Approximation of a lower semi continuous function by monotone sequence of continuous functions












0












$begingroup$


Let $ (X, d_X)$ and $ (Y, d_Y) $ be metric spaces and let
$$ c: X times Y to [0, +infty]$$
a lower semicontinuous function. Then define for each $k in mathbb{N}$ the functions
$$ c_k (x,y): = inf_{x' in X, y' in Y} { c(x',y') wedge k + kd_X(x,x')+kd_Y(y,y') } $$
Then $c_k$ are continuous functions, monotonically increasing converging to $c$.



Proof:




  1. Continuity: take $(x,y) in X times Y$ and a sequence ${ x_n,y_n }_{n ge 1} $ converging to $(x,y)$. Then
    $$ | c_k(x,y)-c_k(x_n,y_n) | le sup_{x' in X, y' in Y} | kd_X(x,x')+kd_Y(y,y') -kd_X(x_n,x')-kd_Y(y_n,y') | le sup_{x' in X, y' in Y} k(d_X(x_n, x)|+d_Y(y_n,y)) to 0$$


  2. Monotonically increasing: fix $(x,y) in X times Y$ and consider any $(x',y') in X times Y$, then
    $$ c(x',y') wedge k + kd_X(x',x)+ kd_Y(y,y') le c(x',y') wedge (k+1) + (k+1)d_X(x',x)+ (k+1)d_Y(y,y') $$
    and then
    $$ c_{k}(x,y) le c_{k+1}(x,y) $$


  3. Convergence: First I observe that if $ (x',y') = (x,y)$ and $c(x,y) = + infty$ I have
    $$c(x',y') wedge k + kd_X(x',x)+ kd_Y(y,y')= c(x,y) wedge k = k$$
    Then $c_k(x,y) ge k$ and then $c_k to + infty$ when $k to + infty$.
    From now on I only consider the case in which $c(x,y) < + infty$. Then if $ (x',y') = (x,y)$, I have
    $$c(x',y') wedge k + kd_X(x',x)+ kd_Y(y,y')= c(x,y) wedge k le c(x,y) $$
    which implies $c_k(x,y) le c(x,y)$. Then it is enough to prove that $c(x,y)$ is the supremum of the sequence $c_k(x,y)$. Fix $0< epsilon < c(x,y)/2$.
    I want to prove that there exists a $k_{epsilon} in mathbb{N}$ s.t.
    $$c_{k_{epsilon}}(x,y) > c(x,y) - 2epsilon $$
    To do that I find $k_{epsilon} in mathbb{N}$ s.t.
    $$ c(x',y') wedge k_{epsilon} + k_{epsilon}d_X(x',x)+ k_{epsilon}d_Y(y,y') > c(x,y) -epsilon $$
    for any $(x',y') in X times Y$.
    Since $c$ is l.s.c. there exists a $delta= delta(epsilon)>0$ s.t.
    $$ (x',y') in B_{delta}((x,y)) Rightarrow c(x',y') > c(x,y) - epsilon$$



Then if $(x',y') in B_{delta}((x,y))$ I take $k_{epsilon} > c(x,y)- epsilon$ and then
$$ c(x',y') wedge k_{epsilon} + k_{epsilon}d_X(x',x)+ k_{epsilon}d_Y(y,y') > c(x,y) - epsilon + 0 $$



If $(x',y') notin B_{delta}((x,y))$ then $d_X(x',x) +d(y',y) > c(epsilon) >0$ and then, taking
$$k_{epsilon} > frac{c(x,y)-epsilon}{c(epsilon)}$$
I obtain
$$ c(x',y') wedge k_{epsilon} + k_{epsilon}d_X(x',x)+ k_{epsilon}d_Y(y,y') > 0 + c(x,y) - epsilon$$
QED



I think this proof is too long and involved.
So



is this proof correct? Does there exist a shorter proof?










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    Let $ (X, d_X)$ and $ (Y, d_Y) $ be metric spaces and let
    $$ c: X times Y to [0, +infty]$$
    a lower semicontinuous function. Then define for each $k in mathbb{N}$ the functions
    $$ c_k (x,y): = inf_{x' in X, y' in Y} { c(x',y') wedge k + kd_X(x,x')+kd_Y(y,y') } $$
    Then $c_k$ are continuous functions, monotonically increasing converging to $c$.



    Proof:




    1. Continuity: take $(x,y) in X times Y$ and a sequence ${ x_n,y_n }_{n ge 1} $ converging to $(x,y)$. Then
      $$ | c_k(x,y)-c_k(x_n,y_n) | le sup_{x' in X, y' in Y} | kd_X(x,x')+kd_Y(y,y') -kd_X(x_n,x')-kd_Y(y_n,y') | le sup_{x' in X, y' in Y} k(d_X(x_n, x)|+d_Y(y_n,y)) to 0$$


    2. Monotonically increasing: fix $(x,y) in X times Y$ and consider any $(x',y') in X times Y$, then
      $$ c(x',y') wedge k + kd_X(x',x)+ kd_Y(y,y') le c(x',y') wedge (k+1) + (k+1)d_X(x',x)+ (k+1)d_Y(y,y') $$
      and then
      $$ c_{k}(x,y) le c_{k+1}(x,y) $$


    3. Convergence: First I observe that if $ (x',y') = (x,y)$ and $c(x,y) = + infty$ I have
      $$c(x',y') wedge k + kd_X(x',x)+ kd_Y(y,y')= c(x,y) wedge k = k$$
      Then $c_k(x,y) ge k$ and then $c_k to + infty$ when $k to + infty$.
      From now on I only consider the case in which $c(x,y) < + infty$. Then if $ (x',y') = (x,y)$, I have
      $$c(x',y') wedge k + kd_X(x',x)+ kd_Y(y,y')= c(x,y) wedge k le c(x,y) $$
      which implies $c_k(x,y) le c(x,y)$. Then it is enough to prove that $c(x,y)$ is the supremum of the sequence $c_k(x,y)$. Fix $0< epsilon < c(x,y)/2$.
      I want to prove that there exists a $k_{epsilon} in mathbb{N}$ s.t.
      $$c_{k_{epsilon}}(x,y) > c(x,y) - 2epsilon $$
      To do that I find $k_{epsilon} in mathbb{N}$ s.t.
      $$ c(x',y') wedge k_{epsilon} + k_{epsilon}d_X(x',x)+ k_{epsilon}d_Y(y,y') > c(x,y) -epsilon $$
      for any $(x',y') in X times Y$.
      Since $c$ is l.s.c. there exists a $delta= delta(epsilon)>0$ s.t.
      $$ (x',y') in B_{delta}((x,y)) Rightarrow c(x',y') > c(x,y) - epsilon$$



    Then if $(x',y') in B_{delta}((x,y))$ I take $k_{epsilon} > c(x,y)- epsilon$ and then
    $$ c(x',y') wedge k_{epsilon} + k_{epsilon}d_X(x',x)+ k_{epsilon}d_Y(y,y') > c(x,y) - epsilon + 0 $$



    If $(x',y') notin B_{delta}((x,y))$ then $d_X(x',x) +d(y',y) > c(epsilon) >0$ and then, taking
    $$k_{epsilon} > frac{c(x,y)-epsilon}{c(epsilon)}$$
    I obtain
    $$ c(x',y') wedge k_{epsilon} + k_{epsilon}d_X(x',x)+ k_{epsilon}d_Y(y,y') > 0 + c(x,y) - epsilon$$
    QED



    I think this proof is too long and involved.
    So



    is this proof correct? Does there exist a shorter proof?










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      Let $ (X, d_X)$ and $ (Y, d_Y) $ be metric spaces and let
      $$ c: X times Y to [0, +infty]$$
      a lower semicontinuous function. Then define for each $k in mathbb{N}$ the functions
      $$ c_k (x,y): = inf_{x' in X, y' in Y} { c(x',y') wedge k + kd_X(x,x')+kd_Y(y,y') } $$
      Then $c_k$ are continuous functions, monotonically increasing converging to $c$.



      Proof:




      1. Continuity: take $(x,y) in X times Y$ and a sequence ${ x_n,y_n }_{n ge 1} $ converging to $(x,y)$. Then
        $$ | c_k(x,y)-c_k(x_n,y_n) | le sup_{x' in X, y' in Y} | kd_X(x,x')+kd_Y(y,y') -kd_X(x_n,x')-kd_Y(y_n,y') | le sup_{x' in X, y' in Y} k(d_X(x_n, x)|+d_Y(y_n,y)) to 0$$


      2. Monotonically increasing: fix $(x,y) in X times Y$ and consider any $(x',y') in X times Y$, then
        $$ c(x',y') wedge k + kd_X(x',x)+ kd_Y(y,y') le c(x',y') wedge (k+1) + (k+1)d_X(x',x)+ (k+1)d_Y(y,y') $$
        and then
        $$ c_{k}(x,y) le c_{k+1}(x,y) $$


      3. Convergence: First I observe that if $ (x',y') = (x,y)$ and $c(x,y) = + infty$ I have
        $$c(x',y') wedge k + kd_X(x',x)+ kd_Y(y,y')= c(x,y) wedge k = k$$
        Then $c_k(x,y) ge k$ and then $c_k to + infty$ when $k to + infty$.
        From now on I only consider the case in which $c(x,y) < + infty$. Then if $ (x',y') = (x,y)$, I have
        $$c(x',y') wedge k + kd_X(x',x)+ kd_Y(y,y')= c(x,y) wedge k le c(x,y) $$
        which implies $c_k(x,y) le c(x,y)$. Then it is enough to prove that $c(x,y)$ is the supremum of the sequence $c_k(x,y)$. Fix $0< epsilon < c(x,y)/2$.
        I want to prove that there exists a $k_{epsilon} in mathbb{N}$ s.t.
        $$c_{k_{epsilon}}(x,y) > c(x,y) - 2epsilon $$
        To do that I find $k_{epsilon} in mathbb{N}$ s.t.
        $$ c(x',y') wedge k_{epsilon} + k_{epsilon}d_X(x',x)+ k_{epsilon}d_Y(y,y') > c(x,y) -epsilon $$
        for any $(x',y') in X times Y$.
        Since $c$ is l.s.c. there exists a $delta= delta(epsilon)>0$ s.t.
        $$ (x',y') in B_{delta}((x,y)) Rightarrow c(x',y') > c(x,y) - epsilon$$



      Then if $(x',y') in B_{delta}((x,y))$ I take $k_{epsilon} > c(x,y)- epsilon$ and then
      $$ c(x',y') wedge k_{epsilon} + k_{epsilon}d_X(x',x)+ k_{epsilon}d_Y(y,y') > c(x,y) - epsilon + 0 $$



      If $(x',y') notin B_{delta}((x,y))$ then $d_X(x',x) +d(y',y) > c(epsilon) >0$ and then, taking
      $$k_{epsilon} > frac{c(x,y)-epsilon}{c(epsilon)}$$
      I obtain
      $$ c(x',y') wedge k_{epsilon} + k_{epsilon}d_X(x',x)+ k_{epsilon}d_Y(y,y') > 0 + c(x,y) - epsilon$$
      QED



      I think this proof is too long and involved.
      So



      is this proof correct? Does there exist a shorter proof?










      share|cite|improve this question











      $endgroup$




      Let $ (X, d_X)$ and $ (Y, d_Y) $ be metric spaces and let
      $$ c: X times Y to [0, +infty]$$
      a lower semicontinuous function. Then define for each $k in mathbb{N}$ the functions
      $$ c_k (x,y): = inf_{x' in X, y' in Y} { c(x',y') wedge k + kd_X(x,x')+kd_Y(y,y') } $$
      Then $c_k$ are continuous functions, monotonically increasing converging to $c$.



