How to calculate $int frac{x^3}{sqrt{9-x^2}}$
$begingroup$
According to my textbook this is : $frac{sqrt{9-x^2}^3}{3} -9 sqrt{9-x^2}$. However my solution is completely different. Here's my work:
$ x = 3sin theta, dx = 3 costheta dtheta$
$$int frac{27cos^3 theta}{sqrt{9-9sin^2theta}} = int frac{27cos^3theta}{3cos^2theta} = 9intcos^2 theta$$
$$9left(int frac{1}{2} dtheta+ int cos 2thetaright) = 9left(frac{1}{2}theta + frac{sin 2theta}{2}right)$$
Solving for $theta$ yields:
$$frac{9}{2}arcsinleft(frac{x}{3}right) + frac{9}{4}sinleft(2arcsinleft(frac{x}{3}right)right)$$
What's wrong with my solution?
calculus integration trigonometry indefinite-integrals radicals
$endgroup$
add a comment |
$begingroup$
According to my textbook this is : $frac{sqrt{9-x^2}^3}{3} -9 sqrt{9-x^2}$. However my solution is completely different. Here's my work:
$ x = 3sin theta, dx = 3 costheta dtheta$
$$int frac{27cos^3 theta}{sqrt{9-9sin^2theta}} = int frac{27cos^3theta}{3cos^2theta} = 9intcos^2 theta$$
$$9left(int frac{1}{2} dtheta+ int cos 2thetaright) = 9left(frac{1}{2}theta + frac{sin 2theta}{2}right)$$
Solving for $theta$ yields:
$$frac{9}{2}arcsinleft(frac{x}{3}right) + frac{9}{4}sinleft(2arcsinleft(frac{x}{3}right)right)$$
What's wrong with my solution?
calculus integration trigonometry indefinite-integrals radicals
$endgroup$
$begingroup$
where is your $mathrm dtheta$
$endgroup$
– ThePortakal
Feb 2 '18 at 19:10
$begingroup$
Shouldn't your integral be$$int dtheta,frac {81sin^3thetacostheta}{sqrt{9-9sin^2theta}}$$
$endgroup$
– Crescendo
Feb 2 '18 at 19:10
$begingroup$
@Crescendo Indeed, I forgot to put the $dtheta$
$endgroup$
– Trey
Feb 2 '18 at 19:13
add a comment |
$begingroup$
According to my textbook this is : $frac{sqrt{9-x^2}^3}{3} -9 sqrt{9-x^2}$. However my solution is completely different. Here's my work:
$ x = 3sin theta, dx = 3 costheta dtheta$
$$int frac{27cos^3 theta}{sqrt{9-9sin^2theta}} = int frac{27cos^3theta}{3cos^2theta} = 9intcos^2 theta$$
$$9left(int frac{1}{2} dtheta+ int cos 2thetaright) = 9left(frac{1}{2}theta + frac{sin 2theta}{2}right)$$
Solving for $theta$ yields:
$$frac{9}{2}arcsinleft(frac{x}{3}right) + frac{9}{4}sinleft(2arcsinleft(frac{x}{3}right)right)$$
What's wrong with my solution?
calculus integration trigonometry indefinite-integrals radicals
$endgroup$
According to my textbook this is : $frac{sqrt{9-x^2}^3}{3} -9 sqrt{9-x^2}$. However my solution is completely different. Here's my work:
$ x = 3sin theta, dx = 3 costheta dtheta$
$$int frac{27cos^3 theta}{sqrt{9-9sin^2theta}} = int frac{27cos^3theta}{3cos^2theta} = 9intcos^2 theta$$
$$9left(int frac{1}{2} dtheta+ int cos 2thetaright) = 9left(frac{1}{2}theta + frac{sin 2theta}{2}right)$$
Solving for $theta$ yields:
$$frac{9}{2}arcsinleft(frac{x}{3}right) + frac{9}{4}sinleft(2arcsinleft(frac{x}{3}right)right)$$
What's wrong with my solution?
calculus integration trigonometry indefinite-integrals radicals
calculus integration trigonometry indefinite-integrals radicals
edited Feb 2 '18 at 19:47
Michael Rozenberg
103k1891195
103k1891195
asked Feb 2 '18 at 19:03
TreyTrey
309113
309113
$begingroup$
where is your $mathrm dtheta$
$endgroup$
– ThePortakal
Feb 2 '18 at 19:10
$begingroup$
Shouldn't your integral be$$int dtheta,frac {81sin^3thetacostheta}{sqrt{9-9sin^2theta}}$$
$endgroup$
– Crescendo
Feb 2 '18 at 19:10
$begingroup$
@Crescendo Indeed, I forgot to put the $dtheta$
$endgroup$
– Trey
Feb 2 '18 at 19:13
add a comment |
$begingroup$
where is your $mathrm dtheta$
$endgroup$
– ThePortakal
Feb 2 '18 at 19:10
$begingroup$
Shouldn't your integral be$$int dtheta,frac {81sin^3thetacostheta}{sqrt{9-9sin^2theta}}$$
$endgroup$
– Crescendo
Feb 2 '18 at 19:10
$begingroup$
@Crescendo Indeed, I forgot to put the $dtheta$
$endgroup$
– Trey
Feb 2 '18 at 19:13
$begingroup$
where is your $mathrm dtheta$
$endgroup$
– ThePortakal
Feb 2 '18 at 19:10
$begingroup$
where is your $mathrm dtheta$
$endgroup$
– ThePortakal
Feb 2 '18 at 19:10
$begingroup$
Shouldn't your integral be$$int dtheta,frac {81sin^3thetacostheta}{sqrt{9-9sin^2theta}}$$
$endgroup$
– Crescendo
Feb 2 '18 at 19:10
$begingroup$
Shouldn't your integral be$$int dtheta,frac {81sin^3thetacostheta}{sqrt{9-9sin^2theta}}$$
$endgroup$
– Crescendo
Feb 2 '18 at 19:10
$begingroup$
@Crescendo Indeed, I forgot to put the $dtheta$
$endgroup$
– Trey
Feb 2 '18 at 19:13
$begingroup$
@Crescendo Indeed, I forgot to put the $dtheta$
$endgroup$
– Trey
Feb 2 '18 at 19:13
add a comment |
9 Answers
9
active
oldest
votes
$begingroup$
You have two mistakes here.
$x = 3 sin theta$ I like that
$intfrac {x^3}{sqrt {9-x^2}} dx = int frac {27sin^3 theta}{sqrt {9-9sin^2theta}} (3cos theta) dtheta$
Your first mistake is at this step. Do you see where you went wrong?
next: $sqrt {9-9sin^2theta} = 3cos theta$ not $3cos^2 theta$
$int 27sin^3 theta dtheta$
Can you get home from here? If you are stuck try: $sin^2 theta = 1-cos^2theta$
Update:
"I still can't see how $27(-cos(arcsin(frac{x}{3})) + frac{cos^3(arcsin(frac{x}{3}))}{3})$ is equivalent to the solution given in the textbook."
$sin (arcsin frac {x}{3}) = frac {x}{3}\
sin^2 (arcsin frac {x}{3}) = frac {x^2}{9}\
1-sin^2 (arcsin frac {x}{3}) = 1-frac {x^2}{9}\
cos^2 (arcsin frac {x}{3}) = 1-frac {x^2}{9}\
cos (arcsin frac {x}{3}) = sqrt {1-frac {x^2}{9}}\
cos (arcsin frac {x}{3}) = frac {sqrt {9-x^2}}{3}\$
This can also be done geometrically, and I suggest you prove it this way (an exercise left to the reader).
$27(-cos(arcsin(frac{x}{3}) + frac{cos^3(arcsin(frac{x}{3}))}{3})\
27(-sqrt {1 - frac{x^2}{9}} + frac{left(sqrt {1-frac {x^2}{9}}right)^3}{3})\
-9sqrt {9 - x^2} + frac{left(sqrt {9- x^2}right)^3}{3}
$
$endgroup$
$begingroup$
I still can't see how $-cos(arcsin(frac{x}{3})) + frac{cos^3(arcsin(frac{x}{3}))}{3}$ is equivalent to the solution given in the textbook
$endgroup$
– Trey
Feb 2 '18 at 19:39
$begingroup$
@Trey does this help?
$endgroup$
– Doug M
Feb 2 '18 at 19:51
$begingroup$
Yes, thank you!
$endgroup$
– Trey
Feb 2 '18 at 19:55
add a comment |
$begingroup$
$$intfrac{x^3-9x+9x}{sqrt{9-x^2}}dx=-int xsqrt{9-x^2}dx+9intfrac{x}{sqrt{9-x^2}}dx=$$
$$=frac{1}{3}sqrt{(9-x^2)^3}-9sqrt{9-x^2}+C.$$
$endgroup$
$begingroup$
$$= sqrt{9 - x^2}bigg(frac 13left(9 - x^2right) - 9bigg) + C = -sqrt{9 - x^2}bigg(6 + frac{x^2}{3}bigg) + C$$ I think.
$endgroup$
– user477343
Feb 4 '18 at 3:52
$begingroup$
Yes, it's possible.
$endgroup$
– Michael Rozenberg
Feb 4 '18 at 5:13
add a comment |
$begingroup$
Let $u = 9-x^2$, $dx=frac{du}{-2x}$
$$int frac{x^3}{sqrt{9-x^2}}dx=-1/2int frac{9-u}{sqrt{u}}du=-1/2[9(2)u^{1/2}-(2/3)u^{3/2}]\=-9(9-x^2)^{1/2}+1/3(9-x^2)^{1/3}$$
$endgroup$
$begingroup$
Great answer. I don't understand why people are so stoked about trig substitutions and use for really basic integrals. Trig substitutions are such a mess, agh !
$endgroup$
– user8277998
Feb 2 '18 at 20:01
add a comment |
$begingroup$
With your substitution we have:
$$
int frac{x^3}{sqrt{9-x^2}}dx=int frac{81sin^3 theta cos theta}{sqrt{9-9sin^2theta}}d theta
$$
that cannot be simplified as in OP.
$endgroup$
$begingroup$
Can't I rewrite the denominator as $sqrt{9(1-sin^2theta)}$ which in turn gives ${3costheta}$?
$endgroup$
– Trey
Feb 2 '18 at 19:18
$begingroup$
Yes we can, and the integral can be simplified, but with a different result than in your question .
$endgroup$
– Emilio Novati
Feb 2 '18 at 19:24
add a comment |
$begingroup$
After doing your substitution, the numerator should become $81sin^3thetacostheta.$
Anyway, my suggestion is that you do $x^2=y$ and $2x,mathrm dx=mathrm dy$.
$endgroup$
add a comment |
$begingroup$
substituting $$u=x^2$$ then we have $$du=2xdx$$ and our integral will be
$$frac{1}{2}intfrac{u}{sqrt{9-u}}du$$ no let $$s=9-u$$ and with $$ds=-du$$our integral is $$-frac{1}{2}intleft(frac{9}{sqrt{s}}-sqrt{s}right)ds$$
$endgroup$
add a comment |
$begingroup$
$$I=int frac{x^3}{sqrt{9-x^2}}dx$$
Substitute $u=9-x^2$ then $du=-2xdx$
$$I=int frac{x^3}{sqrt{9-x^2}}dx=-frac12int frac {9-u}{sqrt u}du$$
$endgroup$
add a comment |
$begingroup$
Plenty of good answers, but as the expression goes 'There's more than one way to skin a Cat' so I will provide another.
