Deriving the translog production function












3












$begingroup$


Ive been having difficulty deriving the translog production function defined as:



$$ln y=alpha_0+sum_{i=1}^nalpha_i ln x_i+frac{1}{2}sum_{i=1}^nsum_{j=1}^n beta_{ij}ln x_iln x_j $$



I know we start with a log-log production function.
$$ln y=alpha_0+sum_{i=1}^nalpha_iln x_i$$



the next step from what i recall is to take the taylor series of this function around the point $x_i=0$. the reason why this is an issue is because $ln(0)$ is undefined.



How exactly is this function derived?










share|improve this question









$endgroup$

















    3












    $begingroup$


    Ive been having difficulty deriving the translog production function defined as:



    $$ln y=alpha_0+sum_{i=1}^nalpha_i ln x_i+frac{1}{2}sum_{i=1}^nsum_{j=1}^n beta_{ij}ln x_iln x_j $$



    I know we start with a log-log production function.
    $$ln y=alpha_0+sum_{i=1}^nalpha_iln x_i$$



    the next step from what i recall is to take the taylor series of this function around the point $x_i=0$. the reason why this is an issue is because $ln(0)$ is undefined.



    How exactly is this function derived?










    share|improve this question









    $endgroup$















      3












      3








      3


      1



      $begingroup$


      Ive been having difficulty deriving the translog production function defined as:



      $$ln y=alpha_0+sum_{i=1}^nalpha_i ln x_i+frac{1}{2}sum_{i=1}^nsum_{j=1}^n beta_{ij}ln x_iln x_j $$



      I know we start with a log-log production function.
      $$ln y=alpha_0+sum_{i=1}^nalpha_iln x_i$$



      the next step from what i recall is to take the taylor series of this function around the point $x_i=0$. the reason why this is an issue is because $ln(0)$ is undefined.



      How exactly is this function derived?










      share|improve this question









      $endgroup$




      Ive been having difficulty deriving the translog production function defined as:



      $$ln y=alpha_0+sum_{i=1}^nalpha_i ln x_i+frac{1}{2}sum_{i=1}^nsum_{j=1}^n beta_{ij}ln x_iln x_j $$



      I know we start with a log-log production function.
      $$ln y=alpha_0+sum_{i=1}^nalpha_iln x_i$$



      the next step from what i recall is to take the taylor series of this function around the point $x_i=0$. the reason why this is an issue is because $ln(0)$ is undefined.



      How exactly is this function derived?







      microeconomics econometrics production-function






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Dec 25 '18 at 22:09









      EconJohnEconJohn

      3,4162938




      3,4162938






















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          The translog is a second order Taylor development of $$log y = f(log x) $$ in $log x$ around an arbitrary point $x_0 ne 0$:



          $$log y = f(log x_0) + frac{partial f}{partial log x^T}(log x_0)cdot(log x-log x_0) + frac{1}{2}(log x-log x_0)^Tfrac{partial^2 f}{partial log xlog x^T}(log x_0)cdot(log x-log x_0) $$
          $$=alpha_0+alpha_x^T log x+frac{1}{2}log x^TBlog x $$
          where this last reparameterization is obtained when defining:
          $$alpha_0=f(log x_0) - frac{partial f}{partial log x^T}(log x_0)cdotlog x_0 + frac{1}{2}log x_0^Tfrac{partial^2 f}{partial log xlog x^T}(log x_0)cdotlog x_0$$
          $$alpha_x=frac{partial f}{partial log x}(log x_0) - frac{partial^2 f}{partial log xlog x^T}(log x_0)log x_0$$
          $$B=frac{partial^2 f}{partial log xlog x^T}(log x_0). $$






          share|improve this answer











          $endgroup$





















            3












            $begingroup$

            The idea is indeed to Taylor expand the production function. To justify it, you can start with the constant elasticity of substitution function, which in the two-factor case can be written as



            $$
            Y = A[alpha K^gamma + (1 - alpha)L^gamma]^{1/gamma} tag{1}
            $$



            in this case $X_1 = K$, $X_2 = L$. Now we expand $ln Y$ around $gamma = 0$ (recall the CES approximates to a cobb-douglas production function when $gamma approx0).$




            $gamma^0$ term




            $$
            lim_{gamma to 0} ln Y = ln (A K^alpha L^{1 - alpha}) tag{2}
            $$




            $gamma^1$ term




            begin{eqnarray}
            lim_{gamma to 0} frac{partial ln Y}{partial gamma} &=& lim_{gamma to 0}frac{alpha K^{gamma } ln (L)+(1-alpha ) l^{gamma } log (L)}{gamma
            left(alpha K^{gamma }+(1-alpha ) L^{gamma }right)}-frac{ln left(alpha
            K^{gamma }+(1-alpha ) L^{gamma }right)}{gamma ^2}\
            &=& frac{1}{2} (1 - alpha) alpha (ln (K)-ln (L))^2 tag{3}
            end{eqnarray}



            Up to first order we have then



            begin{eqnarray}
            ln Y &approx& color{blue}{(ln Y)_{gamma = 0}} + color{red}{left(frac{partial ln Y}{partial gamma}right)_{gamma = 0} gamma} \
            &stackrel{(2),(3)}{=}& color{blue}{ln A + alpha ln K + (1 - alpha) ln L} + color{red}{frac{1}{2}alpha(1 - alpha)gamma [ln K - ln L]^2} \
            &=& ln A + alpha ln X_1 + (1 - alpha) ln X_2 + frac{alpha gamma (1 -alpha)}{2}left[ln^2 X_1 -2ln X_1ln X_2 + ln^2 X_2 right] \
            &=& alpha_0 + sum_{i = 1}^2 alpha_i ln X_i + frac{1}{2}sum_{i, j = 1}^2 beta_{ij}ln X_i ln X_j tag{3}
            end{eqnarray}



            This is naturally extended to $n > 2$ as



            $$
            ln Y = alpha_0 + sum_{i = 1}^n alpha_i ln X_i + frac{1}{2}sum_{i, j = 1}^n beta_{ij}ln X_i ln X_j
            $$






            share|improve this answer











            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "591"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: false,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: null,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2feconomics.stackexchange.com%2fquestions%2f26144%2fderiving-the-translog-production-function%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              2












              $begingroup$

              The translog is a second order Taylor development of $$log y = f(log x) $$ in $log x$ around an arbitrary point $x_0 ne 0$:



              $$log y = f(log x_0) + frac{partial f}{partial log x^T}(log x_0)cdot(log x-log x_0) + frac{1}{2}(log x-log x_0)^Tfrac{partial^2 f}{partial log xlog x^T}(log x_0)cdot(log x-log x_0) $$
              $$=alpha_0+alpha_x^T log x+frac{1}{2}log x^TBlog x $$
              where this last reparameterization is obtained when defining:
              $$alpha_0=f(log x_0) - frac{partial f}{partial log x^T}(log x_0)cdotlog x_0 + frac{1}{2}log x_0^Tfrac{partial^2 f}{partial log xlog x^T}(log x_0)cdotlog x_0$$
              $$alpha_x=frac{partial f}{partial log x}(log x_0) - frac{partial^2 f}{partial log xlog x^T}(log x_0)log x_0$$
              $$B=frac{partial^2 f}{partial log xlog x^T}(log x_0). $$






              share|improve this answer











              $endgroup$


















                2












                $begingroup$

                The translog is a second order Taylor development of $$log y = f(log x) $$ in $log x$ around an arbitrary point $x_0 ne 0$:



                $$log y = f(log x_0) + frac{partial f}{partial log x^T}(log x_0)cdot(log x-log x_0) + frac{1}{2}(log x-log x_0)^Tfrac{partial^2 f}{partial log xlog x^T}(log x_0)cdot(log x-log x_0) $$
                $$=alpha_0+alpha_x^T log x+frac{1}{2}log x^TBlog x $$
                where this last reparameterization is obtained when defining:
                $$alpha_0=f(log x_0) - frac{partial f}{partial log x^T}(log x_0)cdotlog x_0 + frac{1}{2}log x_0^Tfrac{partial^2 f}{partial log xlog x^T}(log x_0)cdotlog x_0$$
                $$alpha_x=frac{partial f}{partial log x}(log x_0) - frac{partial^2 f}{partial log xlog x^T}(log x_0)log x_0$$
                $$B=frac{partial^2 f}{partial log xlog x^T}(log x_0). $$






                share|improve this answer











                $endgroup$
















                  2












                  2








                  2





                  $begingroup$

                  The translog is a second order Taylor development of $$log y = f(log x) $$ in $log x$ around an arbitrary point $x_0 ne 0$:



                  $$log y = f(log x_0) + frac{partial f}{partial log x^T}(log x_0)cdot(log x-log x_0) + frac{1}{2}(log x-log x_0)^Tfrac{partial^2 f}{partial log xlog x^T}(log x_0)cdot(log x-log x_0) $$
                  $$=alpha_0+alpha_x^T log x+frac{1}{2}log x^TBlog x $$
                  where this last reparameterization is obtained when defining:
                  $$alpha_0=f(log x_0) - frac{partial f}{partial log x^T}(log x_0)cdotlog x_0 + frac{1}{2}log x_0^Tfrac{partial^2 f}{partial log xlog x^T}(log x_0)cdotlog x_0$$
                  $$alpha_x=frac{partial f}{partial log x}(log x_0) - frac{partial^2 f}{partial log xlog x^T}(log x_0)log x_0$$
                  $$B=frac{partial^2 f}{partial log xlog x^T}(log x_0). $$






                  share|improve this answer











                  $endgroup$



                  The translog is a second order Taylor development of $$log y = f(log x) $$ in $log x$ around an arbitrary point $x_0 ne 0$:



                  $$log y = f(log x_0) + frac{partial f}{partial log x^T}(log x_0)cdot(log x-log x_0) + frac{1}{2}(log x-log x_0)^Tfrac{partial^2 f}{partial log xlog x^T}(log x_0)cdot(log x-log x_0) $$
                  $$=alpha_0+alpha_x^T log x+frac{1}{2}log x^TBlog x $$
                  where this last reparameterization is obtained when defining:
                  $$alpha_0=f(log x_0) - frac{partial f}{partial log x^T}(log x_0)cdotlog x_0 + frac{1}{2}log x_0^Tfrac{partial^2 f}{partial log xlog x^T}(log x_0)cdotlog x_0$$
                  $$alpha_x=frac{partial f}{partial log x}(log x_0) - frac{partial^2 f}{partial log xlog x^T}(log x_0)log x_0$$
                  $$B=frac{partial^2 f}{partial log xlog x^T}(log x_0). $$







                  share|improve this answer














                  share|improve this answer



                  share|improve this answer








                  edited Jan 18 at 22:20

























                  answered Jan 18 at 21:15









                  BertrandBertrand

                  1063




                  1063























                      3












                      $begingroup$

                      The idea is indeed to Taylor expand the production function. To justify it, you can start with the constant elasticity of substitution function, which in the two-factor case can be written as



                      $$
                      Y = A[alpha K^gamma + (1 - alpha)L^gamma]^{1/gamma} tag{1}
                      $$



                      in this case $X_1 = K$, $X_2 = L$. Now we expand $ln Y$ around $gamma = 0$ (recall the CES approximates to a cobb-douglas production function when $gamma approx0).$




                      $gamma^0$ term




                      $$
                      lim_{gamma to 0} ln Y = ln (A K^alpha L^{1 - alpha}) tag{2}
                      $$




                      $gamma^1$ term




                      begin{eqnarray}
                      lim_{gamma to 0} frac{partial ln Y}{partial gamma} &=& lim_{gamma to 0}frac{alpha K^{gamma } ln (L)+(1-alpha ) l^{gamma } log (L)}{gamma
                      left(alpha K^{gamma }+(1-alpha ) L^{gamma }right)}-frac{ln left(alpha
                      K^{gamma }+(1-alpha ) L^{gamma }right)}{gamma ^2}\
                      &=& frac{1}{2} (1 - alpha) alpha (ln (K)-ln (L))^2 tag{3}
                      end{eqnarray}



                      Up to first order we have then



                      begin{eqnarray}
                      ln Y &approx& color{blue}{(ln Y)_{gamma = 0}} + color{red}{left(frac{partial ln Y}{partial gamma}right)_{gamma = 0} gamma} \
                      &stackrel{(2),(3)}{=}& color{blue}{ln A + alpha ln K + (1 - alpha) ln L} + color{red}{frac{1}{2}alpha(1 - alpha)gamma [ln K - ln L]^2} \
                      &=& ln A + alpha ln X_1 + (1 - alpha) ln X_2 + frac{alpha gamma (1 -alpha)}{2}left[ln^2 X_1 -2ln X_1ln X_2 + ln^2 X_2 right] \
                      &=& alpha_0 + sum_{i = 1}^2 alpha_i ln X_i + frac{1}{2}sum_{i, j = 1}^2 beta_{ij}ln X_i ln X_j tag{3}
                      end{eqnarray}



                      This is naturally extended to $n > 2$ as



                      $$
                      ln Y = alpha_0 + sum_{i = 1}^n alpha_i ln X_i + frac{1}{2}sum_{i, j = 1}^n beta_{ij}ln X_i ln X_j
                      $$






                      share|improve this answer











                      $endgroup$


















                        3












                        $begingroup$

                        The idea is indeed to Taylor expand the production function. To justify it, you can start with the constant elasticity of substitution function, which in the two-factor case can be written as



                        $$
                        Y = A[alpha K^gamma + (1 - alpha)L^gamma]^{1/gamma} tag{1}
                        $$



                        in this case $X_1 = K$, $X_2 = L$. Now we expand $ln Y$ around $gamma = 0$ (recall the CES approximates to a cobb-douglas production function when $gamma approx0).$




                        $gamma^0$ term




                        $$
                        lim_{gamma to 0} ln Y = ln (A K^alpha L^{1 - alpha}) tag{2}
                        $$




                        $gamma^1$ term




                        begin{eqnarray}
                        lim_{gamma to 0} frac{partial ln Y}{partial gamma} &=& lim_{gamma to 0}frac{alpha K^{gamma } ln (L)+(1-alpha ) l^{gamma } log (L)}{gamma
                        left(alpha K^{gamma }+(1-alpha ) L^{gamma }right)}-frac{ln left(alpha
                        K^{gamma }+(1-alpha ) L^{gamma }right)}{gamma ^2}\
                        &=& frac{1}{2} (1 - alpha) alpha (ln (K)-ln (L))^2 tag{3}
                        end{eqnarray}



                        Up to first order we have then



                        begin{eqnarray}
                        ln Y &approx& color{blue}{(ln Y)_{gamma = 0}} + color{red}{left(frac{partial ln Y}{partial gamma}right)_{gamma = 0} gamma} \
                        &stackrel{(2),(3)}{=}& color{blue}{ln A + alpha ln K + (1 - alpha) ln L} + color{red}{frac{1}{2}alpha(1 - alpha)gamma [ln K - ln L]^2} \
                        &=& ln A + alpha ln X_1 + (1 - alpha) ln X_2 + frac{alpha gamma (1 -alpha)}{2}left[ln^2 X_1 -2ln X_1ln X_2 + ln^2 X_2 right] \
                        &=& alpha_0 + sum_{i = 1}^2 alpha_i ln X_i + frac{1}{2}sum_{i, j = 1}^2 beta_{ij}ln X_i ln X_j tag{3}
                        end{eqnarray}



                        This is naturally extended to $n > 2$ as



                        $$
                        ln Y = alpha_0 + sum_{i = 1}^n alpha_i ln X_i + frac{1}{2}sum_{i, j = 1}^n beta_{ij}ln X_i ln X_j
                        $$






                        share|improve this answer











                        $endgroup$
















                          3












                          3








                          3





                          $begingroup$

                          The idea is indeed to Taylor expand the production function. To justify it, you can start with the constant elasticity of substitution function, which in the two-factor case can be written as



                          $$
                          Y = A[alpha K^gamma + (1 - alpha)L^gamma]^{1/gamma} tag{1}
                          $$



                          in this case $X_1 = K$, $X_2 = L$. Now we expand $ln Y$ around $gamma = 0$ (recall the CES approximates to a cobb-douglas production function when $gamma approx0).$




                          $gamma^0$ term




                          $$
                          lim_{gamma to 0} ln Y = ln (A K^alpha L^{1 - alpha}) tag{2}
                          $$




                          $gamma^1$ term




                          begin{eqnarray}
                          lim_{gamma to 0} frac{partial ln Y}{partial gamma} &=& lim_{gamma to 0}frac{alpha K^{gamma } ln (L)+(1-alpha ) l^{gamma } log (L)}{gamma
                          left(alpha K^{gamma }+(1-alpha ) L^{gamma }right)}-frac{ln left(alpha
                          K^{gamma }+(1-alpha ) L^{gamma }right)}{gamma ^2}\
                          &=& frac{1}{2} (1 - alpha) alpha (ln (K)-ln (L))^2 tag{3}
                          end{eqnarray}



                          Up to first order we have then



                          begin{eqnarray}
                          ln Y &approx& color{blue}{(ln Y)_{gamma = 0}} + color{red}{left(frac{partial ln Y}{partial gamma}right)_{gamma = 0} gamma} \
                          &stackrel{(2),(3)}{=}& color{blue}{ln A + alpha ln K + (1 - alpha) ln L} + color{red}{frac{1}{2}alpha(1 - alpha)gamma [ln K - ln L]^2} \
                          &=& ln A + alpha ln X_1 + (1 - alpha) ln X_2 + frac{alpha gamma (1 -alpha)}{2}left[ln^2 X_1 -2ln X_1ln X_2 + ln^2 X_2 right] \
                          &=& alpha_0 + sum_{i = 1}^2 alpha_i ln X_i + frac{1}{2}sum_{i, j = 1}^2 beta_{ij}ln X_i ln X_j tag{3}
                          end{eqnarray}



                          This is naturally extended to $n > 2$ as



                          $$
                          ln Y = alpha_0 + sum_{i = 1}^n alpha_i ln X_i + frac{1}{2}sum_{i, j = 1}^n beta_{ij}ln X_i ln X_j
                          $$






                          share|improve this answer











                          $endgroup$



                          The idea is indeed to Taylor expand the production function. To justify it, you can start with the constant elasticity of substitution function, which in the two-factor case can be written as



                          $$
                          Y = A[alpha K^gamma + (1 - alpha)L^gamma]^{1/gamma} tag{1}
                          $$



                          in this case $X_1 = K$, $X_2 = L$. Now we expand $ln Y$ around $gamma = 0$ (recall the CES approximates to a cobb-douglas production function when $gamma approx0).$




                          $gamma^0$ term




                          $$
                          lim_{gamma to 0} ln Y = ln (A K^alpha L^{1 - alpha}) tag{2}
                          $$




                          $gamma^1$ term




                          begin{eqnarray}
                          lim_{gamma to 0} frac{partial ln Y}{partial gamma} &=& lim_{gamma to 0}frac{alpha K^{gamma } ln (L)+(1-alpha ) l^{gamma } log (L)}{gamma
                          left(alpha K^{gamma }+(1-alpha ) L^{gamma }right)}-frac{ln left(alpha
                          K^{gamma }+(1-alpha ) L^{gamma }right)}{gamma ^2}\
                          &=& frac{1}{2} (1 - alpha) alpha (ln (K)-ln (L))^2 tag{3}
                          end{eqnarray}



                          Up to first order we have then



                          begin{eqnarray}
                          ln Y &approx& color{blue}{(ln Y)_{gamma = 0}} + color{red}{left(frac{partial ln Y}{partial gamma}right)_{gamma = 0} gamma} \
                          &stackrel{(2),(3)}{=}& color{blue}{ln A + alpha ln K + (1 - alpha) ln L} + color{red}{frac{1}{2}alpha(1 - alpha)gamma [ln K - ln L]^2} \
                          &=& ln A + alpha ln X_1 + (1 - alpha) ln X_2 + frac{alpha gamma (1 -alpha)}{2}left[ln^2 X_1 -2ln X_1ln X_2 + ln^2 X_2 right] \
                          &=& alpha_0 + sum_{i = 1}^2 alpha_i ln X_i + frac{1}{2}sum_{i, j = 1}^2 beta_{ij}ln X_i ln X_j tag{3}
                          end{eqnarray}



                          This is naturally extended to $n > 2$ as



                          $$
                          ln Y = alpha_0 + sum_{i = 1}^n alpha_i ln X_i + frac{1}{2}sum_{i, j = 1}^n beta_{ij}ln X_i ln X_j
                          $$







                          share|improve this answer














                          share|improve this answer



                          share|improve this answer








                          edited Jan 18 at 17:44









                          EconJohn

                          3,4162938




                          3,4162938










                          answered Dec 25 '18 at 23:55









                          caveraccaverac

                          1,0831317




                          1,0831317






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Economics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2feconomics.stackexchange.com%2fquestions%2f26144%2fderiving-the-translog-production-function%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Plaza Victoria

                              Puebla de Zaragoza

                              Musa