      Proof:




      1. Continuity: take $(x,y) in X times Y$ and a sequence ${ x_n,y_n }_{n ge 1} $ converging to $(x,y)$. Then
        $$ | c_k(x,y)-c_k(x_n,y_n) | le sup_{x' in X, y' in Y} | kd_X(x,x')+kd_Y(y,y') -kd_X(x_n,x')-kd_Y(y_n,y') | le sup_{x' in X, y' in Y} k(d_X(x_n, x)|+d_Y(y_n,y)) to 0$$


      2. Monotonically increasing: fix $(x,y) in X times Y$ and consider any $(x',y') in X times Y$, then
        $$ c(x',y') wedge k + kd_X(x',x)+ kd_Y(y,y') le c(x',y') wedge (k+1) + (k+1)d_X(x',x)+ (k+1)d_Y(y,y') $$
        and then
        $$ c_{k}(x,y) le c_{k+1}(x,y) $$


      3. Convergence: First I observe that if $ (x',y') = (x,y)$ and $c(x,y) = + infty$ I have
        $$c(x',y') wedge k + kd_X(x',x)+ kd_Y(y,y')= c(x,y) wedge k = k$$
        Then $c_k(x,y) ge k$ and then $c_k to + infty$ when $k to + infty$.
        From now on I only consider the case in which $c(x,y) < + infty$. Then if $ (x',y') = (x,y)$, I have
        $$c(x',y') wedge k + kd_X(x',x)+ kd_Y(y,y')= c(x,y) wedge k le c(x,y) $$
        which implies $c_k(x,y) le c(x,y)$. Then it is enough to prove that $c(x,y)$ is the supremum of the sequence $c_k(x,y)$. Fix $0< epsilon < c(x,y)/2$.
        I want to prove that there exists a $k_{epsilon} in mathbb{N}$ s.t.
        $$c_{k_{epsilon}}(x,y) > c(x,y) - 2epsilon $$
        To do that I find $k_{epsilon} in mathbb{N}$ s.t.
        $$ c(x',y') wedge k_{epsilon} + k_{epsilon}d_X(x',x)+ k_{epsilon}d_Y(y,y') > c(x,y) -epsilon $$
        for any $(x',y') in X times Y$.
        Since $c$ is l.s.c. there exists a $delta= delta(epsilon)>0$ s.t.
        $$ (x',y') in B_{delta}((x,y)) Rightarrow c(x',y') > c(x,y) - epsilon$$



      Then if $(x',y') in B_{delta}((x,y))$ I take $k_{epsilon} > c(x,y)- epsilon$ and then
      $$ c(x',y') wedge k_{epsilon} + k_{epsilon}d_X(x',x)+ k_{epsilon}d_Y(y,y') > c(x,y) - epsilon + 0 $$



      If $(x',y') notin B_{delta}((x,y))$ then $d_X(x',x) +d(y',y) > c(epsilon) >0$ and then, taking
      $$k_{epsilon} > frac{c(x,y)-epsilon}{c(epsilon)}$$
      I obtain
      $$ c(x',y') wedge k_{epsilon} + k_{epsilon}d_X(x',x)+ k_{epsilon}d_Y(y,y') > 0 + c(x,y) - epsilon$$
      QED



      I think this proof is too long and involved.
      So



      is this proof correct? Does there exist a shorter proof?







      real-analysis proof-verification convergence






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 3 '18 at 18:10







      Bremen000

















      asked Dec 1 '18 at 23:44









      Bremen000Bremen000

      424210




      424210






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022008%2fapproximation-of-a-lower-semi-continuous-function-by-monotone-sequence-of-contin%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022008%2fapproximation-of-a-lower-semi-continuous-function-by-monotone-sequence-of-contin%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Plaza Victoria

          In PowerPoint, is there a keyboard shortcut for bulleted / numbered list?

          How to put 3 figures in Latex with 2 figures side by side and 1 below these side by side images but in...