Integrality of a certain quantity $sum_{i =1}^n a_{lfloor frac{n}{i}rfloor }=n^{10}, $












4












$begingroup$


Problem :A sequence $a_1,a_2,dots$ satisfy
$$
sum_{i =1}^n a_{lfloor frac{n}{i}rfloor }=n^{10},
$$

for every $ninmathbb{N}$.
Let $c$ be a positive integer. Prove that, for every positive integer $n$,
$$
frac{c^{a_n}-c^{a_{n-1}}}{n}
$$

is an integer.



I try :




Note that the required proposition is true if both $a_ngeqslant n$ and $phi (n)mid a_n-a_{n-1}$ is true for all positive integer $n>1$.
From the condition given, we get that $a_1=1$ and
begin{align*}
(n+1)^{10}-n^{10}-1& =sum_{j=1}^{n}{left( a_{lfloor frac{n+1}{j}rfloor }-a_{lfloor frac{n}{j}rfloor }right) }\
& =sum_{substack{jmid n+1 \1leqslant j<n+1}}{left( a_{frac{n+1}{j}} -a_{frac{n+1}{j}-1} right) } \
& =sum_{substack{dmid n+1 \d>1}}{ (a_d-a_{d-1})} .
end{align*}

Following work I can't











share|cite|improve this question











$endgroup$

















    4












    $begingroup$


    Problem :A sequence $a_1,a_2,dots$ satisfy
    $$
    sum_{i =1}^n a_{lfloor frac{n}{i}rfloor }=n^{10},
    $$

    for every $ninmathbb{N}$.
    Let $c$ be a positive integer. Prove that, for every positive integer $n$,
    $$
    frac{c^{a_n}-c^{a_{n-1}}}{n}
    $$

    is an integer.



    I try :




    Note that the required proposition is true if both $a_ngeqslant n$ and $phi (n)mid a_n-a_{n-1}$ is true for all positive integer $n>1$.
    From the condition given, we get that $a_1=1$ and
    begin{align*}
    (n+1)^{10}-n^{10}-1& =sum_{j=1}^{n}{left( a_{lfloor frac{n+1}{j}rfloor }-a_{lfloor frac{n}{j}rfloor }right) }\
    & =sum_{substack{jmid n+1 \1leqslant j<n+1}}{left( a_{frac{n+1}{j}} -a_{frac{n+1}{j}-1} right) } \
    & =sum_{substack{dmid n+1 \d>1}}{ (a_d-a_{d-1})} .
    end{align*}

    Following work I can't











    share|cite|improve this question











    $endgroup$















      4












      4








      4


      2



      $begingroup$


      Problem :A sequence $a_1,a_2,dots$ satisfy
      $$
      sum_{i =1}^n a_{lfloor frac{n}{i}rfloor }=n^{10},
      $$

      for every $ninmathbb{N}$.
      Let $c$ be a positive integer. Prove that, for every positive integer $n$,
      $$
      frac{c^{a_n}-c^{a_{n-1}}}{n}
      $$

      is an integer.



      I try :




      Note that the required proposition is true if both $a_ngeqslant n$ and $phi (n)mid a_n-a_{n-1}$ is true for all positive integer $n>1$.
      From the condition given, we get that $a_1=1$ and
      begin{align*}
      (n+1)^{10}-n^{10}-1& =sum_{j=1}^{n}{left( a_{lfloor frac{n+1}{j}rfloor }-a_{lfloor frac{n}{j}rfloor }right) }\
      & =sum_{substack{jmid n+1 \1leqslant j<n+1}}{left( a_{frac{n+1}{j}} -a_{frac{n+1}{j}-1} right) } \
      & =sum_{substack{dmid n+1 \d>1}}{ (a_d-a_{d-1})} .
      end{align*}

      Following work I can't











      share|cite|improve this question











      $endgroup$




      Problem :A sequence $a_1,a_2,dots$ satisfy
      $$
      sum_{i =1}^n a_{lfloor frac{n}{i}rfloor }=n^{10},
      $$

      for every $ninmathbb{N}$.
      Let $c$ be a positive integer. Prove that, for every positive integer $n$,
      $$
      frac{c^{a_n}-c^{a_{n-1}}}{n}
      $$

      is an integer.



      I try :




      Note that the required proposition is true if both $a_ngeqslant n$ and $phi (n)mid a_n-a_{n-1}$ is true for all positive integer $n>1$.
      From the condition given, we get that $a_1=1$ and
      begin{align*}
      (n+1)^{10}-n^{10}-1& =sum_{j=1}^{n}{left( a_{lfloor frac{n+1}{j}rfloor }-a_{lfloor frac{n}{j}rfloor }right) }\
      & =sum_{substack{jmid n+1 \1leqslant j<n+1}}{left( a_{frac{n+1}{j}} -a_{frac{n+1}{j}-1} right) } \
      & =sum_{substack{dmid n+1 \d>1}}{ (a_d-a_{d-1})} .
      end{align*}

      Following work I can't








      sequences-and-series number-theory






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 8 '18 at 2:19









      Shaun

      9,088113683




      9,088113683










      asked Dec 8 '18 at 1:05









      inequalityinequality

      724520




      724520






















          2 Answers
          2






          active

          oldest

          votes


















          4












          $begingroup$

          You are in the right direction. Differencing yields
          $$begin{eqnarray}
          n^{10} - (n-1)^{10} &=& a_1 +sum_{1leq i leq n-1} (a_{lfloor frac{n}{i}rfloor }-a_{lfloor frac{n-1}{i}rfloor })\
          &=&a_1 + sum_{i|n, i<n} (a_{frac{n}{i} }-a_{frac{n}{i}-1 })\
          &=&a_1 + sum_{i|n, i>1} (a_{i }-a_{i-1 }) = sum_{i|n} (a_{i }-a_{i-1 })
          end{eqnarray}$$
          if we let $a_0 = 0$. Define $b_n = a_n - a_{n-1}$ and $p(n) = n^{10} - (n-1)^{10}$. By Mobius inversion formula, (see https://en.wikipedia.org/wiki/M%C3%B6bius_inversion_formula) we have
          $$
          b_n = sum_{j|n} p(j)mu(frac{n}{j}).
          $$
          What we show first is that $phi(n) $ divides each $b_n$ for all $ngeq 1.$ To this end, we show the following claim: for each $rgeq 0$, $sum_{j|n} j^rmu(frac{n}{j})$ has $phi(n)$ as its factor. Proof goes like this. Let $$c_n = sum_{j|n} j^rmu(frac{n}{j}).$$ Observe that $c_1 = 1$, hence $phi(1) | c_1$. We first show $phi(n)|c_n$ for $n = p^k$ where $p$ is a prime. This follows easily since
          $$
          c_{p^k} = p^{rk} - p^{r(k-1)},
          $$
          and
          $$
          phi(p^k) = p^k - p^{k-1}.
          $$
          (Note that $x-y | x^r - y^r$.) Next we show that $c_n$ is multiplicative, that is, for $p,q$ such that $(p,q)=1$, it holds that $c_{pq} = c_pc_q$. This also follows easily from
          $$begin{eqnarray}
          c_{pq} &=&sum_{j|pq} j^rmu(frac{pq}{j}) \
          &=& sum_{n|p, m|q} (nm)^rmu(frac{pq}{nm})\
          &=&sum_{n|p, m|q} n^rmu(frac{p}{n})cdot m^rmu(frac{q}{m})\
          &=& sum_{n|p} n^rmu(frac{p}{n})cdot sum_{m|q}m^rmu(frac{q}{m})\
          &=& c_pcdot c_q.
          end{eqnarray}$$
          Since $phi(n)$ is also multiplicative, these two facts prove the claim.



          So far we've shown that for every monomial $j^r$, it holds that $phi(n) |sum_{j|n} j^rmu(frac{n}{j})$. Thus it holds for any polynomial with integer coefficients, and especially for $p(j)$. This shows
          $$
          phi(n) :|: b_n = sum_{j|n} p(j)mu(frac{n}{j}),
          $$
          as we wanted.

          It remains to show $a_n geq n$. Assume $ccdot j^{10} leq a_j leq j^{10}$ for $j=1,2,ldots,n-1$ for some $0<c<1$. Then we have
          $$begin{eqnarray}
          a_n &=& n^{10} - sum_{2leq i leq n} a_{lfloor frac{n}{i}rfloor }\
          &geq & n^{10} - n^{10}sum_{2leq i leq n} frac{1}{i^{10}} \
          &geq & n^{10} (1-sum_{2leq i <infty} frac{1}{i^{10}}),
          end{eqnarray}$$
          and $a_n leq n^{10}$. If we let $c = 1-sum_{i=2}^{infty}frac{1}{i^{10}}in (0.99,1)$, then by induction hypothesis, it holds for every $nin mathbb{N}$ once if we prove it for $n=1$. But this is obviously true, since $a_1 = 1$. Finally, we see that
          $$
          a_n geq ccdot n^{10} geq (ccdot 2^9)cdot n >500n
          $$
          for all $ngeq 2$, establishing $a_n geq n$.






          share|cite|improve this answer











          $endgroup$





















            1












            $begingroup$

            Something maybe helpful:



            Denote $b_n=a_n-a_{n-1}$ and $f(n)=n^{10}-(n-1)^{10}$.



            For any prime number $p$, we have
            $$b_p=a_{p}-a_{p-1}=p^{10}-(p-1)^{10}-1=f(p)-1$$
            Notice that for any $n=p^m$ where $m$ is a positive integer :
            $$b_{p^m}=f(p^m)-1-sum_{k=1}^{m-1}{b_{p^k}}$$
            then by mathematical induction, we can get that
            $$b_{p^m}=f(p^m)-f(p^{m-1})=(p^m)^{10}-(p^m-1)^{10}-(p^{m-1})^{10}+(p^{m-1}-1)^{10}$$
            For two different prime number $p,q$, we have
            $$b_{pq}+b_p+b_q=f(pq)-1$$
            which implies that
            $$b_{pq}=f(pq)-f(p)-f(q)+1$$
            then by mathematical induction, we can get that
            $$b_{p_1p_2cdots p_k}=sum^{k}_{i=1}(-1)^{k-i}sum_{1leq k_1<k_2<cdots<k_ileq k}{f(p_{k_1}p_{k_2}cdots p_{k_i})}+(-1)^{k}$$






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3030583%2fintegrality-of-a-certain-quantity-sum-i-1n-a-lfloor-fracni-rfloor%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              4












              $begingroup$

              You are in the right direction. Differencing yields
              $$begin{eqnarray}
              n^{10} - (n-1)^{10} &=& a_1 +sum_{1leq i leq n-1} (a_{lfloor frac{n}{i}rfloor }-a_{lfloor frac{n-1}{i}rfloor })\
              &=&a_1 + sum_{i|n, i<n} (a_{frac{n}{i} }-a_{frac{n}{i}-1 })\
              &=&a_1 + sum_{i|n, i>1} (a_{i }-a_{i-1 }) = sum_{i|n} (a_{i }-a_{i-1 })
              end{eqnarray}$$
              if we let $a_0 = 0$. Define $b_n = a_n - a_{n-1}$ and $p(n) = n^{10} - (n-1)^{10}$. By Mobius inversion formula, (see https://en.wikipedia.org/wiki/M%C3%B6bius_inversion_formula) we have
              $$
              b_n = sum_{j|n} p(j)mu(frac{n}{j}).
              $$
              What we show first is that $phi(n) $ divides each $b_n$ for all $ngeq 1.$ To this end, we show the following claim: for each $rgeq 0$, $sum_{j|n} j^rmu(frac{n}{j})$ has $phi(n)$ as its factor. Proof goes like this. Let $$c_n = sum_{j|n} j^rmu(frac{n}{j}).$$ Observe that $c_1 = 1$, hence $phi(1) | c_1$. We first show $phi(n)|c_n$ for $n = p^k$ where $p$ is a prime. This follows easily since
              $$
              c_{p^k} = p^{rk} - p^{r(k-1)},
              $$
              and
              $$
              phi(p^k) = p^k - p^{k-1}.
              $$
              (Note that $x-y | x^r - y^r$.) Next we show that $c_n$ is multiplicative, that is, for $p,q$ such that $(p,q)=1$, it holds that $c_{pq} = c_pc_q$. This also follows easily from
              $$begin{eqnarray}
              c_{pq} &=&sum_{j|pq} j^rmu(frac{pq}{j}) \
              &=& sum_{n|p, m|q} (nm)^rmu(frac{pq}{nm})\
              &=&sum_{n|p, m|q} n^rmu(frac{p}{n})cdot m^rmu(frac{q}{m})\
              &=& sum_{n|p} n^rmu(frac{p}{n})cdot sum_{m|q}m^rmu(frac{q}{m})\
              &=& c_pcdot c_q.
              end{eqnarray}$$
              Since $phi(n)$ is also multiplicative, these two facts prove the claim.



              So far we've shown that for every monomial $j^r$, it holds that $phi(n) |sum_{j|n} j^rmu(frac{n}{j})$. Thus it holds for any polynomial with integer coefficients, and especially for $p(j)$. This shows
              $$
              phi(n) :|: b_n = sum_{j|n} p(j)mu(frac{n}{j}),
              $$
              as we wanted.

              It remains to show $a_n geq n$. Assume $ccdot j^{10} leq a_j leq j^{10}$ for $j=1,2,ldots,n-1$ for some $0<c<1$. Then we have
              $$begin{eqnarray}
              a_n &=& n^{10} - sum_{2leq i leq n} a_{lfloor frac{n}{i}rfloor }\
              &geq & n^{10} - n^{10}sum_{2leq i leq n} frac{1}{i^{10}} \
              &geq & n^{10} (1-sum_{2leq i <infty} frac{1}{i^{10}}),
              end{eqnarray}$$
              and $a_n leq n^{10}$. If we let $c = 1-sum_{i=2}^{infty}frac{1}{i^{10}}in (0.99,1)$, then by induction hypothesis, it holds for every $nin mathbb{N}$ once if we prove it for $n=1$. But this is obviously true, since $a_1 = 1$. Finally, we see that
              $$
              a_n geq ccdot n^{10} geq (ccdot 2^9)cdot n >500n
              $$
              for all $ngeq 2$, establishing $a_n geq n$.






              share|cite|improve this answer











              $endgroup$


















                4












                $begingroup$

                You are in the right direction. Differencing yields
                $$begin{eqnarray}
                n^{10} - (n-1)^{10} &=& a_1 +sum_{1leq i leq n-1} (a_{lfloor frac{n}{i}rfloor }-a_{lfloor frac{n-1}{i}rfloor })\
                &=&a_1 + sum_{i|n, i<n} (a_{frac{n}{i} }-a_{frac{n}{i}-1 })\
                &=&a_1 + sum_{i|n, i>1} (a_{i }-a_{i-1 }) = sum_{i|n} (a_{i }-a_{i-1 })
                end{eqnarray}$$
                if we let $a_0 = 0$. Define $b_n = a_n - a_{n-1}$ and $p(n) = n^{10} - (n-1)^{10}$. By Mobius inversion formula, (see https://en.wikipedia.org/wiki/M%C3%B6bius_inversion_formula) we have
                $$
                b_n = sum_{j|n} p(j)mu(frac{n}{j}).
                $$
                What we show first is that $phi(n) $ divides each $b_n$ for all $ngeq 1.$ To this end, we show the following claim: for each $rgeq 0$, $sum_{j|n} j^rmu(frac{n}{j})$ has $phi(n)$ as its factor. Proof goes like this. Let $$c_n = sum_{j|n} j^rmu(frac{n}{j}).$$ Observe that $c_1 = 1$, hence $phi(1) | c_1$. We first show $phi(n)|c_n$ for $n = p^k$ where $p$ is a prime. This follows easily since
                $$
                c_{p^k} = p^{rk} - p^{r(k-1)},
                $$
                and
                $$
                phi(p^k) = p^k - p^{k-1}.
                $$
                (Note that $x-y | x^r - y^r$.) Next we show that $c_n$ is multiplicative, that is, for $p,q$ such that $(p,q)=1$, it holds that $c_{pq} = c_pc_q$. This also follows easily from
                $$begin{eqnarray}
                c_{pq} &=&sum_{j|pq} j^rmu(frac{pq}{j}) \
                &=& sum_{n|p, m|q} (nm)^rmu(frac{pq}{nm})\
                &=&sum_{n|p, m|q} n^rmu(frac{p}{n})cdot m^rmu(frac{q}{m})\
                &=& sum_{n|p} n^rmu(frac{p}{n})cdot sum_{m|q}m^rmu(frac{q}{m})\
                &=& c_pcdot c_q.
                end{eqnarray}$$
                Since $phi(n)$ is also multiplicative, these two facts prove the claim.



                So far we've shown that for every monomial $j^r$, it holds that $phi(n) |sum_{j|n} j^rmu(frac{n}{j})$. Thus it holds for any polynomial with integer coefficients, and especially for $p(j)$. This shows
                $$
                phi(n) :|: b_n = sum_{j|n} p(j)mu(frac{n}{j}),
                $$
                as we wanted.

                It remains to show $a_n geq n$. Assume $ccdot j^{10} leq a_j leq j^{10}$ for $j=1,2,ldots,n-1$ for some $0<c<1$. Then we have
                $$begin{eqnarray}
                a_n &=& n^{10} - sum_{2leq i leq n} a_{lfloor frac{n}{i}rfloor }\
                &geq & n^{10} - n^{10}sum_{2leq i leq n} frac{1}{i^{10}} \
                &geq & n^{10} (1-sum_{2leq i <infty} frac{1}{i^{10}}),
                end{eqnarray}$$
                and $a_n leq n^{10}$. If we let $c = 1-sum_{i=2}^{infty}frac{1}{i^{10}}in (0.99,1)$, then by induction hypothesis, it holds for every $nin mathbb{N}$ once if we prove it for $n=1$. But this is obviously true, since $a_1 = 1$. Finally, we see that
                $$
                a_n geq ccdot n^{10} geq (ccdot 2^9)cdot n >500n
                $$
                for all $ngeq 2$, establishing $a_n geq n$.






                share|cite|improve this answer











                $endgroup$
















                  4












                  4








                  4





                  $begingroup$

                  You are in the right direction. Differencing yields
                  $$begin{eqnarray}
                  n^{10} - (n-1)^{10} &=& a_1 +sum_{1leq i leq n-1} (a_{lfloor frac{n}{i}rfloor }-a_{lfloor frac{n-1}{i}rfloor })\
                  &=&a_1 + sum_{i|n, i<n} (a_{frac{n}{i} }-a_{frac{n}{i}-1 })\
                  &=&a_1 + sum_{i|n, i>1} (a_{i }-a_{i-1 }) = sum_{i|n} (a_{i }-a_{i-1 })
                  end{eqnarray}$$
                  if we let $a_0 = 0$. Define $b_n = a_n - a_{n-1}$ and $p(n) = n^{10} - (n-1)^{10}$. By Mobius inversion formula, (see https://en.wikipedia.org/wiki/M%C3%B6bius_inversion_formula) we have
                  $$
                  b_n = sum_{j|n} p(j)mu(frac{n}{j}).
                  $$
                  What we show first is that $phi(n) $ divides each $b_n$ for all $ngeq 1.$ To this end, we show the following claim: for each $rgeq 0$, $sum_{j|n} j^rmu(frac{n}{j})$ has $phi(n)$ as its factor. Proof goes like this. Let $$c_n = sum_{j|n} j^rmu(frac{n}{j}).$$ Observe that $c_1 = 1$, hence $phi(1) | c_1$. We first show $phi(n)|c_n$ for $n = p^k$ where $p$ is a prime. This follows easily since
                  $$
                  c_{p^k} = p^{rk} - p^{r(k-1)},
                  $$
                  and
                  $$
                  phi(p^k) = p^k - p^{k-1}.
                  $$
                  (Note that $x-y | x^r - y^r$.) Next we show that $c_n$ is multiplicative, that is, for $p,q$ such that $(p,q)=1$, it holds that $c_{pq} = c_pc_q$. This also follows easily from
                  $$begin{eqnarray}
                  c_{pq} &=&sum_{j|pq} j^rmu(frac{pq}{j}) \
                  &=& sum_{n|p, m|q} (nm)^rmu(frac{pq}{nm})\
                  &=&sum_{n|p, m|q} n^rmu(frac{p}{n})cdot m^rmu(frac{q}{m})\
                  &=& sum_{n|p} n^rmu(frac{p}{n})cdot sum_{m|q}m^rmu(frac{q}{m})\
                  &=& c_pcdot c_q.
                  end{eqnarray}$$
                  Since $phi(n)$ is also multiplicative, these two facts prove the claim.



                  So far we've shown that for every monomial $j^r$, it holds that $phi(n) |sum_{j|n} j^rmu(frac{n}{j})$. Thus it holds for any polynomial with integer coefficients, and especially for $p(j)$. This shows
                  $$
                  phi(n) :|: b_n = sum_{j|n} p(j)mu(frac{n}{j}),
                  $$
                  as we wanted.

                  It remains to show $a_n geq n$. Assume $ccdot j^{10} leq a_j leq j^{10}$ for $j=1,2,ldots,n-1$ for some $0<c<1$. Then we have
                  $$begin{eqnarray}
                  a_n &=& n^{10} - sum_{2leq i leq n} a_{lfloor frac{n}{i}rfloor }\
                  &geq & n^{10} - n^{10}sum_{2leq i leq n} frac{1}{i^{10}} \
                  &geq & n^{10} (1-sum_{2leq i <infty} frac{1}{i^{10}}),
                  end{eqnarray}$$
                  and $a_n leq n^{10}$. If we let $c = 1-sum_{i=2}^{infty}frac{1}{i^{10}}in (0.99,1)$, then by induction hypothesis, it holds for every $nin mathbb{N}$ once if we prove it for $n=1$. But this is obviously true, since $a_1 = 1$. Finally, we see that
                  $$
                  a_n geq ccdot n^{10} geq (ccdot 2^9)cdot n >500n
                  $$
                  for all $ngeq 2$, establishing $a_n geq n$.






                  share|cite|improve this answer











                  $endgroup$



                  You are in the right direction. Differencing yields
                  $$begin{eqnarray}
                  n^{10} - (n-1)^{10} &=& a_1 +sum_{1leq i leq n-1} (a_{lfloor frac{n}{i}rfloor }-a_{lfloor frac{n-1}{i}rfloor })\
                  &=&a_1 + sum_{i|n, i<n} (a_{frac{n}{i} }-a_{frac{n}{i}-1 })\
                  &=&a_1 + sum_{i|n, i>1} (a_{i }-a_{i-1 }) = sum_{i|n} (a_{i }-a_{i-1 })
                  end{eqnarray}$$
                  if we let $a_0 = 0$. Define $b_n = a_n - a_{n-1}$ and $p(n) = n^{10} - (n-1)^{10}$. By Mobius inversion formula, (see https://en.wikipedia.org/wiki/M%C3%B6bius_inversion_formula) we have
                  $$
                  b_n = sum_{j|n} p(j)mu(frac{n}{j}).
                  $$
                  What we show first is that $phi(n) $ divides each $b_n$ for all $ngeq 1.$ To this end, we show the following claim: for each $rgeq 0$, $sum_{j|n} j^rmu(frac{n}{j})$ has $phi(n)$ as its factor. Proof goes like this. Let $$c_n = sum_{j|n} j^rmu(frac{n}{j}).$$ Observe that $c_1 = 1$, hence $phi(1) | c_1$. We first show $phi(n)|c_n$ for $n = p^k$ where $p$ is a prime. This follows easily since
                  $$
                  c_{p^k} = p^{rk} - p^{r(k-1)},
                  $$
                  and
                  $$
                  phi(p^k) = p^k - p^{k-1}.
                  $$
                  (Note that $x-y | x^r - y^r$.) Next we show that $c_n$ is multiplicative, that is, for $p,q$ such that $(p,q)=1$, it holds that $c_{pq} = c_pc_q$. This also follows easily from
                  $$begin{eqnarray}
                  c_{pq} &=&sum_{j|pq} j^rmu(frac{pq}{j}) \
                  &=& sum_{n|p, m|q} (nm)^rmu(frac{pq}{nm})\
                  &=&sum_{n|p, m|q} n^rmu(frac{p}{n})cdot m^rmu(frac{q}{m})\
                  &=& sum_{n|p} n^rmu(frac{p}{n})cdot sum_{m|q}m^rmu(frac{q}{m})\
                  &=& c_pcdot c_q.
                  end{eqnarray}$$
                  Since $phi(n)$ is also multiplicative, these two facts prove the claim.



                  So far we've shown that for every monomial $j^r$, it holds that $phi(n) |sum_{j|n} j^rmu(frac{n}{j})$. Thus it holds for any polynomial with integer coefficients, and especially for $p(j)$. This shows
                  $$
                  phi(n) :|: b_n = sum_{j|n} p(j)mu(frac{n}{j}),
                  $$
                  as we wanted.

                  It remains to show $a_n geq n$. Assume $ccdot j^{10} leq a_j leq j^{10}$ for $j=1,2,ldots,n-1$ for some $0<c<1$. Then we have
                  $$begin{eqnarray}
                  a_n &=& n^{10} - sum_{2leq i leq n} a_{lfloor frac{n}{i}rfloor }\
                  &geq & n^{10} - n^{10}sum_{2leq i leq n} frac{1}{i^{10}} \
                  &geq & n^{10} (1-sum_{2leq i <infty} frac{1}{i^{10}}),
                  end{eqnarray}$$
                  and $a_n leq n^{10}$. If we let $c = 1-sum_{i=2}^{infty}frac{1}{i^{10}}in (0.99,1)$, then by induction hypothesis, it holds for every $nin mathbb{N}$ once if we prove it for $n=1$. But this is obviously true, since $a_1 = 1$. Finally, we see that
                  $$
                  a_n geq ccdot n^{10} geq (ccdot 2^9)cdot n >500n
                  $$
                  for all $ngeq 2$, establishing $a_n geq n$.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Dec 13 '18 at 1:06

























                  answered Dec 9 '18 at 0:42









                  SongSong

                  12.6k631




                  12.6k631























                      1












                      $begingroup$

                      Something maybe helpful:



                      Denote $b_n=a_n-a_{n-1}$ and $f(n)=n^{10}-(n-1)^{10}$.



                      For any prime number $p$, we have
                      $$b_p=a_{p}-a_{p-1}=p^{10}-(p-1)^{10}-1=f(p)-1$$
                      Notice that for any $n=p^m$ where $m$ is a positive integer :
                      $$b_{p^m}=f(p^m)-1-sum_{k=1}^{m-1}{b_{p^k}}$$
                      then by mathematical induction, we can get that
                      $$b_{p^m}=f(p^m)-f(p^{m-1})=(p^m)^{10}-(p^m-1)^{10}-(p^{m-1})^{10}+(p^{m-1}-1)^{10}$$
                      For two different prime number $p,q$, we have
                      $$b_{pq}+b_p+b_q=f(pq)-1$$
                      which implies that
                      $$b_{pq}=f(pq)-f(p)-f(q)+1$$
                      then by mathematical induction, we can get that
                      $$b_{p_1p_2cdots p_k}=sum^{k}_{i=1}(-1)^{k-i}sum_{1leq k_1<k_2<cdots<k_ileq k}{f(p_{k_1}p_{k_2}cdots p_{k_i})}+(-1)^{k}$$






                      share|cite|improve this answer









                      $endgroup$


















                        1












                        $begingroup$

                        Something maybe helpful:



                        Denote $b_n=a_n-a_{n-1}$ and $f(n)=n^{10}-(n-1)^{10}$.



                        For any prime number $p$, we have
                        $$b_p=a_{p}-a_{p-1}=p^{10}-(p-1)^{10}-1=f(p)-1$$
                        Notice that for any $n=p^m$ where $m$ is a positive integer :
                        $$b_{p^m}=f(p^m)-1-sum_{k=1}^{m-1}{b_{p^k}}$$
                        then by mathematical induction, we can get that
                        $$b_{p^m}=f(p^m)-f(p^{m-1})=(p^m)^{10}-(p^m-1)^{10}-(p^{m-1})^{10}+(p^{m-1}-1)^{10}$$
                        For two different prime number $p,q$, we have
                        $$b_{pq}+b_p+b_q=f(pq)-1$$
                        which implies that
                        $$b_{pq}=f(pq)-f(p)-f(q)+1$$
                        then by mathematical induction, we can get that
                        $$b_{p_1p_2cdots p_k}=sum^{k}_{i=1}(-1)^{k-i}sum_{1leq k_1<k_2<cdots<k_ileq k}{f(p_{k_1}p_{k_2}cdots p_{k_i})}+(-1)^{k}$$






                        share|cite|improve this answer









                        $endgroup$
















                          1












                          1








                          1





                          $begingroup$

                          Something maybe helpful:



                          Denote $b_n=a_n-a_{n-1}$ and $f(n)=n^{10}-(n-1)^{10}$.



                          For any prime number $p$, we have
                          $$b_p=a_{p}-a_{p-1}=p^{10}-(p-1)^{10}-1=f(p)-1$$
                          Notice that for any $n=p^m$ where $m$ is a positive integer :
                          $$b_{p^m}=f(p^m)-1-sum_{k=1}^{m-1}{b_{p^k}}$$
                          then by mathematical induction, we can get that
                          $$b_{p^m}=f(p^m)-f(p^{m-1})=(p^m)^{10}-(p^m-1)^{10}-(p^{m-1})^{10}+(p^{m-1}-1)^{10}$$
                          For two different prime number $p,q$, we have
                          $$b_{pq}+b_p+b_q=f(pq)-1$$
                          which implies that
                          $$b_{pq}=f(pq)-f(p)-f(q)+1$$
                          then by mathematical induction, we can get that
                          $$b_{p_1p_2cdots p_k}=sum^{k}_{i=1}(-1)^{k-i}sum_{1leq k_1<k_2<cdots<k_ileq k}{f(p_{k_1}p_{k_2}cdots p_{k_i})}+(-1)^{k}$$






                          share|cite|improve this answer









                          $endgroup$



                          Something maybe helpful:



                          Denote $b_n=a_n-a_{n-1}$ and $f(n)=n^{10}-(n-1)^{10}$.



                          For any prime number $p$, we have
                          $$b_p=a_{p}-a_{p-1}=p^{10}-(p-1)^{10}-1=f(p)-1$$
                          Notice that for any $n=p^m$ where $m$ is a positive integer :
                          $$b_{p^m}=f(p^m)-1-sum_{k=1}^{m-1}{b_{p^k}}$$
                          then by mathematical induction, we can get that
                          $$b_{p^m}=f(p^m)-f(p^{m-1})=(p^m)^{10}-(p^m-1)^{10}-(p^{m-1})^{10}+(p^{m-1}-1)^{10}$$
                          For two different prime number $p,q$, we have
                          $$b_{pq}+b_p+b_q=f(pq)-1$$
                          which implies that
                          $$b_{pq}=f(pq)-f(p)-f(q)+1$$
                          then by mathematical induction, we can get that
                          $$b_{p_1p_2cdots p_k}=sum^{k}_{i=1}(-1)^{k-i}sum_{1leq k_1<k_2<cdots<k_ileq k}{f(p_{k_1}p_{k_2}cdots p_{k_i})}+(-1)^{k}$$







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Dec 8 '18 at 7:11









                          LauLau

                          517315




                          517315






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3030583%2fintegrality-of-a-certain-quantity-sum-i-1n-a-lfloor-fracni-rfloor%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Plaza Victoria

                              In PowerPoint, is there a keyboard shortcut for bulleted / numbered list?

                              How to put 3 figures in Latex with 2 figures side by side and 1 below these side by side images but in...