$$int frac{x^3}{sqrt{9-x^2}}:dx = int x^2 cdot frac{x}{sqrt{9-x^2}}:dx $$
Employ integration by parts:
$$int u(x)v'(x) = u(x)v(x) - int v(x)u'(x)$$
begin{align}
u(x) &= x^2 & v'(x) &= frac{x}{sqrt{9 - x^2}} \
u'(x) &= 2x & v(x) &= -sqrt{9 - x^2}
end{align}
Thus
begin{align}
int frac{x^3}{sqrt{9-x^2}}:dx &= x^2 cdot -sqrt{9 - x^2} - int -sqrt{9 - x^2} cdot 2x :dx \
&= -x^2sqrt{9 - x^2} + 2 int xsqrt{9 - x^2}:dx \
& = -x^2sqrt{9 - x^2} + 2 cdot -frac{1}{3}left(9 - x^2right)^{frac{3}{2}} + C \
&= -x^2sqrt{9 - x^2}- frac{2}{3}left(9 - x^2right)^{frac{3}{2}} + C
end{align}
Where $C$ is a constant of integration
$endgroup$
add a comment |
$begingroup$
Why not one more method?
begin{align}
int frac{x^3}{sqrt{9 - x^2}}:dx &= int x cdot frac{x^2}{sqrt{9 - x^2}}:dx = - int x cdot frac{-x^2}{sqrt{9 - x^2}}:dx \
&=- int x cdot frac{-x^2 - 9 + 9}{sqrt{9 - x^2}}:dx = -int x cdot left[ frac{9 - x^2}{sqrt{9 -x^2}} - frac{9}{sqrt{9 - x^2}} right]:dx\
&= -int xsqrt{9 = x^2}:dx + int frac{9x}{sqrt{9 - x^2}}:dx \
&= frac{1}{3}left(9 - x^2right)^{frac{3}{2}} - 9sqrt{9 - x^2} + C
end{align}
Where $C$ is a constant of integration.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2633200%2fhow-to-calculate-int-fracx3-sqrt9-x2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
9 Answers
9
active
oldest
votes
9 Answers
9
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You have two mistakes here.
$x = 3 sin theta$ I like that
$intfrac {x^3}{sqrt {9-x^2}} dx = int frac {27sin^3 theta}{sqrt {9-9sin^2theta}} (3cos theta) dtheta$
Your first mistake is at this step. Do you see where you went wrong?
next: $sqrt {9-9sin^2theta} = 3cos theta$ not $3cos^2 theta$
$int 27sin^3 theta dtheta$
Can you get home from here? If you are stuck try: $sin^2 theta = 1-cos^2theta$
Update:
"I still can't see how $27(-cos(arcsin(frac{x}{3})) + frac{cos^3(arcsin(frac{x}{3}))}{3})$ is equivalent to the solution given in the textbook."
$sin (arcsin frac {x}{3}) = frac {x}{3}\
sin^2 (arcsin frac {x}{3}) = frac {x^2}{9}\
1-sin^2 (arcsin frac {x}{3}) = 1-frac {x^2}{9}\
cos^2 (arcsin frac {x}{3}) = 1-frac {x^2}{9}\
cos (arcsin frac {x}{3}) = sqrt {1-frac {x^2}{9}}\
cos (arcsin frac {x}{3}) = frac {sqrt {9-x^2}}{3}\$
This can also be done geometrically, and I suggest you prove it this way (an exercise left to the reader).
$27(-cos(arcsin(frac{x}{3}) + frac{cos^3(arcsin(frac{x}{3}))}{3})\
27(-sqrt {1 - frac{x^2}{9}} + frac{left(sqrt {1-frac {x^2}{9}}right)^3}{3})\
-9sqrt {9 - x^2} + frac{left(sqrt {9- x^2}right)^3}{3}
$
$endgroup$
$begingroup$
I still can't see how $-cos(arcsin(frac{x}{3})) + frac{cos^3(arcsin(frac{x}{3}))}{3}$ is equivalent to the solution given in the textbook
$endgroup$
– Trey
Feb 2 '18 at 19:39
$begingroup$
@Trey does this help?
$endgroup$
– Doug M
Feb 2 '18 at 19:51
$begingroup$
Yes, thank you!
$endgroup$
– Trey
Feb 2 '18 at 19:55
add a comment |
$begingroup$
You have two mistakes here.
$x = 3 sin theta$ I like that
$intfrac {x^3}{sqrt {9-x^2}} dx = int frac {27sin^3 theta}{sqrt {9-9sin^2theta}} (3cos theta) dtheta$
Your first mistake is at this step. Do you see where you went wrong?
next: $sqrt {9-9sin^2theta} = 3cos theta$ not $3cos^2 theta$
$int 27sin^3 theta dtheta$
Can you get home from here? If you are stuck try: $sin^2 theta = 1-cos^2theta$
Update:
"I still can't see how $27(-cos(arcsin(frac{x}{3})) + frac{cos^3(arcsin(frac{x}{3}))}{3})$ is equivalent to the solution given in the textbook."
$sin (arcsin frac {x}{3}) = frac {x}{3}\
sin^2 (arcsin frac {x}{3}) = frac {x^2}{9}\
1-sin^2 (arcsin frac {x}{3}) = 1-frac {x^2}{9}\
cos^2 (arcsin frac {x}{3}) = 1-frac {x^2}{9}\
cos (arcsin frac {x}{3}) = sqrt {1-frac {x^2}{9}}\
cos (arcsin frac {x}{3}) = frac {sqrt {9-x^2}}{3}\$
This can also be done geometrically, and I suggest you prove it this way (an exercise left to the reader).
$27(-cos(arcsin(frac{x}{3}) + frac{cos^3(arcsin(frac{x}{3}))}{3})\
27(-sqrt {1 - frac{x^2}{9}} + frac{left(sqrt {1-frac {x^2}{9}}right)^3}{3})\
-9sqrt {9 - x^2} + frac{left(sqrt {9- x^2}right)^3}{3}
$
$endgroup$
$begingroup$
I still can't see how $-cos(arcsin(frac{x}{3})) + frac{cos^3(arcsin(frac{x}{3}))}{3}$ is equivalent to the solution given in the textbook
$endgroup$
– Trey
Feb 2 '18 at 19:39
$begingroup$
@Trey does this help?
$endgroup$
– Doug M
Feb 2 '18 at 19:51
$begingroup$
Yes, thank you!
$endgroup$
– Trey
Feb 2 '18 at 19:55
add a comment |
$begingroup$
You have two mistakes here.
$x = 3 sin theta$ I like that
$intfrac {x^3}{sqrt {9-x^2}} dx = int frac {27sin^3 theta}{sqrt {9-9sin^2theta}} (3cos theta) dtheta$
Your first mistake is at this step. Do you see where you went wrong?
next: $sqrt {9-9sin^2theta} = 3cos theta$ not $3cos^2 theta$
$int 27sin^3 theta dtheta$
Can you get home from here? If you are stuck try: $sin^2 theta = 1-cos^2theta$
Update:
"I still can't see how $27(-cos(arcsin(frac{x}{3})) + frac{cos^3(arcsin(frac{x}{3}))}{3})$ is equivalent to the solution given in the textbook."
$sin (arcsin frac {x}{3}) = frac {x}{3}\
sin^2 (arcsin frac {x}{3}) = frac {x^2}{9}\
1-sin^2 (arcsin frac {x}{3}) = 1-frac {x^2}{9}\
cos^2 (arcsin frac {x}{3}) = 1-frac {x^2}{9}\
cos (arcsin frac {x}{3}) = sqrt {1-frac {x^2}{9}}\
cos (arcsin frac {x}{3}) = frac {sqrt {9-x^2}}{3}\$
This can also be done geometrically, and I suggest you prove it this way (an exercise left to the reader).
$27(-cos(arcsin(frac{x}{3}) + frac{cos^3(arcsin(frac{x}{3}))}{3})\
27(-sqrt {1 - frac{x^2}{9}} + frac{left(sqrt {1-frac {x^2}{9}}right)^3}{3})\
-9sqrt {9 - x^2} + frac{left(sqrt {9- x^2}right)^3}{3}
$
$endgroup$
You have two mistakes here.
$x = 3 sin theta$ I like that
$intfrac {x^3}{sqrt {9-x^2}} dx = int frac {27sin^3 theta}{sqrt {9-9sin^2theta}} (3cos theta) dtheta$
Your first mistake is at this step. Do you see where you went wrong?
next: $sqrt {9-9sin^2theta} = 3cos theta$ not $3cos^2 theta$
$int 27sin^3 theta dtheta$
Can you get home from here? If you are stuck try: $sin^2 theta = 1-cos^2theta$
Update:
"I still can't see how $27(-cos(arcsin(frac{x}{3})) + frac{cos^3(arcsin(frac{x}{3}))}{3})$ is equivalent to the solution given in the textbook."
$sin (arcsin frac {x}{3}) = frac {x}{3}\
sin^2 (arcsin frac {x}{3}) = frac {x^2}{9}\
1-sin^2 (arcsin frac {x}{3}) = 1-frac {x^2}{9}\
cos^2 (arcsin frac {x}{3}) = 1-frac {x^2}{9}\
cos (arcsin frac {x}{3}) = sqrt {1-frac {x^2}{9}}\
cos (arcsin frac {x}{3}) = frac {sqrt {9-x^2}}{3}\$
This can also be done geometrically, and I suggest you prove it this way (an exercise left to the reader).
$27(-cos(arcsin(frac{x}{3}) + frac{cos^3(arcsin(frac{x}{3}))}{3})\
27(-sqrt {1 - frac{x^2}{9}} + frac{left(sqrt {1-frac {x^2}{9}}right)^3}{3})\
-9sqrt {9 - x^2} + frac{left(sqrt {9- x^2}right)^3}{3}
$
edited Feb 2 '18 at 19:51
answered Feb 2 '18 at 19:16
Doug MDoug M
45.1k31854
45.1k31854
$begingroup$
I still can't see how $-cos(arcsin(frac{x}{3})) + frac{cos^3(arcsin(frac{x}{3}))}{3}$ is equivalent to the solution given in the textbook
$endgroup$
– Trey
Feb 2 '18 at 19:39
$begingroup$
@Trey does this help?
$endgroup$
– Doug M
Feb 2 '18 at 19:51
$begingroup$
Yes, thank you!
$endgroup$
– Trey
Feb 2 '18 at 19:55
add a comment |
$begingroup$
I still can't see how $-cos(arcsin(frac{x}{3})) + frac{cos^3(arcsin(frac{x}{3}))}{3}$ is equivalent to the solution given in the textbook
$endgroup$
– Trey
Feb 2 '18 at 19:39
$begingroup$
@Trey does this help?
$endgroup$
– Doug M
Feb 2 '18 at 19:51
$begingroup$
Yes, thank you!
$endgroup$
– Trey
Feb 2 '18 at 19:55
$begingroup$
I still can't see how $-cos(arcsin(frac{x}{3})) + frac{cos^3(arcsin(frac{x}{3}))}{3}$ is equivalent to the solution given in the textbook
$endgroup$
– Trey
Feb 2 '18 at 19:39
$begingroup$
I still can't see how $-cos(arcsin(frac{x}{3})) + frac{cos^3(arcsin(frac{x}{3}))}{3}$ is equivalent to the solution given in the textbook
$endgroup$
– Trey
Feb 2 '18 at 19:39
$begingroup$
@Trey does this help?
$endgroup$
– Doug M
Feb 2 '18 at 19:51
$begingroup$
@Trey does this help?
$endgroup$
– Doug M
Feb 2 '18 at 19:51
$begingroup$
Yes, thank you!
$endgroup$
– Trey
Feb 2 '18 at 19:55
$begingroup$
Yes, thank you!
$endgroup$
– Trey
Feb 2 '18 at 19:55
add a comment |
$begingroup$
$$intfrac{x^3-9x+9x}{sqrt{9-x^2}}dx=-int xsqrt{9-x^2}dx+9intfrac{x}{sqrt{9-x^2}}dx=$$
$$=frac{1}{3}sqrt{(9-x^2)^3}-9sqrt{9-x^2}+C.$$
$endgroup$
$begingroup$
$$= sqrt{9 - x^2}bigg(frac 13left(9 - x^2right) - 9bigg) + C = -sqrt{9 - x^2}bigg(6 + frac{x^2}{3}bigg) + C$$ I think.
$endgroup$
– user477343
Feb 4 '18 at 3:52
$begingroup$
Yes, it's possible.
$endgroup$
– Michael Rozenberg
Feb 4 '18 at 5:13
add a comment |
$begingroup$
$$intfrac{x^3-9x+9x}{sqrt{9-x^2}}dx=-int xsqrt{9-x^2}dx+9intfrac{x}{sqrt{9-x^2}}dx=$$
$$=frac{1}{3}sqrt{(9-x^2)^3}-9sqrt{9-x^2}+C.$$
$endgroup$
$begingroup$
$$= sqrt{9 - x^2}bigg(frac 13left(9 - x^2right) - 9bigg) + C = -sqrt{9 - x^2}bigg(6 + frac{x^2}{3}bigg) + C$$ I think.
$endgroup$
– user477343
Feb 4 '18 at 3:52
$begingroup$
Yes, it's possible.
$endgroup$
– Michael Rozenberg
Feb 4 '18 at 5:13
add a comment |
$begingroup$
$$intfrac{x^3-9x+9x}{sqrt{9-x^2}}dx=-int xsqrt{9-x^2}dx+9intfrac{x}{sqrt{9-x^2}}dx=$$
$$=frac{1}{3}sqrt{(9-x^2)^3}-9sqrt{9-x^2}+C.$$
$endgroup$
$$intfrac{x^3-9x+9x}{sqrt{9-x^2}}dx=-int xsqrt{9-x^2}dx+9intfrac{x}{sqrt{9-x^2}}dx=$$
$$=frac{1}{3}sqrt{(9-x^2)^3}-9sqrt{9-x^2}+C.$$
answered Feb 2 '18 at 19:45
Michael RozenbergMichael Rozenberg
103k1891195
103k1891195
$begingroup$
$$= sqrt{9 - x^2}bigg(frac 13left(9 - x^2right) - 9bigg) + C = -sqrt{9 - x^2}bigg(6 + frac{x^2}{3}bigg) + C$$ I think.
$endgroup$
– user477343
Feb 4 '18 at 3:52
$begingroup$
Yes, it's possible.
$endgroup$
– Michael Rozenberg
Feb 4 '18 at 5:13
add a comment |
$begingroup$
$$= sqrt{9 - x^2}bigg(frac 13left(9 - x^2right) - 9bigg) + C = -sqrt{9 - x^2}bigg(6 + frac{x^2}{3}bigg) + C$$ I think.
$endgroup$
– user477343
Feb 4 '18 at 3:52
$begingroup$
Yes, it's possible.
$endgroup$
– Michael Rozenberg
Feb 4 '18 at 5:13
$begingroup$
$$= sqrt{9 - x^2}bigg(frac 13left(9 - x^2right) - 9bigg) + C = -sqrt{9 - x^2}bigg(6 + frac{x^2}{3}bigg) + C$$ I think.
$endgroup$
– user477343
Feb 4 '18 at 3:52
$begingroup$
$$= sqrt{9 - x^2}bigg(frac 13left(9 - x^2right) - 9bigg) + C = -sqrt{9 - x^2}bigg(6 + frac{x^2}{3}bigg) + C$$ I think.
$endgroup$
– user477343
Feb 4 '18 at 3:52
$begingroup$
Yes, it's possible.
$endgroup$
– Michael Rozenberg
Feb 4 '18 at 5:13
$begingroup$
Yes, it's possible.
$endgroup$
– Michael Rozenberg
Feb 4 '18 at 5:13
add a comment |
$begingroup$
Let $u = 9-x^2$, $dx=frac{du}{-2x}$
$$int frac{x^3}{sqrt{9-x^2}}dx=-1/2int frac{9-u}{sqrt{u}}du=-1/2[9(2)u^{1/2}-(2/3)u^{3/2}]\=-9(9-x^2)^{1/2}+1/3(9-x^2)^{1/3}$$
$endgroup$
$begingroup$
Great answer. I don't understand why people are so stoked about trig substitutions and use for really basic integrals. Trig substitutions are such a mess, agh !
$endgroup$
– user8277998
Feb 2 '18 at 20:01
add a comment |
$begingroup$
Let $u = 9-x^2$, $dx=frac{du}{-2x}$
$$int frac{x^3}{sqrt{9-x^2}}dx=-1/2int frac{9-u}{sqrt{u}}du=-1/2[9(2)u^{1/2}-(2/3)u^{3/2}]\=-9(9-x^2)^{1/2}+1/3(9-x^2)^{1/3}$$
$endgroup$
$begingroup$
Great answer. I don't understand why people are so stoked about trig substitutions and use for really basic integrals. Trig substitutions are such a mess, agh !
$endgroup$
– user8277998
Feb 2 '18 at 20:01
add a comment |
$begingroup$
Let $u = 9-x^2$, $dx=frac{du}{-2x}$
$$int frac{x^3}{sqrt{9-x^2}}dx=-1/2int frac{9-u}{sqrt{u}}du=-1/2[9(2)u^{1/2}-(2/3)u^{3/2}]\=-9(9-x^2)^{1/2}+1/3(9-x^2)^{1/3}$$
$endgroup$
Let $u = 9-x^2$, $dx=frac{du}{-2x}$
$$int frac{x^3}{sqrt{9-x^2}}dx=-1/2int frac{9-u}{sqrt{u}}du=-1/2[9(2)u^{1/2}-(2/3)u^{3/2}]\=-9(9-x^2)^{1/2}+1/3(9-x^2)^{1/3}$$
answered Feb 2 '18 at 19:13
id500id500
325111
325111
$begingroup$
Great answer. I don't understand why people are so stoked about trig substitutions and use for really basic integrals. Trig substitutions are such a mess, agh !
$endgroup$
– user8277998
Feb 2 '18 at 20:01
add a comment |
$begingroup$
Great answer. I don't understand why people are so stoked about trig substitutions and use for really basic integrals. Trig substitutions are such a mess, agh !
$endgroup$
– user8277998
Feb 2 '18 at 20:01
$begingroup$
Great answer. I don't understand why people are so stoked about trig substitutions and use for really basic integrals. Trig substitutions are such a mess, agh !
$endgroup$
– user8277998
Feb 2 '18 at 20:01
$begingroup$
Great answer. I don't understand why people are so stoked about trig substitutions and use for really basic integrals. Trig substitutions are such a mess, agh !
$endgroup$
– user8277998
Feb 2 '18 at 20:01
add a comment |
$begingroup$
With your substitution we have:
$$
int frac{x^3}{sqrt{9-x^2}}dx=int frac{81sin^3 theta cos theta}{sqrt{9-9sin^2theta}}d theta
$$
that cannot be simplified as in OP.
$endgroup$
$begingroup$
Can't I rewrite the denominator as $sqrt{9(1-sin^2theta)}$ which in turn gives ${3costheta}$?
$endgroup$
– Trey
Feb 2 '18 at 19:18
$begingroup$
Yes we can, and the integral can be simplified, but with a different result than in your question .
$endgroup$
– Emilio Novati
Feb 2 '18 at 19:24
add a comment |
$begingroup$
With your substitution we have:
$$
int frac{x^3}{sqrt{9-x^2}}dx=int frac{81sin^3 theta cos theta}{sqrt{9-9sin^2theta}}d theta
$$
that cannot be simplified as in OP.
$endgroup$
$begingroup$
Can't I rewrite the denominator as $sqrt{9(1-sin^2theta)}$ which in turn gives ${3costheta}$?
$endgroup$
– Trey
Feb 2 '18 at 19:18
$begingroup$
Yes we can, and the integral can be simplified, but with a different result than in your question .
$endgroup$
– Emilio Novati
Feb 2 '18 at 19:24
add a comment |
$begingroup$
With your substitution we have:
$$
int frac{x^3}{sqrt{9-x^2}}dx=int frac{81sin^3 theta cos theta}{sqrt{9-9sin^2theta}}d theta
$$
that cannot be simplified as in OP.
$endgroup$
With your substitution we have:
$$
int frac{x^3}{sqrt{9-x^2}}dx=int frac{81sin^3 theta cos theta}{sqrt{9-9sin^2theta}}d theta
$$
that cannot be simplified as in OP.
edited Feb 2 '18 at 19:23
answered Feb 2 '18 at 19:10
Emilio NovatiEmilio Novati
52k43474
52k43474
$begingroup$
Can't I rewrite the denominator as $sqrt{9(1-sin^2theta)}$ which in turn gives ${3costheta}$?
$endgroup$
– Trey
Feb 2 '18 at 19:18
$begingroup$
Yes we can, and the integral can be simplified, but with a different result than in your question .
$endgroup$
– Emilio Novati
Feb 2 '18 at 19:24
add a comment |
$begingroup$
Can't I rewrite the denominator as $sqrt{9(1-sin^2theta)}$ which in turn gives ${3costheta}$?
$endgroup$
– Trey
Feb 2 '18 at 19:18
$begingroup$
Yes we can, and the integral can be simplified, but with a different result than in your question .
$endgroup$
– Emilio Novati
Feb 2 '18 at 19:24
$begingroup$
Can't I rewrite the denominator as $sqrt{9(1-sin^2theta)}$ which in turn gives ${3costheta}$?
$endgroup$
– Trey
Feb 2 '18 at 19:18
$begingroup$
Can't I rewrite the denominator as $sqrt{9(1-sin^2theta)}$ which in turn gives ${3costheta}$?
$endgroup$
– Trey
Feb 2 '18 at 19:18
$begingroup$
Yes we can, and the integral can be simplified, but with a different result than in your question .
$endgroup$
– Emilio Novati
Feb 2 '18 at 19:24
$begingroup$
Yes we can, and the integral can be simplified, but with a different result than in your question .
$endgroup$
– Emilio Novati
Feb 2 '18 at 19:24
add a comment |
$begingroup$
After doing your substitution, the numerator should become $81sin^3thetacostheta.$
Anyway, my suggestion is that you do $x^2=y$ and $2x,mathrm dx=mathrm dy$.
$endgroup$
add a comment |
$begingroup$
After doing your substitution, the numerator should become $81sin^3thetacostheta.$
Anyway, my suggestion is that you do $x^2=y$ and $2x,mathrm dx=mathrm dy$.
$endgroup$
add a comment |
$begingroup$
After doing your substitution, the numerator should become $81sin^3thetacostheta.$
Anyway, my suggestion is that you do $x^2=y$ and $2x,mathrm dx=mathrm dy$.
$endgroup$
After doing your substitution, the numerator should become $81sin^3thetacostheta.$
Anyway, my suggestion is that you do $x^2=y$ and $2x,mathrm dx=mathrm dy$.
answered Feb 2 '18 at 19:09
José Carlos SantosJosé Carlos Santos
161k22127232
161k22127232
add a comment |
add a comment |
$begingroup$
substituting $$u=x^2$$ then we have $$du=2xdx$$ and our integral will be
$$frac{1}{2}intfrac{u}{sqrt{9-u}}du$$ no let $$s=9-u$$ and with $$ds=-du$$our integral is $$-frac{1}{2}intleft(frac{9}{sqrt{s}}-sqrt{s}right)ds$$
$endgroup$
add a comment |
$begingroup$
substituting $$u=x^2$$ then we have $$du=2xdx$$ and our integral will be
$$frac{1}{2}intfrac{u}{sqrt{9-u}}du$$ no let $$s=9-u$$ and with $$ds=-du$$our integral is $$-frac{1}{2}intleft(frac{9}{sqrt{s}}-sqrt{s}right)ds$$
$endgroup$
add a comment |
$begingroup$
substituting $$u=x^2$$ then we have $$du=2xdx$$ and our integral will be
$$frac{1}{2}intfrac{u}{sqrt{9-u}}du$$ no let $$s=9-u$$ and with $$ds=-du$$our integral is $$-frac{1}{2}intleft(frac{9}{sqrt{s}}-sqrt{s}right)ds$$
$endgroup$
substituting $$u=x^2$$ then we have $$du=2xdx$$ and our integral will be
$$frac{1}{2}intfrac{u}{sqrt{9-u}}du$$ no let $$s=9-u$$ and with $$ds=-du$$our integral is $$-frac{1}{2}intleft(frac{9}{sqrt{s}}-sqrt{s}right)ds$$
answered Feb 2 '18 at 19:10
Dr. Sonnhard GraubnerDr. Sonnhard Graubner
75.3k42865
75.3k42865
add a comment |
add a comment |
$begingroup$
$$I=int frac{x^3}{sqrt{9-x^2}}dx$$
Substitute $u=9-x^2$ then $du=-2xdx$
$$I=int frac{x^3}{sqrt{9-x^2}}dx=-frac12int frac {9-u}{sqrt u}du$$
$endgroup$
add a comment |
$begingroup$
$$I=int frac{x^3}{sqrt{9-x^2}}dx$$
Substitute $u=9-x^2$ then $du=-2xdx$
$$I=int frac{x^3}{sqrt{9-x^2}}dx=-frac12int frac {9-u}{sqrt u}du$$
$endgroup$
add a comment |
$begingroup$
$$I=int frac{x^3}{sqrt{9-x^2}}dx$$
Substitute $u=9-x^2$ then $du=-2xdx$
$$I=int frac{x^3}{sqrt{9-x^2}}dx=-frac12int frac {9-u}{sqrt u}du$$
$endgroup$
$$I=int frac{x^3}{sqrt{9-x^2}}dx$$
Substitute $u=9-x^2$ then $du=-2xdx$
$$I=int frac{x^3}{sqrt{9-x^2}}dx=-frac12int frac {9-u}{sqrt u}du$$
answered Feb 2 '18 at 19:28
IshamIsham
12.7k3929
12.7k3929
add a comment |
add a comment |
$begingroup$
Plenty of good answers, but as the expression goes 'There's more than one way to skin a Cat' so I will provide another.
$$int frac{x^3}{sqrt{9-x^2}}:dx = int x^2 cdot frac{x}{sqrt{9-x^2}}:dx $$
Employ integration by parts:
$$int u(x)v'(x) = u(x)v(x) - int v(x)u'(x)$$
begin{align}
u(x) &= x^2 & v'(x) &= frac{x}{sqrt{9 - x^2}} \
u'(x) &= 2x & v(x) &= -sqrt{9 - x^2}
end{align}
Thus
begin{align}
int frac{x^3}{sqrt{9-x^2}}:dx &= x^2 cdot -sqrt{9 - x^2} - int -sqrt{9 - x^2} cdot 2x :dx \
&= -x^2sqrt{9 - x^2} + 2 int xsqrt{9 - x^2}:dx \
& = -x^2sqrt{9 - x^2} + 2 cdot -frac{1}{3}left(9 - x^2right)^{frac{3}{2}} + C \
&= -x^2sqrt{9 - x^2}- frac{2}{3}left(9 - x^2right)^{frac{3}{2}} + C
end{align}
Where $C$ is a constant of integration
$endgroup$
add a comment |
$begingroup$
Plenty of good answers, but as the expression goes 'There's more than one way to skin a Cat' so I will provide another.
$$int frac{x^3}{sqrt{9-x^2}}:dx = int x^2 cdot frac{x}{sqrt{9-x^2}}:dx $$
Employ integration by parts:
$$int u(x)v'(x) = u(x)v(x) - int v(x)u'(x)$$
begin{align}
u(x) &= x^2 & v'(x) &= frac{x}{sqrt{9 - x^2}} \
u'(x) &= 2x & v(x) &= -sqrt{9 - x^2}
end{align}
Thus
begin{align}
int frac{x^3}{sqrt{9-x^2}}:dx &= x^2 cdot -sqrt{9 - x^2} - int -sqrt{9 - x^2} cdot 2x :dx \
&= -x^2sqrt{9 - x^2} + 2 int xsqrt{9 - x^2}:dx \
& = -x^2sqrt{9 - x^2} + 2 cdot -frac{1}{3}left(9 - x^2right)^{frac{3}{2}} + C \
&= -x^2sqrt{9 - x^2}- frac{2}{3}left(9 - x^2right)^{frac{3}{2}} + C
end{align}
Where $C$ is a constant of integration
$endgroup$
add a comment |
$begingroup$
Plenty of good answers, but as the expression goes 'There's more than one way to skin a Cat' so I will provide another.
$$int frac{x^3}{sqrt{9-x^2}}:dx = int x^2 cdot frac{x}{sqrt{9-x^2}}:dx $$
Employ integration by parts:
$$int u(x)v'(x) = u(x)v(x) - int v(x)u'(x)$$
begin{align}
u(x) &= x^2 & v'(x) &= frac{x}{sqrt{9 - x^2}} \
u'(x) &= 2x & v(x) &= -sqrt{9 - x^2}
end{align}
Thus
begin{align}
int frac{x^3}{sqrt{9-x^2}}:dx &= x^2 cdot -sqrt{9 - x^2} - int -sqrt{9 - x^2} cdot 2x :dx \
&= -x^2sqrt{9 - x^2} + 2 int xsqrt{9 - x^2}:dx \
& = -x^2sqrt{9 - x^2} + 2 cdot -frac{1}{3}left(9 - x^2right)^{frac{3}{2}} + C \
&= -x^2sqrt{9 - x^2}- frac{2}{3}left(9 - x^2right)^{frac{3}{2}} + C
end{align}
Where $C$ is a constant of integration
$endgroup$
Plenty of good answers, but as the expression goes 'There's more than one way to skin a Cat' so I will provide another.
$$int frac{x^3}{sqrt{9-x^2}}:dx = int x^2 cdot frac{x}{sqrt{9-x^2}}:dx $$
Employ integration by parts:
$$int u(x)v'(x) = u(x)v(x) - int v(x)u'(x)$$
begin{align}
u(x) &= x^2 & v'(x) &= frac{x}{sqrt{9 - x^2}} \
u'(x) &= 2x & v(x) &= -sqrt{9 - x^2}
end{align}
Thus
begin{align}
int frac{x^3}{sqrt{9-x^2}}:dx &= x^2 cdot -sqrt{9 - x^2} - int -sqrt{9 - x^2} cdot 2x :dx \
&= -x^2sqrt{9 - x^2} + 2 int xsqrt{9 - x^2}:dx \
& = -x^2sqrt{9 - x^2} + 2 cdot -frac{1}{3}left(9 - x^2right)^{frac{3}{2}} + C \
&= -x^2sqrt{9 - x^2}- frac{2}{3}left(9 - x^2right)^{frac{3}{2}} + C
end{align}
Where $C$ is a constant of integration
answered Dec 8 '18 at 7:03
DavidGDavidG
2,0821723
2,0821723
add a comment |
add a comment |
$begingroup$
Why not one more method?
begin{align}
int frac{x^3}{sqrt{9 - x^2}}:dx &= int x cdot frac{x^2}{sqrt{9 - x^2}}:dx = - int x cdot frac{-x^2}{sqrt{9 - x^2}}:dx \
&=- int x cdot frac{-x^2 - 9 + 9}{sqrt{9 - x^2}}:dx = -int x cdot left[ frac{9 - x^2}{sqrt{9 -x^2}} - frac{9}{sqrt{9 - x^2}} right]:dx\
&= -int xsqrt{9 = x^2}:dx + int frac{9x}{sqrt{9 - x^2}}:dx \
&= frac{1}{3}left(9 - x^2right)^{frac{3}{2}} - 9sqrt{9 - x^2} + C
end{align}
Where $C$ is a constant of integration.
$endgroup$
add a comment |
$begingroup$
Why not one more method?
begin{align}
int frac{x^3}{sqrt{9 - x^2}}:dx &= int x cdot frac{x^2}{sqrt{9 - x^2}}:dx = - int x cdot frac{-x^2}{sqrt{9 - x^2}}:dx \
&=- int x cdot frac{-x^2 - 9 + 9}{sqrt{9 - x^2}}:dx = -int x cdot left[ frac{9 - x^2}{sqrt{9 -x^2}} - frac{9}{sqrt{9 - x^2}} right]:dx\
&= -int xsqrt{9 = x^2}:dx + int frac{9x}{sqrt{9 - x^2}}:dx \
&= frac{1}{3}left(9 - x^2right)^{frac{3}{2}} - 9sqrt{9 - x^2} + C
end{align}
Where $C$ is a constant of integration.
$endgroup$
add a comment |
$begingroup$
Why not one more method?
begin{align}
int frac{x^3}{sqrt{9 - x^2}}:dx &= int x cdot frac{x^2}{sqrt{9 - x^2}}:dx = - int x cdot frac{-x^2}{sqrt{9 - x^2}}:dx \
&=- int x cdot frac{-x^2 - 9 + 9}{sqrt{9 - x^2}}:dx = -int x cdot left[ frac{9 - x^2}{sqrt{9 -x^2}} - frac{9}{sqrt{9 - x^2}} right]:dx\
&= -int xsqrt{9 = x^2}:dx + int frac{9x}{sqrt{9 - x^2}}:dx \
&= frac{1}{3}left(9 - x^2right)^{frac{3}{2}} - 9sqrt{9 - x^2} + C
end{align}
Where $C$ is a constant of integration.
$endgroup$
Why not one more method?
begin{align}
int frac{x^3}{sqrt{9 - x^2}}:dx &= int x cdot frac{x^2}{sqrt{9 - x^2}}:dx = - int x cdot frac{-x^2}{sqrt{9 - x^2}}:dx \
&=- int x cdot frac{-x^2 - 9 + 9}{sqrt{9 - x^2}}:dx = -int x cdot left[ frac{9 - x^2}{sqrt{9 -x^2}} - frac{9}{sqrt{9 - x^2}} right]:dx\
&= -int xsqrt{9 = x^2}:dx + int frac{9x}{sqrt{9 - x^2}}:dx \
&= frac{1}{3}left(9 - x^2right)^{frac{3}{2}} - 9sqrt{9 - x^2} + C
end{align}
Where $C$ is a constant of integration.
answered Dec 8 '18 at 8:51
DavidGDavidG
2,0821723
2,0821723
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2633200%2fhow-to-calculate-int-fracx3-sqrt9-x2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
where is your $mathrm dtheta$
$endgroup$
– ThePortakal
Feb 2 '18 at 19:10
$begingroup$
Shouldn't your integral be$$int dtheta,frac {81sin^3thetacostheta}{sqrt{9-9sin^2theta}}$$
$endgroup$
– Crescendo
Feb 2 '18 at 19:10
$begingroup$
@Crescendo Indeed, I forgot to put the $dtheta$
$endgroup$
– Trey
Feb 2 '18 at 19:13