frac{1+0}{1-0}$$
answered Nov 15 at 17:17
gimusi
87.7k74393
87.7k74393
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999898%2fhow-to-evaluate-lim-n-to-infty-frac1-sqrt-2n1-sqrt-2n1-sqrt%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
8
Divide throughout by $(1+sqrt{2})^n$ and observe that $left|dfrac{1-sqrt{2}}{1+sqrt{2}}right| < 1$.
– Muralidharan
Nov 15 at 16:22
@Muralidharan you might post your comment as an answer :)
– Nosrati
Nov 15 at 16:27
observe that $|1-sqrt{2}|<1$
– Vasya
Nov 15 at 16:51