Nearly locally presentable categories
up vote
1
down vote
favorite
Here1, in the remark $2.3 (1)$ how from the fact that ${cal K}(A,-)$ does not preserve coproducts it follows that ${cal K}(A,-)$ sends special $lambda$-directed colimits to $lambda$-directed colimits and not to special $lambda$-directed ones?
1
Leonid Positselski, Jiří Rosický: Nearly locally presentable categories,
Theory and Appl. of Categories 33 (2018), #10, p.253-264;
http://www.tac.mta.ca/tac/volumes/33/10/33-10abs.html https://arxiv.org/abs/1710.10476
category-theory functors representable-functor hom-functor
add a comment |
up vote
1
down vote
favorite
Here1, in the remark $2.3 (1)$ how from the fact that ${cal K}(A,-)$ does not preserve coproducts it follows that ${cal K}(A,-)$ sends special $lambda$-directed colimits to $lambda$-directed colimits and not to special $lambda$-directed ones?
1
Leonid Positselski, Jiří Rosický: Nearly locally presentable categories,
Theory and Appl. of Categories 33 (2018), #10, p.253-264;
http://www.tac.mta.ca/tac/volumes/33/10/33-10abs.html https://arxiv.org/abs/1710.10476
category-theory functors representable-functor hom-functor
To preserve special directed colimits, which are by definition always coproducts, just with a richer diagram shape than the discrete one, you would have to preserve coproducts.
– Kevin Carlson
Nov 14 at 18:53
I do not follow the meaning of the middle part of your sentence: " just with a richer diagram shape than the discrete one"
– user122424
Nov 14 at 21:07
It's a coproduct expressed as a filtered colimit of sub-coproducts of up to size $lambda$ rather than as a discrete colimit. But it's still required to be a coproduct.
– Kevin Carlson
Nov 14 at 22:05
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Here1, in the remark $2.3 (1)$ how from the fact that ${cal K}(A,-)$ does not preserve coproducts it follows that ${cal K}(A,-)$ sends special $lambda$-directed colimits to $lambda$-directed colimits and not to special $lambda$-directed ones?
1
Leonid Positselski, Jiří Rosický: Nearly locally presentable categories,
Theory and Appl. of Categories 33 (2018), #10, p.253-264;
http://www.tac.mta.ca/tac/volumes/33/10/33-10abs.html https://arxiv.org/abs/1710.10476
category-theory functors representable-functor hom-functor
Here1, in the remark $2.3 (1)$ how from the fact that ${cal K}(A,-)$ does not preserve coproducts it follows that ${cal K}(A,-)$ sends special $lambda$-directed colimits to $lambda$-directed colimits and not to special $lambda$-directed ones?
1
Leonid Positselski, Jiří Rosický: Nearly locally presentable categories,
Theory and Appl. of Categories 33 (2018), #10, p.253-264;
http://www.tac.mta.ca/tac/volumes/33/10/33-10abs.html https://arxiv.org/abs/1710.10476
category-theory functors representable-functor hom-functor
category-theory functors representable-functor hom-functor
edited Nov 22 at 10:49
user302797
19.1k92251
19.1k92251
asked Nov 14 at 15:06
user122424
1,0681616
1,0681616
To preserve special directed colimits, which are by definition always coproducts, just with a richer diagram shape than the discrete one, you would have to preserve coproducts.
– Kevin Carlson
Nov 14 at 18:53
I do not follow the meaning of the middle part of your sentence: " just with a richer diagram shape than the discrete one"
– user122424
Nov 14 at 21:07
It's a coproduct expressed as a filtered colimit of sub-coproducts of up to size $lambda$ rather than as a discrete colimit. But it's still required to be a coproduct.
– Kevin Carlson
Nov 14 at 22:05
add a comment |
To preserve special directed colimits, which are by definition always coproducts, just with a richer diagram shape than the discrete one, you would have to preserve coproducts.
– Kevin Carlson
Nov 14 at 18:53
I do not follow the meaning of the middle part of your sentence: " just with a richer diagram shape than the discrete one"
– user122424
Nov 14 at 21:07
It's a coproduct expressed as a filtered colimit of sub-coproducts of up to size $lambda$ rather than as a discrete colimit. But it's still required to be a coproduct.
– Kevin Carlson
Nov 14 at 22:05
To preserve special directed colimits, which are by definition always coproducts, just with a richer diagram shape than the discrete one, you would have to preserve coproducts.
– Kevin Carlson
Nov 14 at 18:53
To preserve special directed colimits, which are by definition always coproducts, just with a richer diagram shape than the discrete one, you would have to preserve coproducts.
– Kevin Carlson
Nov 14 at 18:53
I do not follow the meaning of the middle part of your sentence: " just with a richer diagram shape than the discrete one"
– user122424
Nov 14 at 21:07
I do not follow the meaning of the middle part of your sentence: " just with a richer diagram shape than the discrete one"
– user122424
Nov 14 at 21:07
It's a coproduct expressed as a filtered colimit of sub-coproducts of up to size $lambda$ rather than as a discrete colimit. But it's still required to be a coproduct.
– Kevin Carlson
Nov 14 at 22:05
It's a coproduct expressed as a filtered colimit of sub-coproducts of up to size $lambda$ rather than as a discrete colimit. But it's still required to be a coproduct.
– Kevin Carlson
Nov 14 at 22:05
add a comment |
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2998365%2fnearly-locally-presentable-categories%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
To preserve special directed colimits, which are by definition always coproducts, just with a richer diagram shape than the discrete one, you would have to preserve coproducts.
– Kevin Carlson
Nov 14 at 18:53
I do not follow the meaning of the middle part of your sentence: " just with a richer diagram shape than the discrete one"
– user122424
Nov 14 at 21:07
It's a coproduct expressed as a filtered colimit of sub-coproducts of up to size $lambda$ rather than as a discrete colimit. But it's still required to be a coproduct.
– Kevin Carlson
Nov 14 at 22:05