Proof of relation between Normal and Chi-square
$begingroup$
Let $Xsim N(0,1)$, i want to determine the distribution of $Y=X^2$.
By definition, the density of $X$ is $f_X(x)=frac{1}{sigmasqrt{2pi}}e^{-frac{1}{2sigma^2}(x-mu)^2},forall xin mathbb{R}$. I also know that i can't apply the law of transformation of random variables because $Y$ is not a monotonic function. So, i write:
$F_Y (y)=mathbb{P}(Yleq y)=mathbb{P}(X^2leq y)=mathbb{P}(Xleq pm sqrt{y})=mathbb{P}(-sqrt{y}leq X leqsqrt{y})$
Then, i observe that if $Xsim N(0,1)$ can be applied the following equivalences:
1) $mathbb{P}(-sqrt{y}leq Xleq sqrt{y})=mathbb{P}(-sqrt{y}leq X leq0)+mathbb{P}(0leq Xleq sqrt{y})$
2) $mathbb{P}(-sqrt{y}leq X leq0)=mathbb{P}(0leq Xleq sqrt{y})$
So, i can write that
$mathbb{P}(-sqrt{y}leq Xleq sqrt{y})=2mathbb{P}(0leq Xleq sqrt{y})=2[mathbb{P}(Xleq sqrt{y})-mathbb{P}(Xleq 0)]=2[F_X(sqrt{y})-F_X(0)]=2[Phi (sqrt{y})-Phi (0)]=2Phi (sqrt{y})-2Phi (0)=2Phi (sqrt{y})-2(0,5)=2Phi (sqrt{y})-1$
On this way, i have to find the density of $Y$:
$f_Y(y)=frac{d}{dy}F_Y(y)=frac{d}{dy}(2Phi (sqrt{y})-1)$
but now i'm stuck. My book is not quite clear on this point so much so that it has to go straight to the solution, that is $f_Y(y)=frac{1}{sqrt{2pi y}}e^{-frac{1}{2}y}Rightarrow Ysim chi ^2_1 $.
The demonstration is correct? How can calculate that derivative? Why $chi ^2$ has $1$ degree of freedom?
Thanks for any help!
probability linear-transformations normal-distribution density-function
$endgroup$
add a comment |
$begingroup$
Let $Xsim N(0,1)$, i want to determine the distribution of $Y=X^2$.
By definition, the density of $X$ is $f_X(x)=frac{1}{sigmasqrt{2pi}}e^{-frac{1}{2sigma^2}(x-mu)^2},forall xin mathbb{R}$. I also know that i can't apply the law of transformation of random variables because $Y$ is not a monotonic function. So, i write:
$F_Y (y)=mathbb{P}(Yleq y)=mathbb{P}(X^2leq y)=mathbb{P}(Xleq pm sqrt{y})=mathbb{P}(-sqrt{y}leq X leqsqrt{y})$
Then, i observe that if $Xsim N(0,1)$ can be applied the following equivalences:
1) $mathbb{P}(-sqrt{y}leq Xleq sqrt{y})=mathbb{P}(-sqrt{y}leq X leq0)+mathbb{P}(0leq Xleq sqrt{y})$
2) $mathbb{P}(-sqrt{y}leq X leq0)=mathbb{P}(0leq Xleq sqrt{y})$
So, i can write that
$mathbb{P}(-sqrt{y}leq Xleq sqrt{y})=2mathbb{P}(0leq Xleq sqrt{y})=2[mathbb{P}(Xleq sqrt{y})-mathbb{P}(Xleq 0)]=2[F_X(sqrt{y})-F_X(0)]=2[Phi (sqrt{y})-Phi (0)]=2Phi (sqrt{y})-2Phi (0)=2Phi (sqrt{y})-2(0,5)=2Phi (sqrt{y})-1$
On this way, i have to find the density of $Y$:
$f_Y(y)=frac{d}{dy}F_Y(y)=frac{d}{dy}(2Phi (sqrt{y})-1)$
but now i'm stuck. My book is not quite clear on this point so much so that it has to go straight to the solution, that is $f_Y(y)=frac{1}{sqrt{2pi y}}e^{-frac{1}{2}y}Rightarrow Ysim chi ^2_1 $.
The demonstration is correct? How can calculate that derivative? Why $chi ^2$ has $1$ degree of freedom?
Thanks for any help!
probability linear-transformations normal-distribution density-function
$endgroup$
add a comment |
$begingroup$
Let $Xsim N(0,1)$, i want to determine the distribution of $Y=X^2$.
By definition, the density of $X$ is $f_X(x)=frac{1}{sigmasqrt{2pi}}e^{-frac{1}{2sigma^2}(x-mu)^2},forall xin mathbb{R}$. I also know that i can't apply the law of transformation of random variables because $Y$ is not a monotonic function. So, i write:
$F_Y (y)=mathbb{P}(Yleq y)=mathbb{P}(X^2leq y)=mathbb{P}(Xleq pm sqrt{y})=mathbb{P}(-sqrt{y}leq X leqsqrt{y})$
Then, i observe that if $Xsim N(0,1)$ can be applied the following equivalences:
1) $mathbb{P}(-sqrt{y}leq Xleq sqrt{y})=mathbb{P}(-sqrt{y}leq X leq0)+mathbb{P}(0leq Xleq sqrt{y})$
2) $mathbb{P}(-sqrt{y}leq X leq0)=mathbb{P}(0leq Xleq sqrt{y})$
So, i can write that
$mathbb{P}(-sqrt{y}leq Xleq sqrt{y})=2mathbb{P}(0leq Xleq sqrt{y})=2[mathbb{P}(Xleq sqrt{y})-mathbb{P}(Xleq 0)]=2[F_X(sqrt{y})-F_X(0)]=2[Phi (sqrt{y})-Phi (0)]=2Phi (sqrt{y})-2Phi (0)=2Phi (sqrt{y})-2(0,5)=2Phi (sqrt{y})-1$
On this way, i have to find the density of $Y$:
$f_Y(y)=frac{d}{dy}F_Y(y)=frac{d}{dy}(2Phi (sqrt{y})-1)$
but now i'm stuck. My book is not quite clear on this point so much so that it has to go straight to the solution, that is $f_Y(y)=frac{1}{sqrt{2pi y}}e^{-frac{1}{2}y}Rightarrow Ysim chi ^2_1 $.
The demonstration is correct? How can calculate that derivative? Why $chi ^2$ has $1$ degree of freedom?
Thanks for any help!
probability linear-transformations normal-distribution density-function
$endgroup$
Let $Xsim N(0,1)$, i want to determine the distribution of $Y=X^2$.
By definition, the density of $X$ is $f_X(x)=frac{1}{sigmasqrt{2pi}}e^{-frac{1}{2sigma^2}(x-mu)^2},forall xin mathbb{R}$. I also know that i can't apply the law of transformation of random variables because $Y$ is not a monotonic function. So, i write:
$F_Y (y)=mathbb{P}(Yleq y)=mathbb{P}(X^2leq y)=mathbb{P}(Xleq pm sqrt{y})=mathbb{P}(-sqrt{y}leq X leqsqrt{y})$
Then, i observe that if $Xsim N(0,1)$ can be applied the following equivalences:
1) $mathbb{P}(-sqrt{y}leq Xleq sqrt{y})=mathbb{P}(-sqrt{y}leq X leq0)+mathbb{P}(0leq Xleq sqrt{y})$
2) $mathbb{P}(-sqrt{y}leq X leq0)=mathbb{P}(0leq Xleq sqrt{y})$
So, i can write that
$mathbb{P}(-sqrt{y}leq Xleq sqrt{y})=2mathbb{P}(0leq Xleq sqrt{y})=2[mathbb{P}(Xleq sqrt{y})-mathbb{P}(Xleq 0)]=2[F_X(sqrt{y})-F_X(0)]=2[Phi (sqrt{y})-Phi (0)]=2Phi (sqrt{y})-2Phi (0)=2Phi (sqrt{y})-2(0,5)=2Phi (sqrt{y})-1$
On this way, i have to find the density of $Y$:
$f_Y(y)=frac{d}{dy}F_Y(y)=frac{d}{dy}(2Phi (sqrt{y})-1)$
but now i'm stuck. My book is not quite clear on this point so much so that it has to go straight to the solution, that is $f_Y(y)=frac{1}{sqrt{2pi y}}e^{-frac{1}{2}y}Rightarrow Ysim chi ^2_1 $.
The demonstration is correct? How can calculate that derivative? Why $chi ^2$ has $1$ degree of freedom?
Thanks for any help!
probability linear-transformations normal-distribution density-function
probability linear-transformations normal-distribution density-function
asked Dec 7 '18 at 17:24
Marco PittellaMarco Pittella
1288
1288
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Use the chain rule. Let $phi$ be the density of a standard normal. Then we have that
$$
Phi'=phi
$$
and so
$$
frac{d}{dy}(2Phi (sqrt{y})-1)=2phi(sqrt y)times frac{1}{2sqrt y}=frac{1}{sqrt{2pi y}}e^{-y/2}
$$
$endgroup$
$begingroup$
Thanks for your answer! Clear!
$endgroup$
– Marco Pittella
Dec 7 '18 at 17:55
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3030151%2fproof-of-relation-between-normal-and-chi-square%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Use the chain rule. Let $phi$ be the density of a standard normal. Then we have that
$$
Phi'=phi
$$
and so
$$
frac{d}{dy}(2Phi (sqrt{y})-1)=2phi(sqrt y)times frac{1}{2sqrt y}=frac{1}{sqrt{2pi y}}e^{-y/2}
$$
$endgroup$
$begingroup$
Thanks for your answer! Clear!
$endgroup$
– Marco Pittella
Dec 7 '18 at 17:55
add a comment |
$begingroup$
Use the chain rule. Let $phi$ be the density of a standard normal. Then we have that
$$
Phi'=phi
$$
and so
$$
frac{d}{dy}(2Phi (sqrt{y})-1)=2phi(sqrt y)times frac{1}{2sqrt y}=frac{1}{sqrt{2pi y}}e^{-y/2}
$$
$endgroup$
$begingroup$
Thanks for your answer! Clear!
$endgroup$
– Marco Pittella
Dec 7 '18 at 17:55
add a comment |
$begingroup$
Use the chain rule. Let $phi$ be the density of a standard normal. Then we have that
$$
Phi'=phi
$$
and so
$$
frac{d}{dy}(2Phi (sqrt{y})-1)=2phi(sqrt y)times frac{1}{2sqrt y}=frac{1}{sqrt{2pi y}}e^{-y/2}
$$
$endgroup$
Use the chain rule. Let $phi$ be the density of a standard normal. Then we have that
$$
Phi'=phi
$$
and so
$$
frac{d}{dy}(2Phi (sqrt{y})-1)=2phi(sqrt y)times frac{1}{2sqrt y}=frac{1}{sqrt{2pi y}}e^{-y/2}
$$
answered Dec 7 '18 at 17:30
Foobaz JohnFoobaz John
22.1k41352
22.1k41352
$begingroup$
Thanks for your answer! Clear!
$endgroup$
– Marco Pittella
Dec 7 '18 at 17:55
add a comment |
$begingroup$
Thanks for your answer! Clear!
$endgroup$
– Marco Pittella
Dec 7 '18 at 17:55
$begingroup$
Thanks for your answer! Clear!
$endgroup$
– Marco Pittella
Dec 7 '18 at 17:55
$begingroup$
Thanks for your answer! Clear!
$endgroup$
– Marco Pittella
Dec 7 '18 at 17:55
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3030151%2fproof-of-relation-between-normal-and-chi-square%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown