Conditional probabilities summing to one
$begingroup$
Let's assume that we have two Bernoulli random variables: $A$ (can be true or false) and $B$ (can be true or false), and further assume we have been given $P(A=text{true}mid B=text{true})$ and $P(A=text{true}mid B=text{false})$.
Is it possible to calculate $P(A=text{false}mid B=text{true})$ and $P(A=text{false}mid B=text{false})$ from this? I think what it must hold is that these four terms must sum to one, i.e. $$P(A=text{true}mid B=text{true}) + P(A=text{true}mid B=text{false}) \+ P(A=text{false}mid B=text{true}) + P(A=text{false}mid B=text{false}) = 1.$$
probability conditional-probability
$endgroup$
add a comment |
$begingroup$
Let's assume that we have two Bernoulli random variables: $A$ (can be true or false) and $B$ (can be true or false), and further assume we have been given $P(A=text{true}mid B=text{true})$ and $P(A=text{true}mid B=text{false})$.
Is it possible to calculate $P(A=text{false}mid B=text{true})$ and $P(A=text{false}mid B=text{false})$ from this? I think what it must hold is that these four terms must sum to one, i.e. $$P(A=text{true}mid B=text{true}) + P(A=text{true}mid B=text{false}) \+ P(A=text{false}mid B=text{true}) + P(A=text{false}mid B=text{false}) = 1.$$
probability conditional-probability
$endgroup$
add a comment |
$begingroup$
Let's assume that we have two Bernoulli random variables: $A$ (can be true or false) and $B$ (can be true or false), and further assume we have been given $P(A=text{true}mid B=text{true})$ and $P(A=text{true}mid B=text{false})$.
Is it possible to calculate $P(A=text{false}mid B=text{true})$ and $P(A=text{false}mid B=text{false})$ from this? I think what it must hold is that these four terms must sum to one, i.e. $$P(A=text{true}mid B=text{true}) + P(A=text{true}mid B=text{false}) \+ P(A=text{false}mid B=text{true}) + P(A=text{false}mid B=text{false}) = 1.$$
probability conditional-probability
$endgroup$
Let's assume that we have two Bernoulli random variables: $A$ (can be true or false) and $B$ (can be true or false), and further assume we have been given $P(A=text{true}mid B=text{true})$ and $P(A=text{true}mid B=text{false})$.
Is it possible to calculate $P(A=text{false}mid B=text{true})$ and $P(A=text{false}mid B=text{false})$ from this? I think what it must hold is that these four terms must sum to one, i.e. $$P(A=text{true}mid B=text{true}) + P(A=text{true}mid B=text{false}) \+ P(A=text{false}mid B=text{true}) + P(A=text{false}mid B=text{false}) = 1.$$
probability conditional-probability
probability conditional-probability
edited Dec 22 '18 at 11:21
Saad
20.6k92452
20.6k92452
asked Dec 22 '18 at 11:11
machinerymachinery
1365
1365
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
No it's incorrect.
$$P(A=true|B=true)+P(A=false|B=true)$$
$$=frac{P(A=true,B=true)}{P(B=true)}+frac{P(A=false,B=true)}{P(B=true)}$$
$$=frac{P(B=true)}{P(B=true)}=1$$
Similarly,
$$P(A=true|B=false)+P(A=false|B=false)=1$$
Thus, yes you can calculate the variables required, but the equation you wrote was incorrect
$endgroup$
add a comment |
$begingroup$
Not quite. You have across all joint possibilities $$P(A=text{true} text{ and } B=text{true}) + P(A=text{true}text{ and }B=text{false}) \;,,+ P(A=text{false}text{ and } B=text{true}) + P(A=text{false}text{ and } B=text{false}) = 1$$
but for conditional probabilities you have two equations $$P(A=text{true}mid B=text{true}) + P(A=text{false}mid B=text{true}) =1\P(A=text{true}mid B=text{false}) + P(A=text{false}mid B=text{false}) = 1$$
$endgroup$
add a comment |
$begingroup$
The summation you mention gives sum $2$ (not $1$).
This because: $$P(A=text{true}mid B=text{true})+P(A=text{false}mid B=text{true})=1$$ and: $$P(A=text{true}mid B=text{false})+P(A=text{false}mid B=text{false})=1$$
In both cases if you know one of terms then you also know the other one.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049325%2fconditional-probabilities-summing-to-one%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
No it's incorrect.
$$P(A=true|B=true)+P(A=false|B=true)$$
$$=frac{P(A=true,B=true)}{P(B=true)}+frac{P(A=false,B=true)}{P(B=true)}$$
$$=frac{P(B=true)}{P(B=true)}=1$$
Similarly,
$$P(A=true|B=false)+P(A=false|B=false)=1$$
Thus, yes you can calculate the variables required, but the equation you wrote was incorrect
$endgroup$
add a comment |
$begingroup$
No it's incorrect.
$$P(A=true|B=true)+P(A=false|B=true)$$
$$=frac{P(A=true,B=true)}{P(B=true)}+frac{P(A=false,B=true)}{P(B=true)}$$
$$=frac{P(B=true)}{P(B=true)}=1$$
Similarly,
$$P(A=true|B=false)+P(A=false|B=false)=1$$
Thus, yes you can calculate the variables required, but the equation you wrote was incorrect
$endgroup$
add a comment |
$begingroup$
No it's incorrect.
$$P(A=true|B=true)+P(A=false|B=true)$$
$$=frac{P(A=true,B=true)}{P(B=true)}+frac{P(A=false,B=true)}{P(B=true)}$$
$$=frac{P(B=true)}{P(B=true)}=1$$
Similarly,
$$P(A=true|B=false)+P(A=false|B=false)=1$$
Thus, yes you can calculate the variables required, but the equation you wrote was incorrect
$endgroup$
No it's incorrect.
$$P(A=true|B=true)+P(A=false|B=true)$$
$$=frac{P(A=true,B=true)}{P(B=true)}+frac{P(A=false,B=true)}{P(B=true)}$$
$$=frac{P(B=true)}{P(B=true)}=1$$
Similarly,
$$P(A=true|B=false)+P(A=false|B=false)=1$$
Thus, yes you can calculate the variables required, but the equation you wrote was incorrect
answered Dec 22 '18 at 11:25
Ankit KumarAnkit Kumar
1,542221
1,542221
add a comment |
add a comment |
$begingroup$
Not quite. You have across all joint possibilities $$P(A=text{true} text{ and } B=text{true}) + P(A=text{true}text{ and }B=text{false}) \;,,+ P(A=text{false}text{ and } B=text{true}) + P(A=text{false}text{ and } B=text{false}) = 1$$
but for conditional probabilities you have two equations $$P(A=text{true}mid B=text{true}) + P(A=text{false}mid B=text{true}) =1\P(A=text{true}mid B=text{false}) + P(A=text{false}mid B=text{false}) = 1$$
$endgroup$
add a comment |
$begingroup$
Not quite. You have across all joint possibilities $$P(A=text{true} text{ and } B=text{true}) + P(A=text{true}text{ and }B=text{false}) \;,,+ P(A=text{false}text{ and } B=text{true}) + P(A=text{false}text{ and } B=text{false}) = 1$$
but for conditional probabilities you have two equations $$P(A=text{true}mid B=text{true}) + P(A=text{false}mid B=text{true}) =1\P(A=text{true}mid B=text{false}) + P(A=text{false}mid B=text{false}) = 1$$
$endgroup$
add a comment |
$begingroup$
Not quite. You have across all joint possibilities $$P(A=text{true} text{ and } B=text{true}) + P(A=text{true}text{ and }B=text{false}) \;,,+ P(A=text{false}text{ and } B=text{true}) + P(A=text{false}text{ and } B=text{false}) = 1$$
but for conditional probabilities you have two equations $$P(A=text{true}mid B=text{true}) + P(A=text{false}mid B=text{true}) =1\P(A=text{true}mid B=text{false}) + P(A=text{false}mid B=text{false}) = 1$$
$endgroup$
Not quite. You have across all joint possibilities $$P(A=text{true} text{ and } B=text{true}) + P(A=text{true}text{ and }B=text{false}) \;,,+ P(A=text{false}text{ and } B=text{true}) + P(A=text{false}text{ and } B=text{false}) = 1$$
but for conditional probabilities you have two equations $$P(A=text{true}mid B=text{true}) + P(A=text{false}mid B=text{true}) =1\P(A=text{true}mid B=text{false}) + P(A=text{false}mid B=text{false}) = 1$$
answered Dec 22 '18 at 11:27
HenryHenry
101k482170
101k482170
add a comment |
add a comment |
$begingroup$
The summation you mention gives sum $2$ (not $1$).
This because: $$P(A=text{true}mid B=text{true})+P(A=text{false}mid B=text{true})=1$$ and: $$P(A=text{true}mid B=text{false})+P(A=text{false}mid B=text{false})=1$$
In both cases if you know one of terms then you also know the other one.
$endgroup$
add a comment |
$begingroup$
The summation you mention gives sum $2$ (not $1$).
This because: $$P(A=text{true}mid B=text{true})+P(A=text{false}mid B=text{true})=1$$ and: $$P(A=text{true}mid B=text{false})+P(A=text{false}mid B=text{false})=1$$
In both cases if you know one of terms then you also know the other one.
$endgroup$
add a comment |
$begingroup$
The summation you mention gives sum $2$ (not $1$).
This because: $$P(A=text{true}mid B=text{true})+P(A=text{false}mid B=text{true})=1$$ and: $$P(A=text{true}mid B=text{false})+P(A=text{false}mid B=text{false})=1$$
In both cases if you know one of terms then you also know the other one.
$endgroup$
The summation you mention gives sum $2$ (not $1$).
This because: $$P(A=text{true}mid B=text{true})+P(A=text{false}mid B=text{true})=1$$ and: $$P(A=text{true}mid B=text{false})+P(A=text{false}mid B=text{false})=1$$
In both cases if you know one of terms then you also know the other one.
answered Dec 22 '18 at 11:33
drhabdrhab
104k545136
104k545136
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049325%2fconditional-probabilities-summing-to-one%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown