Taylor polynomials on a compact interval
$begingroup$
Let $I ⊂ mathbb{R}$ be a compact interval. Show that for every $f ∈ C^2(I , mathbb{R})$ it exists a $C > 0$ such that:
$|f(a)+f(b)-2f(frac{a+b}{2})|≤C(b-a)^2 $
$∀a, b ∈ I .$
Let $a,b ∈I$ and $a<b$, it exists by definition a $ξ_1∈(a, (a+b)/2)$ with
$f(a)=f(frac{a+b}{2})+f'(frac{a+b}{2})(frac{a-b}{2})+frac{1}{2}f''(ξ_1)frac{(a-b)^2}{4}$
and it exists a $ξ_2∈((a+b)/2, b)$ with
$f(b)=f(frac{a+b}{2})+f'(frac{a+b}{2})(frac{b-a}{2})+frac{1}{2}f''(ξ_2)frac{(b-a)^2}{4}$
Summing the two identities we get
$f(a)+f(b)-2f(frac{a+b}{2})=frac{f''(ξ_1)+f''(ξ_2)}{8}(b-a)^2$
How can I say that the first part of the right side is equal to $C$ and introduce the absolute value with ≤?
real-analysis
$endgroup$
add a comment |
$begingroup$
Let $I ⊂ mathbb{R}$ be a compact interval. Show that for every $f ∈ C^2(I , mathbb{R})$ it exists a $C > 0$ such that:
$|f(a)+f(b)-2f(frac{a+b}{2})|≤C(b-a)^2 $
$∀a, b ∈ I .$
Let $a,b ∈I$ and $a<b$, it exists by definition a $ξ_1∈(a, (a+b)/2)$ with
$f(a)=f(frac{a+b}{2})+f'(frac{a+b}{2})(frac{a-b}{2})+frac{1}{2}f''(ξ_1)frac{(a-b)^2}{4}$
and it exists a $ξ_2∈((a+b)/2, b)$ with
$f(b)=f(frac{a+b}{2})+f'(frac{a+b}{2})(frac{b-a}{2})+frac{1}{2}f''(ξ_2)frac{(b-a)^2}{4}$
Summing the two identities we get
$f(a)+f(b)-2f(frac{a+b}{2})=frac{f''(ξ_1)+f''(ξ_2)}{8}(b-a)^2$
How can I say that the first part of the right side is equal to $C$ and introduce the absolute value with ≤?
real-analysis
$endgroup$
add a comment |
$begingroup$
Let $I ⊂ mathbb{R}$ be a compact interval. Show that for every $f ∈ C^2(I , mathbb{R})$ it exists a $C > 0$ such that:
$|f(a)+f(b)-2f(frac{a+b}{2})|≤C(b-a)^2 $
$∀a, b ∈ I .$
Let $a,b ∈I$ and $a<b$, it exists by definition a $ξ_1∈(a, (a+b)/2)$ with
$f(a)=f(frac{a+b}{2})+f'(frac{a+b}{2})(frac{a-b}{2})+frac{1}{2}f''(ξ_1)frac{(a-b)^2}{4}$
and it exists a $ξ_2∈((a+b)/2, b)$ with
$f(b)=f(frac{a+b}{2})+f'(frac{a+b}{2})(frac{b-a}{2})+frac{1}{2}f''(ξ_2)frac{(b-a)^2}{4}$
Summing the two identities we get
$f(a)+f(b)-2f(frac{a+b}{2})=frac{f''(ξ_1)+f''(ξ_2)}{8}(b-a)^2$
How can I say that the first part of the right side is equal to $C$ and introduce the absolute value with ≤?
real-analysis
$endgroup$
Let $I ⊂ mathbb{R}$ be a compact interval. Show that for every $f ∈ C^2(I , mathbb{R})$ it exists a $C > 0$ such that:
$|f(a)+f(b)-2f(frac{a+b}{2})|≤C(b-a)^2 $
$∀a, b ∈ I .$
Let $a,b ∈I$ and $a<b$, it exists by definition a $ξ_1∈(a, (a+b)/2)$ with
$f(a)=f(frac{a+b}{2})+f'(frac{a+b}{2})(frac{a-b}{2})+frac{1}{2}f''(ξ_1)frac{(a-b)^2}{4}$
and it exists a $ξ_2∈((a+b)/2, b)$ with
$f(b)=f(frac{a+b}{2})+f'(frac{a+b}{2})(frac{b-a}{2})+frac{1}{2}f''(ξ_2)frac{(b-a)^2}{4}$
Summing the two identities we get
$f(a)+f(b)-2f(frac{a+b}{2})=frac{f''(ξ_1)+f''(ξ_2)}{8}(b-a)^2$
How can I say that the first part of the right side is equal to $C$ and introduce the absolute value with ≤?
real-analysis
real-analysis
asked Dec 6 '18 at 16:18
DadaDada
7510
7510
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Hint : Any continuous function $f $ from a compact space to $Bbb R $ is bounded and attains its bounds.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028698%2ftaylor-polynomials-on-a-compact-interval%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint : Any continuous function $f $ from a compact space to $Bbb R $ is bounded and attains its bounds.
$endgroup$
add a comment |
$begingroup$
Hint : Any continuous function $f $ from a compact space to $Bbb R $ is bounded and attains its bounds.
$endgroup$
add a comment |
$begingroup$
Hint : Any continuous function $f $ from a compact space to $Bbb R $ is bounded and attains its bounds.
$endgroup$
Hint : Any continuous function $f $ from a compact space to $Bbb R $ is bounded and attains its bounds.
answered Dec 6 '18 at 16:29
Thomas ShelbyThomas Shelby
2,8871421
2,8871421
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028698%2ftaylor-polynomials-on-a-compact-interval%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown