Deriving the translog production function
$begingroup$
Ive been having difficulty deriving the translog production function defined as:
$$ln y=alpha_0+sum_{i=1}^nalpha_i ln x_i+frac{1}{2}sum_{i=1}^nsum_{j=1}^n beta_{ij}ln x_iln x_j $$
I know we start with a log-log production function.
$$ln y=alpha_0+sum_{i=1}^nalpha_iln x_i$$
the next step from what i recall is to take the taylor series of this function around the point $x_i=0$. the reason why this is an issue is because $ln(0)$ is undefined.
How exactly is this function derived?
microeconomics econometrics production-function
$endgroup$
add a comment |
$begingroup$
Ive been having difficulty deriving the translog production function defined as:
$$ln y=alpha_0+sum_{i=1}^nalpha_i ln x_i+frac{1}{2}sum_{i=1}^nsum_{j=1}^n beta_{ij}ln x_iln x_j $$
I know we start with a log-log production function.
$$ln y=alpha_0+sum_{i=1}^nalpha_iln x_i$$
the next step from what i recall is to take the taylor series of this function around the point $x_i=0$. the reason why this is an issue is because $ln(0)$ is undefined.
How exactly is this function derived?
microeconomics econometrics production-function
$endgroup$
add a comment |
$begingroup$
Ive been having difficulty deriving the translog production function defined as:
$$ln y=alpha_0+sum_{i=1}^nalpha_i ln x_i+frac{1}{2}sum_{i=1}^nsum_{j=1}^n beta_{ij}ln x_iln x_j $$
I know we start with a log-log production function.
$$ln y=alpha_0+sum_{i=1}^nalpha_iln x_i$$
the next step from what i recall is to take the taylor series of this function around the point $x_i=0$. the reason why this is an issue is because $ln(0)$ is undefined.
How exactly is this function derived?
microeconomics econometrics production-function
$endgroup$
Ive been having difficulty deriving the translog production function defined as:
$$ln y=alpha_0+sum_{i=1}^nalpha_i ln x_i+frac{1}{2}sum_{i=1}^nsum_{j=1}^n beta_{ij}ln x_iln x_j $$
I know we start with a log-log production function.
$$ln y=alpha_0+sum_{i=1}^nalpha_iln x_i$$
the next step from what i recall is to take the taylor series of this function around the point $x_i=0$. the reason why this is an issue is because $ln(0)$ is undefined.
How exactly is this function derived?
microeconomics econometrics production-function
microeconomics econometrics production-function
asked Dec 25 '18 at 22:09
EconJohn♦EconJohn
3,4162938
3,4162938
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
The translog is a second order Taylor development of $$log y = f(log x) $$ in $log x$ around an arbitrary point $x_0 ne 0$:
$$log y = f(log x_0) + frac{partial f}{partial log x^T}(log x_0)cdot(log x-log x_0) + frac{1}{2}(log x-log x_0)^Tfrac{partial^2 f}{partial log xlog x^T}(log x_0)cdot(log x-log x_0) $$
$$=alpha_0+alpha_x^T log x+frac{1}{2}log x^TBlog x $$
where this last reparameterization is obtained when defining:
$$alpha_0=f(log x_0) - frac{partial f}{partial log x^T}(log x_0)cdotlog x_0 + frac{1}{2}log x_0^Tfrac{partial^2 f}{partial log xlog x^T}(log x_0)cdotlog x_0$$
$$alpha_x=frac{partial f}{partial log x}(log x_0) - frac{partial^2 f}{partial log xlog x^T}(log x_0)log x_0$$
$$B=frac{partial^2 f}{partial log xlog x^T}(log x_0). $$
$endgroup$
add a comment |
$begingroup$
The idea is indeed to Taylor expand the production function. To justify it, you can start with the constant elasticity of substitution function, which in the two-factor case can be written as
$$
Y = A[alpha K^gamma + (1 - alpha)L^gamma]^{1/gamma} tag{1}
$$
in this case $X_1 = K$, $X_2 = L$. Now we expand $ln Y$ around $gamma = 0$ (recall the CES approximates to a cobb-douglas production function when $gamma approx0).$
$gamma^0$ term
$$
lim_{gamma to 0} ln Y = ln (A K^alpha L^{1 - alpha}) tag{2}
$$
$gamma^1$ term
begin{eqnarray}
lim_{gamma to 0} frac{partial ln Y}{partial gamma} &=& lim_{gamma to 0}frac{alpha K^{gamma } ln (L)+(1-alpha ) l^{gamma } log (L)}{gamma
left(alpha K^{gamma }+(1-alpha ) L^{gamma }right)}-frac{ln left(alpha
K^{gamma }+(1-alpha ) L^{gamma }right)}{gamma ^2}\
&=& frac{1}{2} (1 - alpha) alpha (ln (K)-ln (L))^2 tag{3}
end{eqnarray}
Up to first order we have then
begin{eqnarray}
ln Y &approx& color{blue}{(ln Y)_{gamma = 0}} + color{red}{left(frac{partial ln Y}{partial gamma}right)_{gamma = 0} gamma} \
&stackrel{(2),(3)}{=}& color{blue}{ln A + alpha ln K + (1 - alpha) ln L} + color{red}{frac{1}{2}alpha(1 - alpha)gamma [ln K - ln L]^2} \
&=& ln A + alpha ln X_1 + (1 - alpha) ln X_2 + frac{alpha gamma (1 -alpha)}{2}left[ln^2 X_1 -2ln X_1ln X_2 + ln^2 X_2 right] \
&=& alpha_0 + sum_{i = 1}^2 alpha_i ln X_i + frac{1}{2}sum_{i, j = 1}^2 beta_{ij}ln X_i ln X_j tag{3}
end{eqnarray}
This is naturally extended to $n > 2$ as
$$
ln Y = alpha_0 + sum_{i = 1}^n alpha_i ln X_i + frac{1}{2}sum_{i, j = 1}^n beta_{ij}ln X_i ln X_j
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "591"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2feconomics.stackexchange.com%2fquestions%2f26144%2fderiving-the-translog-production-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The translog is a second order Taylor development of $$log y = f(log x) $$ in $log x$ around an arbitrary point $x_0 ne 0$:
$$log y = f(log x_0) + frac{partial f}{partial log x^T}(log x_0)cdot(log x-log x_0) + frac{1}{2}(log x-log x_0)^Tfrac{partial^2 f}{partial log xlog x^T}(log x_0)cdot(log x-log x_0) $$
$$=alpha_0+alpha_x^T log x+frac{1}{2}log x^TBlog x $$
where this last reparameterization is obtained when defining:
$$alpha_0=f(log x_0) - frac{partial f}{partial log x^T}(log x_0)cdotlog x_0 + frac{1}{2}log x_0^Tfrac{partial^2 f}{partial log xlog x^T}(log x_0)cdotlog x_0$$
$$alpha_x=frac{partial f}{partial log x}(log x_0) - frac{partial^2 f}{partial log xlog x^T}(log x_0)log x_0$$
$$B=frac{partial^2 f}{partial log xlog x^T}(log x_0). $$
$endgroup$
add a comment |
$begingroup$
The translog is a second order Taylor development of $$log y = f(log x) $$ in $log x$ around an arbitrary point $x_0 ne 0$:
$$log y = f(log x_0) + frac{partial f}{partial log x^T}(log x_0)cdot(log x-log x_0) + frac{1}{2}(log x-log x_0)^Tfrac{partial^2 f}{partial log xlog x^T}(log x_0)cdot(log x-log x_0) $$
$$=alpha_0+alpha_x^T log x+frac{1}{2}log x^TBlog x $$
where this last reparameterization is obtained when defining:
$$alpha_0=f(log x_0) - frac{partial f}{partial log x^T}(log x_0)cdotlog x_0 + frac{1}{2}log x_0^Tfrac{partial^2 f}{partial log xlog x^T}(log x_0)cdotlog x_0$$
$$alpha_x=frac{partial f}{partial log x}(log x_0) - frac{partial^2 f}{partial log xlog x^T}(log x_0)log x_0$$
$$B=frac{partial^2 f}{partial log xlog x^T}(log x_0). $$
$endgroup$
add a comment |
$begingroup$
The translog is a second order Taylor development of $$log y = f(log x) $$ in $log x$ around an arbitrary point $x_0 ne 0$:
$$log y = f(log x_0) + frac{partial f}{partial log x^T}(log x_0)cdot(log x-log x_0) + frac{1}{2}(log x-log x_0)^Tfrac{partial^2 f}{partial log xlog x^T}(log x_0)cdot(log x-log x_0) $$
$$=alpha_0+alpha_x^T log x+frac{1}{2}log x^TBlog x $$
where this last reparameterization is obtained when defining:
$$alpha_0=f(log x_0) - frac{partial f}{partial log x^T}(log x_0)cdotlog x_0 + frac{1}{2}log x_0^Tfrac{partial^2 f}{partial log xlog x^T}(log x_0)cdotlog x_0$$
$$alpha_x=frac{partial f}{partial log x}(log x_0) - frac{partial^2 f}{partial log xlog x^T}(log x_0)log x_0$$
$$B=frac{partial^2 f}{partial log xlog x^T}(log x_0). $$
$endgroup$
The translog is a second order Taylor development of $$log y = f(log x) $$ in $log x$ around an arbitrary point $x_0 ne 0$:
$$log y = f(log x_0) + frac{partial f}{partial log x^T}(log x_0)cdot(log x-log x_0) + frac{1}{2}(log x-log x_0)^Tfrac{partial^2 f}{partial log xlog x^T}(log x_0)cdot(log x-log x_0) $$
$$=alpha_0+alpha_x^T log x+frac{1}{2}log x^TBlog x $$
where this last reparameterization is obtained when defining:
$$alpha_0=f(log x_0) - frac{partial f}{partial log x^T}(log x_0)cdotlog x_0 + frac{1}{2}log x_0^Tfrac{partial^2 f}{partial log xlog x^T}(log x_0)cdotlog x_0$$
$$alpha_x=frac{partial f}{partial log x}(log x_0) - frac{partial^2 f}{partial log xlog x^T}(log x_0)log x_0$$
$$B=frac{partial^2 f}{partial log xlog x^T}(log x_0). $$
edited Jan 18 at 22:20
answered Jan 18 at 21:15
BertrandBertrand
1063
1063
add a comment |
add a comment |
$begingroup$
The idea is indeed to Taylor expand the production function. To justify it, you can start with the constant elasticity of substitution function, which in the two-factor case can be written as
$$
Y = A[alpha K^gamma + (1 - alpha)L^gamma]^{1/gamma} tag{1}
$$
in this case $X_1 = K$, $X_2 = L$. Now we expand $ln Y$ around $gamma = 0$ (recall the CES approximates to a cobb-douglas production function when $gamma approx0).$
$gamma^0$ term
$$
lim_{gamma to 0} ln Y = ln (A K^alpha L^{1 - alpha}) tag{2}
$$
$gamma^1$ term
begin{eqnarray}
lim_{gamma to 0} frac{partial ln Y}{partial gamma} &=& lim_{gamma to 0}frac{alpha K^{gamma } ln (L)+(1-alpha ) l^{gamma } log (L)}{gamma
left(alpha K^{gamma }+(1-alpha ) L^{gamma }right)}-frac{ln left(alpha
K^{gamma }+(1-alpha ) L^{gamma }right)}{gamma ^2}\
&=& frac{1}{2} (1 - alpha) alpha (ln (K)-ln (L))^2 tag{3}
end{eqnarray}
Up to first order we have then
begin{eqnarray}
ln Y &approx& color{blue}{(ln Y)_{gamma = 0}} + color{red}{left(frac{partial ln Y}{partial gamma}right)_{gamma = 0} gamma} \
&stackrel{(2),(3)}{=}& color{blue}{ln A + alpha ln K + (1 - alpha) ln L} + color{red}{frac{1}{2}alpha(1 - alpha)gamma [ln K - ln L]^2} \
&=& ln A + alpha ln X_1 + (1 - alpha) ln X_2 + frac{alpha gamma (1 -alpha)}{2}left[ln^2 X_1 -2ln X_1ln X_2 + ln^2 X_2 right] \
&=& alpha_0 + sum_{i = 1}^2 alpha_i ln X_i + frac{1}{2}sum_{i, j = 1}^2 beta_{ij}ln X_i ln X_j tag{3}
end{eqnarray}
This is naturally extended to $n > 2$ as
$$
ln Y = alpha_0 + sum_{i = 1}^n alpha_i ln X_i + frac{1}{2}sum_{i, j = 1}^n beta_{ij}ln X_i ln X_j
$$
$endgroup$
add a comment |
$begingroup$
The idea is indeed to Taylor expand the production function. To justify it, you can start with the constant elasticity of substitution function, which in the two-factor case can be written as
$$
Y = A[alpha K^gamma + (1 - alpha)L^gamma]^{1/gamma} tag{1}
$$
in this case $X_1 = K$, $X_2 = L$. Now we expand $ln Y$ around $gamma = 0$ (recall the CES approximates to a cobb-douglas production function when $gamma approx0).$
$gamma^0$ term
$$
lim_{gamma to 0} ln Y = ln (A K^alpha L^{1 - alpha}) tag{2}
$$
$gamma^1$ term
begin{eqnarray}
lim_{gamma to 0} frac{partial ln Y}{partial gamma} &=& lim_{gamma to 0}frac{alpha K^{gamma } ln (L)+(1-alpha ) l^{gamma } log (L)}{gamma
left(alpha K^{gamma }+(1-alpha ) L^{gamma }right)}-frac{ln left(alpha
K^{gamma }+(1-alpha ) L^{gamma }right)}{gamma ^2}\
&=& frac{1}{2} (1 - alpha) alpha (ln (K)-ln (L))^2 tag{3}
end{eqnarray}
Up to first order we have then
begin{eqnarray}
ln Y &approx& color{blue}{(ln Y)_{gamma = 0}} + color{red}{left(frac{partial ln Y}{partial gamma}right)_{gamma = 0} gamma} \
&stackrel{(2),(3)}{=}& color{blue}{ln A + alpha ln K + (1 - alpha) ln L} + color{red}{frac{1}{2}alpha(1 - alpha)gamma [ln K - ln L]^2} \
&=& ln A + alpha ln X_1 + (1 - alpha) ln X_2 + frac{alpha gamma (1 -alpha)}{2}left[ln^2 X_1 -2ln X_1ln X_2 + ln^2 X_2 right] \
&=& alpha_0 + sum_{i = 1}^2 alpha_i ln X_i + frac{1}{2}sum_{i, j = 1}^2 beta_{ij}ln X_i ln X_j tag{3}
end{eqnarray}
This is naturally extended to $n > 2$ as
$$
ln Y = alpha_0 + sum_{i = 1}^n alpha_i ln X_i + frac{1}{2}sum_{i, j = 1}^n beta_{ij}ln X_i ln X_j
$$
$endgroup$
add a comment |
$begingroup$
The idea is indeed to Taylor expand the production function. To justify it, you can start with the constant elasticity of substitution function, which in the two-factor case can be written as
$$
Y = A[alpha K^gamma + (1 - alpha)L^gamma]^{1/gamma} tag{1}
$$
in this case $X_1 = K$, $X_2 = L$. Now we expand $ln Y$ around $gamma = 0$ (recall the CES approximates to a cobb-douglas production function when $gamma approx0).$
$gamma^0$ term
$$
lim_{gamma to 0} ln Y = ln (A K^alpha L^{1 - alpha}) tag{2}
$$
$gamma^1$ term
begin{eqnarray}
lim_{gamma to 0} frac{partial ln Y}{partial gamma} &=& lim_{gamma to 0}frac{alpha K^{gamma } ln (L)+(1-alpha ) l^{gamma } log (L)}{gamma
left(alpha K^{gamma }+(1-alpha ) L^{gamma }right)}-frac{ln left(alpha
K^{gamma }+(1-alpha ) L^{gamma }right)}{gamma ^2}\
&=& frac{1}{2} (1 - alpha) alpha (ln (K)-ln (L))^2 tag{3}
end{eqnarray}
Up to first order we have then
begin{eqnarray}
ln Y &approx& color{blue}{(ln Y)_{gamma = 0}} + color{red}{left(frac{partial ln Y}{partial gamma}right)_{gamma = 0} gamma} \
&stackrel{(2),(3)}{=}& color{blue}{ln A + alpha ln K + (1 - alpha) ln L} + color{red}{frac{1}{2}alpha(1 - alpha)gamma [ln K - ln L]^2} \
&=& ln A + alpha ln X_1 + (1 - alpha) ln X_2 + frac{alpha gamma (1 -alpha)}{2}left[ln^2 X_1 -2ln X_1ln X_2 + ln^2 X_2 right] \
&=& alpha_0 + sum_{i = 1}^2 alpha_i ln X_i + frac{1}{2}sum_{i, j = 1}^2 beta_{ij}ln X_i ln X_j tag{3}
end{eqnarray}
This is naturally extended to $n > 2$ as
$$
ln Y = alpha_0 + sum_{i = 1}^n alpha_i ln X_i + frac{1}{2}sum_{i, j = 1}^n beta_{ij}ln X_i ln X_j
$$
$endgroup$
The idea is indeed to Taylor expand the production function. To justify it, you can start with the constant elasticity of substitution function, which in the two-factor case can be written as
$$
Y = A[alpha K^gamma + (1 - alpha)L^gamma]^{1/gamma} tag{1}
$$
in this case $X_1 = K$, $X_2 = L$. Now we expand $ln Y$ around $gamma = 0$ (recall the CES approximates to a cobb-douglas production function when $gamma approx0).$
$gamma^0$ term
$$
lim_{gamma to 0} ln Y = ln (A K^alpha L^{1 - alpha}) tag{2}
$$
$gamma^1$ term
begin{eqnarray}
lim_{gamma to 0} frac{partial ln Y}{partial gamma} &=& lim_{gamma to 0}frac{alpha K^{gamma } ln (L)+(1-alpha ) l^{gamma } log (L)}{gamma
left(alpha K^{gamma }+(1-alpha ) L^{gamma }right)}-frac{ln left(alpha
K^{gamma }+(1-alpha ) L^{gamma }right)}{gamma ^2}\
&=& frac{1}{2} (1 - alpha) alpha (ln (K)-ln (L))^2 tag{3}
end{eqnarray}
Up to first order we have then
begin{eqnarray}
ln Y &approx& color{blue}{(ln Y)_{gamma = 0}} + color{red}{left(frac{partial ln Y}{partial gamma}right)_{gamma = 0} gamma} \
&stackrel{(2),(3)}{=}& color{blue}{ln A + alpha ln K + (1 - alpha) ln L} + color{red}{frac{1}{2}alpha(1 - alpha)gamma [ln K - ln L]^2} \
&=& ln A + alpha ln X_1 + (1 - alpha) ln X_2 + frac{alpha gamma (1 -alpha)}{2}left[ln^2 X_1 -2ln X_1ln X_2 + ln^2 X_2 right] \
&=& alpha_0 + sum_{i = 1}^2 alpha_i ln X_i + frac{1}{2}sum_{i, j = 1}^2 beta_{ij}ln X_i ln X_j tag{3}
end{eqnarray}
This is naturally extended to $n > 2$ as
$$
ln Y = alpha_0 + sum_{i = 1}^n alpha_i ln X_i + frac{1}{2}sum_{i, j = 1}^n beta_{ij}ln X_i ln X_j
$$
edited Jan 18 at 17:44
EconJohn♦
3,4162938
3,4162938
answered Dec 25 '18 at 23:55
caveraccaverac
1,0831317
1,0831317
add a comment |
add a comment |
Thanks for contributing an answer to Economics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2feconomics.stackexchange.com%2fquestions%2f26144%2fderiving-the-translog-production-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown