Computing the inverse of the operator $L:= f - Delta f$.
$begingroup$
Here is an argument I read for computing the inverse of the differential operator $L:S(Bbb R^n) rightarrow S(Bbb R^n)$ on Schwartz spaces where
$$Lf:= f - Delta f = f- sum_{i=1}^n (D^i)^2 f$$
By the basic rules for the Fourier transform,
$$ widehat{Lf}(xi) = (1+|xi|^2) hat{f}(xi)$$
Therefore, $L$ is invertible with inverse $M$ given by
$$ widehat{Mf} (xi):= (1+|xi|^2)^{-1}hat{f}$$
I get how we got the formula $widehat{Lf}$ and why $M$ exists - using Fourier inversion.
But how is $M$ the inverse of $L$?
functional-analysis fourier-analysis fourier-transform
$endgroup$
add a comment |
$begingroup$
Here is an argument I read for computing the inverse of the differential operator $L:S(Bbb R^n) rightarrow S(Bbb R^n)$ on Schwartz spaces where
$$Lf:= f - Delta f = f- sum_{i=1}^n (D^i)^2 f$$
By the basic rules for the Fourier transform,
$$ widehat{Lf}(xi) = (1+|xi|^2) hat{f}(xi)$$
Therefore, $L$ is invertible with inverse $M$ given by
$$ widehat{Mf} (xi):= (1+|xi|^2)^{-1}hat{f}$$
I get how we got the formula $widehat{Lf}$ and why $M$ exists - using Fourier inversion.
But how is $M$ the inverse of $L$?
functional-analysis fourier-analysis fourier-transform
$endgroup$
$begingroup$
Apply $L$ to $Mf$, use the Fourier transform to see that happens. Or just solve the equation $Lu=f$ using again FT.
$endgroup$
– Andrew
Dec 22 '18 at 9:53
add a comment |
$begingroup$
Here is an argument I read for computing the inverse of the differential operator $L:S(Bbb R^n) rightarrow S(Bbb R^n)$ on Schwartz spaces where
$$Lf:= f - Delta f = f- sum_{i=1}^n (D^i)^2 f$$
By the basic rules for the Fourier transform,
$$ widehat{Lf}(xi) = (1+|xi|^2) hat{f}(xi)$$
Therefore, $L$ is invertible with inverse $M$ given by
$$ widehat{Mf} (xi):= (1+|xi|^2)^{-1}hat{f}$$
I get how we got the formula $widehat{Lf}$ and why $M$ exists - using Fourier inversion.
But how is $M$ the inverse of $L$?
functional-analysis fourier-analysis fourier-transform
$endgroup$
Here is an argument I read for computing the inverse of the differential operator $L:S(Bbb R^n) rightarrow S(Bbb R^n)$ on Schwartz spaces where
$$Lf:= f - Delta f = f- sum_{i=1}^n (D^i)^2 f$$
By the basic rules for the Fourier transform,
$$ widehat{Lf}(xi) = (1+|xi|^2) hat{f}(xi)$$
Therefore, $L$ is invertible with inverse $M$ given by
$$ widehat{Mf} (xi):= (1+|xi|^2)^{-1}hat{f}$$
I get how we got the formula $widehat{Lf}$ and why $M$ exists - using Fourier inversion.
But how is $M$ the inverse of $L$?
functional-analysis fourier-analysis fourier-transform
functional-analysis fourier-analysis fourier-transform
edited Dec 22 '18 at 15:44
David C. Ullrich
61.8k44095
61.8k44095
asked Dec 22 '18 at 9:43
CL.CL.
2,3123925
2,3123925
$begingroup$
Apply $L$ to $Mf$, use the Fourier transform to see that happens. Or just solve the equation $Lu=f$ using again FT.
$endgroup$
– Andrew
Dec 22 '18 at 9:53
add a comment |
$begingroup$
Apply $L$ to $Mf$, use the Fourier transform to see that happens. Or just solve the equation $Lu=f$ using again FT.
$endgroup$
– Andrew
Dec 22 '18 at 9:53
$begingroup$
Apply $L$ to $Mf$, use the Fourier transform to see that happens. Or just solve the equation $Lu=f$ using again FT.
$endgroup$
– Andrew
Dec 22 '18 at 9:53
$begingroup$
Apply $L$ to $Mf$, use the Fourier transform to see that happens. Or just solve the equation $Lu=f$ using again FT.
$endgroup$
– Andrew
Dec 22 '18 at 9:53
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$widehat {MLf} (xi) =(1+|xi|^{2})^{-1}) widehat {Lf} (xi)=(1+|xi|^{2})^{-1})(1+|xi|^{2})hat {f} (xi)=hat {f} (xi)$ So ML=I. Similarly, $LM=I$.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049258%2fcomputing-the-inverse-of-the-operator-l-f-delta-f%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$widehat {MLf} (xi) =(1+|xi|^{2})^{-1}) widehat {Lf} (xi)=(1+|xi|^{2})^{-1})(1+|xi|^{2})hat {f} (xi)=hat {f} (xi)$ So ML=I. Similarly, $LM=I$.
$endgroup$
add a comment |
$begingroup$
$widehat {MLf} (xi) =(1+|xi|^{2})^{-1}) widehat {Lf} (xi)=(1+|xi|^{2})^{-1})(1+|xi|^{2})hat {f} (xi)=hat {f} (xi)$ So ML=I. Similarly, $LM=I$.
$endgroup$
add a comment |
$begingroup$
$widehat {MLf} (xi) =(1+|xi|^{2})^{-1}) widehat {Lf} (xi)=(1+|xi|^{2})^{-1})(1+|xi|^{2})hat {f} (xi)=hat {f} (xi)$ So ML=I. Similarly, $LM=I$.
$endgroup$
$widehat {MLf} (xi) =(1+|xi|^{2})^{-1}) widehat {Lf} (xi)=(1+|xi|^{2})^{-1})(1+|xi|^{2})hat {f} (xi)=hat {f} (xi)$ So ML=I. Similarly, $LM=I$.
edited Dec 22 '18 at 15:45
David C. Ullrich
61.8k44095
61.8k44095
answered Dec 22 '18 at 11:39
Kavi Rama MurthyKavi Rama Murthy
74.9k53270
74.9k53270
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049258%2fcomputing-the-inverse-of-the-operator-l-f-delta-f%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Apply $L$ to $Mf$, use the Fourier transform to see that happens. Or just solve the equation $Lu=f$ using again FT.
$endgroup$
– Andrew
Dec 22 '18 at 9:53