Show that if $lim_{xto c}(f(x))^2=0$ then $lim_{xto c}f(x)=0$
$begingroup$
Let $cinmathbb{R}$ and let $f:mathbb{R}tomathbb{R}$ be such that
$$lim_{xto c}(f(x))^2=L$$
Show that if $L=0$, then
$$lim_{xto c}f(x)=0$$
Using the $delta$ - $varepsilon$ definition, it is given that:
$forall varepsilon>0$ $existsdelta_1>0$ such that, if $|x-c|<delta_1$ then, $|f^2(x)|<varepsilon$
Using this, what we need to show is that:
$forall varepsilon>0$ $existsdelta_2>0$ such that, if $|x-c|<delta_2$ then, $|f(x)|<varepsilon$
My approach:
Since, $varepsilon$ is taken to be small, we can say that $varepsilon<1$. I take $delta_2=delta_1$ $forallvarepsilon>0$.
$Rightarrow|f^2(x)|<|f(x)|<varepsilon<1$, which doesn't get me anywhere.
(In fact, this makes it look like that the converse is true!)
My approach is obviously very wrong. How should I actually proceed?
real-analysis limits epsilon-delta
$endgroup$
add a comment |
$begingroup$
Let $cinmathbb{R}$ and let $f:mathbb{R}tomathbb{R}$ be such that
$$lim_{xto c}(f(x))^2=L$$
Show that if $L=0$, then
$$lim_{xto c}f(x)=0$$
Using the $delta$ - $varepsilon$ definition, it is given that:
$forall varepsilon>0$ $existsdelta_1>0$ such that, if $|x-c|<delta_1$ then, $|f^2(x)|<varepsilon$
Using this, what we need to show is that:
$forall varepsilon>0$ $existsdelta_2>0$ such that, if $|x-c|<delta_2$ then, $|f(x)|<varepsilon$
My approach:
Since, $varepsilon$ is taken to be small, we can say that $varepsilon<1$. I take $delta_2=delta_1$ $forallvarepsilon>0$.
$Rightarrow|f^2(x)|<|f(x)|<varepsilon<1$, which doesn't get me anywhere.
(In fact, this makes it look like that the converse is true!)
My approach is obviously very wrong. How should I actually proceed?
real-analysis limits epsilon-delta
$endgroup$
add a comment |
$begingroup$
Let $cinmathbb{R}$ and let $f:mathbb{R}tomathbb{R}$ be such that
$$lim_{xto c}(f(x))^2=L$$
Show that if $L=0$, then
$$lim_{xto c}f(x)=0$$
Using the $delta$ - $varepsilon$ definition, it is given that:
$forall varepsilon>0$ $existsdelta_1>0$ such that, if $|x-c|<delta_1$ then, $|f^2(x)|<varepsilon$
Using this, what we need to show is that:
$forall varepsilon>0$ $existsdelta_2>0$ such that, if $|x-c|<delta_2$ then, $|f(x)|<varepsilon$
My approach:
Since, $varepsilon$ is taken to be small, we can say that $varepsilon<1$. I take $delta_2=delta_1$ $forallvarepsilon>0$.
$Rightarrow|f^2(x)|<|f(x)|<varepsilon<1$, which doesn't get me anywhere.
(In fact, this makes it look like that the converse is true!)
My approach is obviously very wrong. How should I actually proceed?
real-analysis limits epsilon-delta
$endgroup$
Let $cinmathbb{R}$ and let $f:mathbb{R}tomathbb{R}$ be such that
$$lim_{xto c}(f(x))^2=L$$
Show that if $L=0$, then
$$lim_{xto c}f(x)=0$$
Using the $delta$ - $varepsilon$ definition, it is given that:
$forall varepsilon>0$ $existsdelta_1>0$ such that, if $|x-c|<delta_1$ then, $|f^2(x)|<varepsilon$
Using this, what we need to show is that:
$forall varepsilon>0$ $existsdelta_2>0$ such that, if $|x-c|<delta_2$ then, $|f(x)|<varepsilon$
My approach:
Since, $varepsilon$ is taken to be small, we can say that $varepsilon<1$. I take $delta_2=delta_1$ $forallvarepsilon>0$.
$Rightarrow|f^2(x)|<|f(x)|<varepsilon<1$, which doesn't get me anywhere.
(In fact, this makes it look like that the converse is true!)
My approach is obviously very wrong. How should I actually proceed?
real-analysis limits epsilon-delta
real-analysis limits epsilon-delta
edited Dec 20 '18 at 11:00
José Carlos Santos
173k23133241
173k23133241
asked Dec 20 '18 at 10:44
Za IraZa Ira
161115
161115
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Let $varepsilon>0$. You know that there is a $delta>0$ such that $$lvert xrvert<deltaimpliesbigllvert f^2(x)bigrrvert<varepsilon^2.$$But$$bigllvert f^2(x)bigrrvert<varepsilon^2iffbigllvert f(x)bigrrvert<varepsilon.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047402%2fshow-that-if-lim-x-to-cfx2-0-then-lim-x-to-cfx-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $varepsilon>0$. You know that there is a $delta>0$ such that $$lvert xrvert<deltaimpliesbigllvert f^2(x)bigrrvert<varepsilon^2.$$But$$bigllvert f^2(x)bigrrvert<varepsilon^2iffbigllvert f(x)bigrrvert<varepsilon.$$
$endgroup$
add a comment |
$begingroup$
Let $varepsilon>0$. You know that there is a $delta>0$ such that $$lvert xrvert<deltaimpliesbigllvert f^2(x)bigrrvert<varepsilon^2.$$But$$bigllvert f^2(x)bigrrvert<varepsilon^2iffbigllvert f(x)bigrrvert<varepsilon.$$
$endgroup$
add a comment |
$begingroup$
Let $varepsilon>0$. You know that there is a $delta>0$ such that $$lvert xrvert<deltaimpliesbigllvert f^2(x)bigrrvert<varepsilon^2.$$But$$bigllvert f^2(x)bigrrvert<varepsilon^2iffbigllvert f(x)bigrrvert<varepsilon.$$
$endgroup$
Let $varepsilon>0$. You know that there is a $delta>0$ such that $$lvert xrvert<deltaimpliesbigllvert f^2(x)bigrrvert<varepsilon^2.$$But$$bigllvert f^2(x)bigrrvert<varepsilon^2iffbigllvert f(x)bigrrvert<varepsilon.$$
answered Dec 20 '18 at 10:51
José Carlos SantosJosé Carlos Santos
173k23133241
173k23133241
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047402%2fshow-that-if-lim-x-to-cfx2-0-then-lim-x-to-cfx-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown