Computing the inverse of the operator $L:= f - Delta f$.












0












$begingroup$


Here is an argument I read for computing the inverse of the differential operator $L:S(Bbb R^n) rightarrow S(Bbb R^n)$ on Schwartz spaces where
$$Lf:= f - Delta f = f- sum_{i=1}^n (D^i)^2 f$$




By the basic rules for the Fourier transform,
$$ widehat{Lf}(xi) = (1+|xi|^2) hat{f}(xi)$$
Therefore, $L$ is invertible with inverse $M$ given by
$$ widehat{Mf} (xi):= (1+|xi|^2)^{-1}hat{f}$$




I get how we got the formula $widehat{Lf}$ and why $M$ exists - using Fourier inversion.



But how is $M$ the inverse of $L$?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Apply $L$ to $Mf$, use the Fourier transform to see that happens. Or just solve the equation $Lu=f$ using again FT.
    $endgroup$
    – Andrew
    Dec 22 '18 at 9:53


















0












$begingroup$


Here is an argument I read for computing the inverse of the differential operator $L:S(Bbb R^n) rightarrow S(Bbb R^n)$ on Schwartz spaces where
$$Lf:= f - Delta f = f- sum_{i=1}^n (D^i)^2 f$$




By the basic rules for the Fourier transform,
$$ widehat{Lf}(xi) = (1+|xi|^2) hat{f}(xi)$$
Therefore, $L$ is invertible with inverse $M$ given by
$$ widehat{Mf} (xi):= (1+|xi|^2)^{-1}hat{f}$$




I get how we got the formula $widehat{Lf}$ and why $M$ exists - using Fourier inversion.



But how is $M$ the inverse of $L$?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Apply $L$ to $Mf$, use the Fourier transform to see that happens. Or just solve the equation $Lu=f$ using again FT.
    $endgroup$
    – Andrew
    Dec 22 '18 at 9:53
















0












0








0





$begingroup$


Here is an argument I read for computing the inverse of the differential operator $L:S(Bbb R^n) rightarrow S(Bbb R^n)$ on Schwartz spaces where
$$Lf:= f - Delta f = f- sum_{i=1}^n (D^i)^2 f$$




By the basic rules for the Fourier transform,
$$ widehat{Lf}(xi) = (1+|xi|^2) hat{f}(xi)$$
Therefore, $L$ is invertible with inverse $M$ given by
$$ widehat{Mf} (xi):= (1+|xi|^2)^{-1}hat{f}$$




I get how we got the formula $widehat{Lf}$ and why $M$ exists - using Fourier inversion.



But how is $M$ the inverse of $L$?










share|cite|improve this question











$endgroup$




Here is an argument I read for computing the inverse of the differential operator $L:S(Bbb R^n) rightarrow S(Bbb R^n)$ on Schwartz spaces where
$$Lf:= f - Delta f = f- sum_{i=1}^n (D^i)^2 f$$




By the basic rules for the Fourier transform,
$$ widehat{Lf}(xi) = (1+|xi|^2) hat{f}(xi)$$
Therefore, $L$ is invertible with inverse $M$ given by
$$ widehat{Mf} (xi):= (1+|xi|^2)^{-1}hat{f}$$




I get how we got the formula $widehat{Lf}$ and why $M$ exists - using Fourier inversion.



But how is $M$ the inverse of $L$?







functional-analysis fourier-analysis fourier-transform






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 22 '18 at 15:44









David C. Ullrich

61.8k44095




61.8k44095










asked Dec 22 '18 at 9:43









CL.CL.

2,3123925




2,3123925












  • $begingroup$
    Apply $L$ to $Mf$, use the Fourier transform to see that happens. Or just solve the equation $Lu=f$ using again FT.
    $endgroup$
    – Andrew
    Dec 22 '18 at 9:53




















  • $begingroup$
    Apply $L$ to $Mf$, use the Fourier transform to see that happens. Or just solve the equation $Lu=f$ using again FT.
    $endgroup$
    – Andrew
    Dec 22 '18 at 9:53


















$begingroup$
Apply $L$ to $Mf$, use the Fourier transform to see that happens. Or just solve the equation $Lu=f$ using again FT.
$endgroup$
– Andrew
Dec 22 '18 at 9:53






$begingroup$
Apply $L$ to $Mf$, use the Fourier transform to see that happens. Or just solve the equation $Lu=f$ using again FT.
$endgroup$
– Andrew
Dec 22 '18 at 9:53












1 Answer
1






active

oldest

votes


















1












$begingroup$

$widehat {MLf} (xi) =(1+|xi|^{2})^{-1}) widehat {Lf} (xi)=(1+|xi|^{2})^{-1})(1+|xi|^{2})hat {f} (xi)=hat {f} (xi)$ So ML=I. Similarly, $LM=I$.






share|cite|improve this answer











$endgroup$














    Your Answer








    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049258%2fcomputing-the-inverse-of-the-operator-l-f-delta-f%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    $widehat {MLf} (xi) =(1+|xi|^{2})^{-1}) widehat {Lf} (xi)=(1+|xi|^{2})^{-1})(1+|xi|^{2})hat {f} (xi)=hat {f} (xi)$ So ML=I. Similarly, $LM=I$.






    share|cite|improve this answer











    $endgroup$


















      1












      $begingroup$

      $widehat {MLf} (xi) =(1+|xi|^{2})^{-1}) widehat {Lf} (xi)=(1+|xi|^{2})^{-1})(1+|xi|^{2})hat {f} (xi)=hat {f} (xi)$ So ML=I. Similarly, $LM=I$.






      share|cite|improve this answer











      $endgroup$
















        1












        1








        1





        $begingroup$

        $widehat {MLf} (xi) =(1+|xi|^{2})^{-1}) widehat {Lf} (xi)=(1+|xi|^{2})^{-1})(1+|xi|^{2})hat {f} (xi)=hat {f} (xi)$ So ML=I. Similarly, $LM=I$.






        share|cite|improve this answer











        $endgroup$



        $widehat {MLf} (xi) =(1+|xi|^{2})^{-1}) widehat {Lf} (xi)=(1+|xi|^{2})^{-1})(1+|xi|^{2})hat {f} (xi)=hat {f} (xi)$ So ML=I. Similarly, $LM=I$.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Dec 22 '18 at 15:45









        David C. Ullrich

        61.8k44095




        61.8k44095










        answered Dec 22 '18 at 11:39









        Kavi Rama MurthyKavi Rama Murthy

        74.9k53270




        74.9k53270






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049258%2fcomputing-the-inverse-of-the-operator-l-f-delta-f%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Plaza Victoria

            Puebla de Zaragoza

            Musa