strictly positive element vs positive definite matrix
$begingroup$
If $A=prod_{n=1}^{infty}M_{k(n)}(mathbb{C})$,$x=(x_1,cdots,x_n,cdots)$ is strictly positive in $A$,does this mean that each $x_nin M_{k(n)}mathbb{C}$ is a positive definite matrix?
operator-theory operator-algebras c-star-algebras
$endgroup$
add a comment |
$begingroup$
If $A=prod_{n=1}^{infty}M_{k(n)}(mathbb{C})$,$x=(x_1,cdots,x_n,cdots)$ is strictly positive in $A$,does this mean that each $x_nin M_{k(n)}mathbb{C}$ is a positive definite matrix?
operator-theory operator-algebras c-star-algebras
$endgroup$
add a comment |
$begingroup$
If $A=prod_{n=1}^{infty}M_{k(n)}(mathbb{C})$,$x=(x_1,cdots,x_n,cdots)$ is strictly positive in $A$,does this mean that each $x_nin M_{k(n)}mathbb{C}$ is a positive definite matrix?
operator-theory operator-algebras c-star-algebras
$endgroup$
If $A=prod_{n=1}^{infty}M_{k(n)}(mathbb{C})$,$x=(x_1,cdots,x_n,cdots)$ is strictly positive in $A$,does this mean that each $x_nin M_{k(n)}mathbb{C}$ is a positive definite matrix?
operator-theory operator-algebras c-star-algebras
operator-theory operator-algebras c-star-algebras
edited Dec 5 '18 at 17:32
Ethan Bolker
42.6k549113
42.6k549113
asked Dec 5 '18 at 17:13
mathrookiemathrookie
887512
887512
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
In a unital C$^*$-algebar, "strictly positive" is the same as "positive and invertible", which is exactly "positive definite". So yes, if $x$ is strictly positive then each $x_n$ is positive and invertible, so positive definite.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3027364%2fstrictly-positive-element-vs-positive-definite-matrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
In a unital C$^*$-algebar, "strictly positive" is the same as "positive and invertible", which is exactly "positive definite". So yes, if $x$ is strictly positive then each $x_n$ is positive and invertible, so positive definite.
$endgroup$
add a comment |
$begingroup$
In a unital C$^*$-algebar, "strictly positive" is the same as "positive and invertible", which is exactly "positive definite". So yes, if $x$ is strictly positive then each $x_n$ is positive and invertible, so positive definite.
$endgroup$
add a comment |
$begingroup$
In a unital C$^*$-algebar, "strictly positive" is the same as "positive and invertible", which is exactly "positive definite". So yes, if $x$ is strictly positive then each $x_n$ is positive and invertible, so positive definite.
$endgroup$
In a unital C$^*$-algebar, "strictly positive" is the same as "positive and invertible", which is exactly "positive definite". So yes, if $x$ is strictly positive then each $x_n$ is positive and invertible, so positive definite.
answered Dec 5 '18 at 17:31
Martin ArgeramiMartin Argerami
126k1182181
126k1182181
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3027364%2fstrictly-positive-element-vs-positive-definite-matrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown