Proof of relation between Normal and Chi-square












1












$begingroup$


Let $Xsim N(0,1)$, i want to determine the distribution of $Y=X^2$.



By definition, the density of $X$ is $f_X(x)=frac{1}{sigmasqrt{2pi}}e^{-frac{1}{2sigma^2}(x-mu)^2},forall xin mathbb{R}$. I also know that i can't apply the law of transformation of random variables because $Y$ is not a monotonic function. So, i write:



$F_Y (y)=mathbb{P}(Yleq y)=mathbb{P}(X^2leq y)=mathbb{P}(Xleq pm sqrt{y})=mathbb{P}(-sqrt{y}leq X leqsqrt{y})$



Then, i observe that if $Xsim N(0,1)$ can be applied the following equivalences:



1) $mathbb{P}(-sqrt{y}leq Xleq sqrt{y})=mathbb{P}(-sqrt{y}leq X leq0)+mathbb{P}(0leq Xleq sqrt{y})$



2) $mathbb{P}(-sqrt{y}leq X leq0)=mathbb{P}(0leq Xleq sqrt{y})$



So, i can write that



$mathbb{P}(-sqrt{y}leq Xleq sqrt{y})=2mathbb{P}(0leq Xleq sqrt{y})=2[mathbb{P}(Xleq sqrt{y})-mathbb{P}(Xleq 0)]=2[F_X(sqrt{y})-F_X(0)]=2[Phi (sqrt{y})-Phi (0)]=2Phi (sqrt{y})-2Phi (0)=2Phi (sqrt{y})-2(0,5)=2Phi (sqrt{y})-1$



On this way, i have to find the density of $Y$:



$f_Y(y)=frac{d}{dy}F_Y(y)=frac{d}{dy}(2Phi (sqrt{y})-1)$



but now i'm stuck. My book is not quite clear on this point so much so that it has to go straight to the solution, that is $f_Y(y)=frac{1}{sqrt{2pi y}}e^{-frac{1}{2}y}Rightarrow Ysim chi ^2_1 $.



The demonstration is correct? How can calculate that derivative? Why $chi ^2$ has $1$ degree of freedom?



Thanks for any help!










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    Let $Xsim N(0,1)$, i want to determine the distribution of $Y=X^2$.



    By definition, the density of $X$ is $f_X(x)=frac{1}{sigmasqrt{2pi}}e^{-frac{1}{2sigma^2}(x-mu)^2},forall xin mathbb{R}$. I also know that i can't apply the law of transformation of random variables because $Y$ is not a monotonic function. So, i write:



    $F_Y (y)=mathbb{P}(Yleq y)=mathbb{P}(X^2leq y)=mathbb{P}(Xleq pm sqrt{y})=mathbb{P}(-sqrt{y}leq X leqsqrt{y})$



    Then, i observe that if $Xsim N(0,1)$ can be applied the following equivalences:



    1) $mathbb{P}(-sqrt{y}leq Xleq sqrt{y})=mathbb{P}(-sqrt{y}leq X leq0)+mathbb{P}(0leq Xleq sqrt{y})$



    2) $mathbb{P}(-sqrt{y}leq X leq0)=mathbb{P}(0leq Xleq sqrt{y})$



    So, i can write that



    $mathbb{P}(-sqrt{y}leq Xleq sqrt{y})=2mathbb{P}(0leq Xleq sqrt{y})=2[mathbb{P}(Xleq sqrt{y})-mathbb{P}(Xleq 0)]=2[F_X(sqrt{y})-F_X(0)]=2[Phi (sqrt{y})-Phi (0)]=2Phi (sqrt{y})-2Phi (0)=2Phi (sqrt{y})-2(0,5)=2Phi (sqrt{y})-1$



    On this way, i have to find the density of $Y$:



    $f_Y(y)=frac{d}{dy}F_Y(y)=frac{d}{dy}(2Phi (sqrt{y})-1)$



    but now i'm stuck. My book is not quite clear on this point so much so that it has to go straight to the solution, that is $f_Y(y)=frac{1}{sqrt{2pi y}}e^{-frac{1}{2}y}Rightarrow Ysim chi ^2_1 $.



    The demonstration is correct? How can calculate that derivative? Why $chi ^2$ has $1$ degree of freedom?



    Thanks for any help!










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      Let $Xsim N(0,1)$, i want to determine the distribution of $Y=X^2$.



      By definition, the density of $X$ is $f_X(x)=frac{1}{sigmasqrt{2pi}}e^{-frac{1}{2sigma^2}(x-mu)^2},forall xin mathbb{R}$. I also know that i can't apply the law of transformation of random variables because $Y$ is not a monotonic function. So, i write:



      $F_Y (y)=mathbb{P}(Yleq y)=mathbb{P}(X^2leq y)=mathbb{P}(Xleq pm sqrt{y})=mathbb{P}(-sqrt{y}leq X leqsqrt{y})$



      Then, i observe that if $Xsim N(0,1)$ can be applied the following equivalences:



      1) $mathbb{P}(-sqrt{y}leq Xleq sqrt{y})=mathbb{P}(-sqrt{y}leq X leq0)+mathbb{P}(0leq Xleq sqrt{y})$



      2) $mathbb{P}(-sqrt{y}leq X leq0)=mathbb{P}(0leq Xleq sqrt{y})$



      So, i can write that



      $mathbb{P}(-sqrt{y}leq Xleq sqrt{y})=2mathbb{P}(0leq Xleq sqrt{y})=2[mathbb{P}(Xleq sqrt{y})-mathbb{P}(Xleq 0)]=2[F_X(sqrt{y})-F_X(0)]=2[Phi (sqrt{y})-Phi (0)]=2Phi (sqrt{y})-2Phi (0)=2Phi (sqrt{y})-2(0,5)=2Phi (sqrt{y})-1$



      On this way, i have to find the density of $Y$:



      $f_Y(y)=frac{d}{dy}F_Y(y)=frac{d}{dy}(2Phi (sqrt{y})-1)$



      but now i'm stuck. My book is not quite clear on this point so much so that it has to go straight to the solution, that is $f_Y(y)=frac{1}{sqrt{2pi y}}e^{-frac{1}{2}y}Rightarrow Ysim chi ^2_1 $.



      The demonstration is correct? How can calculate that derivative? Why $chi ^2$ has $1$ degree of freedom?



      Thanks for any help!










      share|cite|improve this question









      $endgroup$




      Let $Xsim N(0,1)$, i want to determine the distribution of $Y=X^2$.



      By definition, the density of $X$ is $f_X(x)=frac{1}{sigmasqrt{2pi}}e^{-frac{1}{2sigma^2}(x-mu)^2},forall xin mathbb{R}$. I also know that i can't apply the law of transformation of random variables because $Y$ is not a monotonic function. So, i write:



      $F_Y (y)=mathbb{P}(Yleq y)=mathbb{P}(X^2leq y)=mathbb{P}(Xleq pm sqrt{y})=mathbb{P}(-sqrt{y}leq X leqsqrt{y})$



      Then, i observe that if $Xsim N(0,1)$ can be applied the following equivalences:



      1) $mathbb{P}(-sqrt{y}leq Xleq sqrt{y})=mathbb{P}(-sqrt{y}leq X leq0)+mathbb{P}(0leq Xleq sqrt{y})$



      2) $mathbb{P}(-sqrt{y}leq X leq0)=mathbb{P}(0leq Xleq sqrt{y})$



      So, i can write that



      $mathbb{P}(-sqrt{y}leq Xleq sqrt{y})=2mathbb{P}(0leq Xleq sqrt{y})=2[mathbb{P}(Xleq sqrt{y})-mathbb{P}(Xleq 0)]=2[F_X(sqrt{y})-F_X(0)]=2[Phi (sqrt{y})-Phi (0)]=2Phi (sqrt{y})-2Phi (0)=2Phi (sqrt{y})-2(0,5)=2Phi (sqrt{y})-1$



      On this way, i have to find the density of $Y$:



      $f_Y(y)=frac{d}{dy}F_Y(y)=frac{d}{dy}(2Phi (sqrt{y})-1)$



      but now i'm stuck. My book is not quite clear on this point so much so that it has to go straight to the solution, that is $f_Y(y)=frac{1}{sqrt{2pi y}}e^{-frac{1}{2}y}Rightarrow Ysim chi ^2_1 $.



      The demonstration is correct? How can calculate that derivative? Why $chi ^2$ has $1$ degree of freedom?



      Thanks for any help!







      probability linear-transformations normal-distribution density-function






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 7 '18 at 17:24









      Marco PittellaMarco Pittella

      1288




      1288






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          Use the chain rule. Let $phi$ be the density of a standard normal. Then we have that
          $$
          Phi'=phi
          $$

          and so
          $$
          frac{d}{dy}(2Phi (sqrt{y})-1)=2phi(sqrt y)times frac{1}{2sqrt y}=frac{1}{sqrt{2pi y}}e^{-y/2}
          $$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thanks for your answer! Clear!
            $endgroup$
            – Marco Pittella
            Dec 7 '18 at 17:55











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3030151%2fproof-of-relation-between-normal-and-chi-square%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          Use the chain rule. Let $phi$ be the density of a standard normal. Then we have that
          $$
          Phi'=phi
          $$

          and so
          $$
          frac{d}{dy}(2Phi (sqrt{y})-1)=2phi(sqrt y)times frac{1}{2sqrt y}=frac{1}{sqrt{2pi y}}e^{-y/2}
          $$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thanks for your answer! Clear!
            $endgroup$
            – Marco Pittella
            Dec 7 '18 at 17:55
















          2












          $begingroup$

          Use the chain rule. Let $phi$ be the density of a standard normal. Then we have that
          $$
          Phi'=phi
          $$

          and so
          $$
          frac{d}{dy}(2Phi (sqrt{y})-1)=2phi(sqrt y)times frac{1}{2sqrt y}=frac{1}{sqrt{2pi y}}e^{-y/2}
          $$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thanks for your answer! Clear!
            $endgroup$
            – Marco Pittella
            Dec 7 '18 at 17:55














          2












          2








          2





          $begingroup$

          Use the chain rule. Let $phi$ be the density of a standard normal. Then we have that
          $$
          Phi'=phi
          $$

          and so
          $$
          frac{d}{dy}(2Phi (sqrt{y})-1)=2phi(sqrt y)times frac{1}{2sqrt y}=frac{1}{sqrt{2pi y}}e^{-y/2}
          $$






          share|cite|improve this answer









          $endgroup$



          Use the chain rule. Let $phi$ be the density of a standard normal. Then we have that
          $$
          Phi'=phi
          $$

          and so
          $$
          frac{d}{dy}(2Phi (sqrt{y})-1)=2phi(sqrt y)times frac{1}{2sqrt y}=frac{1}{sqrt{2pi y}}e^{-y/2}
          $$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 7 '18 at 17:30









          Foobaz JohnFoobaz John

          22.1k41352




          22.1k41352












          • $begingroup$
            Thanks for your answer! Clear!
            $endgroup$
            – Marco Pittella
            Dec 7 '18 at 17:55


















          • $begingroup$
            Thanks for your answer! Clear!
            $endgroup$
            – Marco Pittella
            Dec 7 '18 at 17:55
















          $begingroup$
          Thanks for your answer! Clear!
          $endgroup$
          – Marco Pittella
          Dec 7 '18 at 17:55




          $begingroup$
          Thanks for your answer! Clear!
          $endgroup$
          – Marco Pittella
          Dec 7 '18 at 17:55


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3030151%2fproof-of-relation-between-normal-and-chi-square%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Plaza Victoria

          Puebla de Zaragoza

          Musa