Evaluate $int_{0}^{frac{pi}{2}}frac{x^2}{ sin x}dx$











up vote
6
down vote

favorite
7












I want to evaluate $$int_{0}^{frac{pi}{2}}frac{x^2}{ sin x}dx$$
First,I tried to evaluate like this:
$$int_{0}^{frac{pi}{2}}frac{x^2}{ sin x}dx=int_{0}^{frac{pi}{2}}x^2left(frac{1+cos x}{sin x}right)frac{dx}{1+cos x}=int_{0}^{frac{pi}{2}}x^2left(frac{1+cos x}{sin x}right)dleft(frac{sin x}{1+cos x}right)$$



$$=int_{0}^{frac{pi}{2}}x^2dlogleft(frac{sin x}{1+cos x}right)=x^2logleft(frac{sin x}{1+cos x}right)|_{0}^{frac{pi}{2}}-2int_{0}^{frac{pi}{2}}xlogleft(frac{sin x}{1+cos x}right)dx$$



$$=0+2int_{0}^{frac{pi}{2}}xlogleft(frac{1+cos x}{sin x}right)dx=2int_{0}^{frac{pi}{2}}xlogleft(1+cos xright)dx-2int_{0}^{frac{pi}{2}}xlogleft(sin xright)dx$$
$$=2int_{0}^{frac{pi}{2}}xlogcot left(frac{x}{2}right)dx=8int_{0}^{frac{pi}{4}}xlogcot xdx$$
but I can't proceed next step,help me,thanks.










share|cite|improve this question
























  • you mean the first step? Give some thoughts, please. (Although to be fair, it appears we have a doozy wolframalpha.com/input/… ... I'm guessing this means you should try a series approach.)
    – spaceisdarkgreen
    Mar 30 at 3:40












  • @FofX Do you want an exact answer, or just a numerical approximation?
    – Toby Mak
    Mar 30 at 3:41










  • @spaceisdarkgreen I think use integration by parts?
    – FofX
    Mar 30 at 3:42










  • @TobyMak I want an exact answer,hh,thank you.
    – FofX
    Mar 30 at 3:44










  • @FofX Don't think so, though I can't say I know it won't simplify things... whatever it is the indefinite integral doesn't seem to come out nice (see my wolfram alpha link). You can use the Taylor series for csc to turn it into an infinite sum that I don't find particularly inviting, but has some features that make the wolfram alpha answer involving the zeta function and Catalan constant plausible, like bernoulli numbers
    – spaceisdarkgreen
    Mar 30 at 3:56

















up vote
6
down vote

favorite
7












I want to evaluate $$int_{0}^{frac{pi}{2}}frac{x^2}{ sin x}dx$$
First,I tried to evaluate like this:
$$int_{0}^{frac{pi}{2}}frac{x^2}{ sin x}dx=int_{0}^{frac{pi}{2}}x^2left(frac{1+cos x}{sin x}right)frac{dx}{1+cos x}=int_{0}^{frac{pi}{2}}x^2left(frac{1+cos x}{sin x}right)dleft(frac{sin x}{1+cos x}right)$$



$$=int_{0}^{frac{pi}{2}}x^2dlogleft(frac{sin x}{1+cos x}right)=x^2logleft(frac{sin x}{1+cos x}right)|_{0}^{frac{pi}{2}}-2int_{0}^{frac{pi}{2}}xlogleft(frac{sin x}{1+cos x}right)dx$$



$$=0+2int_{0}^{frac{pi}{2}}xlogleft(frac{1+cos x}{sin x}right)dx=2int_{0}^{frac{pi}{2}}xlogleft(1+cos xright)dx-2int_{0}^{frac{pi}{2}}xlogleft(sin xright)dx$$
$$=2int_{0}^{frac{pi}{2}}xlogcot left(frac{x}{2}right)dx=8int_{0}^{frac{pi}{4}}xlogcot xdx$$
but I can't proceed next step,help me,thanks.










share|cite|improve this question
























  • you mean the first step? Give some thoughts, please. (Although to be fair, it appears we have a doozy wolframalpha.com/input/… ... I'm guessing this means you should try a series approach.)
    – spaceisdarkgreen
    Mar 30 at 3:40












  • @FofX Do you want an exact answer, or just a numerical approximation?
    – Toby Mak
    Mar 30 at 3:41










  • @spaceisdarkgreen I think use integration by parts?
    – FofX
    Mar 30 at 3:42










  • @TobyMak I want an exact answer,hh,thank you.
    – FofX
    Mar 30 at 3:44










  • @FofX Don't think so, though I can't say I know it won't simplify things... whatever it is the indefinite integral doesn't seem to come out nice (see my wolfram alpha link). You can use the Taylor series for csc to turn it into an infinite sum that I don't find particularly inviting, but has some features that make the wolfram alpha answer involving the zeta function and Catalan constant plausible, like bernoulli numbers
    – spaceisdarkgreen
    Mar 30 at 3:56















up vote
6
down vote

favorite
7









up vote
6
down vote

favorite
7






7





I want to evaluate $$int_{0}^{frac{pi}{2}}frac{x^2}{ sin x}dx$$
First,I tried to evaluate like this:
$$int_{0}^{frac{pi}{2}}frac{x^2}{ sin x}dx=int_{0}^{frac{pi}{2}}x^2left(frac{1+cos x}{sin x}right)frac{dx}{1+cos x}=int_{0}^{frac{pi}{2}}x^2left(frac{1+cos x}{sin x}right)dleft(frac{sin x}{1+cos x}right)$$



$$=int_{0}^{frac{pi}{2}}x^2dlogleft(frac{sin x}{1+cos x}right)=x^2logleft(frac{sin x}{1+cos x}right)|_{0}^{frac{pi}{2}}-2int_{0}^{frac{pi}{2}}xlogleft(frac{sin x}{1+cos x}right)dx$$



$$=0+2int_{0}^{frac{pi}{2}}xlogleft(frac{1+cos x}{sin x}right)dx=2int_{0}^{frac{pi}{2}}xlogleft(1+cos xright)dx-2int_{0}^{frac{pi}{2}}xlogleft(sin xright)dx$$
$$=2int_{0}^{frac{pi}{2}}xlogcot left(frac{x}{2}right)dx=8int_{0}^{frac{pi}{4}}xlogcot xdx$$
but I can't proceed next step,help me,thanks.










share|cite|improve this question















I want to evaluate $$int_{0}^{frac{pi}{2}}frac{x^2}{ sin x}dx$$
First,I tried to evaluate like this:
$$int_{0}^{frac{pi}{2}}frac{x^2}{ sin x}dx=int_{0}^{frac{pi}{2}}x^2left(frac{1+cos x}{sin x}right)frac{dx}{1+cos x}=int_{0}^{frac{pi}{2}}x^2left(frac{1+cos x}{sin x}right)dleft(frac{sin x}{1+cos x}right)$$



$$=int_{0}^{frac{pi}{2}}x^2dlogleft(frac{sin x}{1+cos x}right)=x^2logleft(frac{sin x}{1+cos x}right)|_{0}^{frac{pi}{2}}-2int_{0}^{frac{pi}{2}}xlogleft(frac{sin x}{1+cos x}right)dx$$



$$=0+2int_{0}^{frac{pi}{2}}xlogleft(frac{1+cos x}{sin x}right)dx=2int_{0}^{frac{pi}{2}}xlogleft(1+cos xright)dx-2int_{0}^{frac{pi}{2}}xlogleft(sin xright)dx$$
$$=2int_{0}^{frac{pi}{2}}xlogcot left(frac{x}{2}right)dx=8int_{0}^{frac{pi}{4}}xlogcot xdx$$
but I can't proceed next step,help me,thanks.







calculus integration analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 30 at 6:49

























asked Mar 30 at 3:36









FofX

1706




1706












  • you mean the first step? Give some thoughts, please. (Although to be fair, it appears we have a doozy wolframalpha.com/input/… ... I'm guessing this means you should try a series approach.)
    – spaceisdarkgreen
    Mar 30 at 3:40












  • @FofX Do you want an exact answer, or just a numerical approximation?
    – Toby Mak
    Mar 30 at 3:41










  • @spaceisdarkgreen I think use integration by parts?
    – FofX
    Mar 30 at 3:42










  • @TobyMak I want an exact answer,hh,thank you.
    – FofX
    Mar 30 at 3:44










  • @FofX Don't think so, though I can't say I know it won't simplify things... whatever it is the indefinite integral doesn't seem to come out nice (see my wolfram alpha link). You can use the Taylor series for csc to turn it into an infinite sum that I don't find particularly inviting, but has some features that make the wolfram alpha answer involving the zeta function and Catalan constant plausible, like bernoulli numbers
    – spaceisdarkgreen
    Mar 30 at 3:56




















  • you mean the first step? Give some thoughts, please. (Although to be fair, it appears we have a doozy wolframalpha.com/input/… ... I'm guessing this means you should try a series approach.)
    – spaceisdarkgreen
    Mar 30 at 3:40












  • @FofX Do you want an exact answer, or just a numerical approximation?
    – Toby Mak
    Mar 30 at 3:41










  • @spaceisdarkgreen I think use integration by parts?
    – FofX
    Mar 30 at 3:42










  • @TobyMak I want an exact answer,hh,thank you.
    – FofX
    Mar 30 at 3:44










  • @FofX Don't think so, though I can't say I know it won't simplify things... whatever it is the indefinite integral doesn't seem to come out nice (see my wolfram alpha link). You can use the Taylor series for csc to turn it into an infinite sum that I don't find particularly inviting, but has some features that make the wolfram alpha answer involving the zeta function and Catalan constant plausible, like bernoulli numbers
    – spaceisdarkgreen
    Mar 30 at 3:56


















you mean the first step? Give some thoughts, please. (Although to be fair, it appears we have a doozy wolframalpha.com/input/… ... I'm guessing this means you should try a series approach.)
– spaceisdarkgreen
Mar 30 at 3:40






you mean the first step? Give some thoughts, please. (Although to be fair, it appears we have a doozy wolframalpha.com/input/… ... I'm guessing this means you should try a series approach.)
– spaceisdarkgreen
Mar 30 at 3:40














@FofX Do you want an exact answer, or just a numerical approximation?
– Toby Mak
Mar 30 at 3:41




@FofX Do you want an exact answer, or just a numerical approximation?
– Toby Mak
Mar 30 at 3:41












@spaceisdarkgreen I think use integration by parts?
– FofX
Mar 30 at 3:42




@spaceisdarkgreen I think use integration by parts?
– FofX
Mar 30 at 3:42












@TobyMak I want an exact answer,hh,thank you.
– FofX
Mar 30 at 3:44




@TobyMak I want an exact answer,hh,thank you.
– FofX
Mar 30 at 3:44












@FofX Don't think so, though I can't say I know it won't simplify things... whatever it is the indefinite integral doesn't seem to come out nice (see my wolfram alpha link). You can use the Taylor series for csc to turn it into an infinite sum that I don't find particularly inviting, but has some features that make the wolfram alpha answer involving the zeta function and Catalan constant plausible, like bernoulli numbers
– spaceisdarkgreen
Mar 30 at 3:56






@FofX Don't think so, though I can't say I know it won't simplify things... whatever it is the indefinite integral doesn't seem to come out nice (see my wolfram alpha link). You can use the Taylor series for csc to turn it into an infinite sum that I don't find particularly inviting, but has some features that make the wolfram alpha answer involving the zeta function and Catalan constant plausible, like bernoulli numbers
– spaceisdarkgreen
Mar 30 at 3:56












7 Answers
7






active

oldest

votes

















up vote
3
down vote



accepted










At the price of special functions, the antiderivative could be computed
$$I=intfrac{x^2}{ sin x},dx=-4 i x text{Li}_2left(e^{i x}right)+i x text{Li}_2left(e^{2 i x}right)+4
text{Li}_3left(e^{i x}right)-frac{1}{2} text{Li}_3left(e^{2 i x}right)-2
x^2 tanh ^{-1}left(e^{i x}right)$$ where appear the polylogarithm functions.



$$lim_{xto frac{pi }{2}} , I=2 pi Cqquad text{and} qquadlim_{xto 0} , I=frac{7 }{2}zeta (3)implies int_{0}^{frac{pi}{2}}frac{x^2}{ sin x}dx=2 pi C-frac{7 }{2}zeta (3)$$ as given by Wolfram Alpha. This evaluates a $approx 1.54798$.



For a fast approximation, we could use the superb approximation $$sin(x) simeq frac{16 (pi -x) x}{5 pi ^2-4 (pi -x) x}qquad (0leq xleqpi)$$ which was proposed by Mahabhaskariya of Bhaskara I, a seventh-century Indian mathematician (have a look here).
This would make
$$I approx J= - int left(frac{x^2}{4}+frac{5 pi ^3}{16 (x-pi )}+frac{5 pi ^2}{16} right),dx=-frac{x^3}{12}-frac{5 pi ^2 x}{16}-frac{5}{16} pi ^3 log (pi -x)+frac{19
pi ^3}{48}$$
$$lim_{xto frac{pi }{2}} , J=frac{pi ^3}{48} left(11-15 log left(frac{pi }{2}right)right)qquad text{and} qquadlim_{xto 0} , J
=frac{pi ^3}{48} (19-15 log (pi ))$$ leading to the approximation
$$int_{0}^{frac{pi}{2}}frac{x^2}{ sin x}dxapprox frac{pi ^3}{48} (15 log (2)-8)approx 1.54851$$ which is not too bad.



Tha advantage of such approximation is that it allows a fast evaluation of
$$K(t)=int_{0}^{t}frac{x^2}{ sin x}dx$$ The table below compares the approximation to the exact result
$$left(
begin{array}{ccc}
t & text{approximation} & text{exact} \
frac{pi }{20} & 0.01221 & 0.01236 \
frac{pi }{10} & 0.04936 & 0.04976 \
frac{3 pi }{20} & 0.11258 & 0.11312 \
frac{pi }{5} & 0.20358 & 0.20409 \
frac{pi }{4} & 0.32475 & 0.32508 \
frac{3 pi }{10} & 0.47939 & 0.47945 \
frac{7 pi }{20} & 0.67196 & 0.67176 \
frac{2 pi }{5} & 0.90847 & 0.90807 \
frac{9 pi }{20} & 1.19701 & 1.19650 \
frac{pi }{2} & 1.54851 & 1.54798 \
frac{11 pi }{20} & 1.97802 & 1.97746 \
frac{3 pi }{5} & 2.50657 & 2.50583 \
frac{13 pi }{20} & 3.16447 & 3.16315 \
frac{7 pi }{10} & 3.99696 & 3.99445 \
frac{3 pi }{4} & 5.07529 & 5.07091 \
frac{4 pi }{5} & 6.52008 & 6.51359 \
frac{17 pi }{20} & 8.55922 & 8.55230 \
frac{9 pi }{10} & 11.7067 & 11.7077 \
frac{19 pi }{20} & 17.6067 & 17.6510
end{array}
right)$$






share|cite|improve this answer























  • Thank you for your link ,thats very interesting!
    – FofX
    Mar 30 at 6:17






  • 1




    One may also accelerate the series $$ sum_{ngeq 1}frac{16^n}{4n^3 binom{2n}{n}^2} $$ to derive accurate numerical approximations of $I$.
    – Jack D'Aurizio
    Mar 30 at 14:30


















up vote
3
down vote













$$mathcal{J}=int_{0}^{pi/2}frac{x^2}{sin x},dx = int_{0}^{1}frac{arcsin^2(x)}{xsqrt{1-x^2}},dx=sum_{ngeq 1}frac{2^{2n-1}}{n^2binom{2n}{n}}int_{0}^{1}frac{x^{2n-1}}{sqrt{1-x^2}},dx tag{1}$$
by the Maclaurin series of $arcsin^2(x)$. Euler's Beta function then leads to
$$ mathcal{J}=sum_{ngeq 1}frac{16^n}{4n^3 binom{2n}{n}^2}=phantom{}_4 F_3left(1,1,1,1;tfrac{3}{2},tfrac{3}{2},2;1right)tag{2} $$
where the RHS is a manageable hypergeometric function (similar objects are evaluated both here and here) and as already shown by Claude Leibovici, $mathcal{J}=4int_{0}^{1}frac{arctan^2(u)}{u},du $ is simply given by a combination of a dilogarithm and a trilogarithm. Indeed
$$ int_{0}^{pi/2}int_{0}^{theta}frac{u}{sin u},du,dtheta =-pi G+frac{7}{2}zeta(3)tag{3}$$
leading to $mathcal{J}=2pi G-frac{7}{2}zeta(3)$, has already been a key lemma in this historical thread.

An alternative way for proving this identity is just to write $frac{x}{sin x}$ and $|x|$ as Fourier cosine series.

The Shafer-Fink inequality leads to
$$ int_{0}^{pi/2}frac{x^2}{sin x},dx = 4 int_{0}^{1}frac{arctan^2(u)}{u},du approx frac{6}{7}(3sqrt{2}-5)+9logleft(frac{2sqrt{2}+1}{3}right)approx 1.54.tag{4}$$






share|cite|improve this answer























  • @ Wow, thank you for your detailed play. I learned a lot.
    – FofX
    Mar 31 at 3:55


















up vote
3
down vote













$begin{align}
J&=int_{0}^{pi/2}frac{x^2}{sin x},dx&
end{align}$



Perform the change of variable,



$displaystyle y=tanleft(frac{x}{2}right)$,



$begin{align}
J&=4int_0^1 frac{arctan^2 x}{x},dx\
&=4Big[ln xarctan ^2 xBig]_0^1-8int_0^1 frac{arctan xln x}{1+x^2},dx\
&=-8int_0^1 frac{arctan xln x}{1+x^2},dx\
end{align}$



For $xin [0;1]$, define $F$,



$begin{align} F(x)&=int_0^x frac{ln t}{1+t^2},dt\
&=int_0^1 frac{xln(xt)}{1+x^2t^2},dt
end{align}$



Observe that,



$displaystyle F(0)=0$ and, $displaystyle F(1)=-text{G}$.



$text{G}$ is the Catalan constant.



$begin{align}J&=-8Big[F(x)arctan xBig]_0^1+8int_0^1 int_0^1 frac{xln(tx)}{(1+t^2x^2)(1+x^2)},dt,dx\
&=2Gpi+8int_0^1 int_0^1 frac{xln x}{(1+t^2x^2)(1+x^2)},dt,dx+8int_0^1 int_0^1 frac{xln t}{(1+t^2x^2)(1+x^2)},dt,dx\
&=2Gpi+8int_0^1 Big[frac{arctan(tx)ln x}{1+x^2}Big]_{t=0}^{t=1},dx+4int_0^1 Big[frac{(ln(1+t^2x^2)-ln(1+x^2))ln t}{t^2-1}Big]_{x=0}^{x=1},dt\
&=2Gpi+8int_0^1 frac{arctan xln x}{1+x^2},dx+4int_0^1 frac{(ln(1+t^2)-ln 2)ln t }{t^2-1},dt\
&=2Gpi-J+4int_0^1 frac{(ln 2-ln(1+t^2))ln t }{1-t^2},dt\
end{align}$



Therefore,



$displaystyle J=text{G}pi+2int_0^1 frac{(ln 2-ln(1+x^2))ln x }{1-x^2},dx$



For $xin[0;1]$, define,



$begin{align}H(x)&=int_0^x frac{ln t}{1-t^2},dt\
&=int_0^1 frac{xln(tx)}{1-t^2x^2},dt\
end{align}$



Observe that,



$displaystyle H(0)=0$ and $displaystyle H(1)=-frac{pi^2}{8}$.



$begin{align}J&=text{G}pi+2Big[(ln 2-ln(1+x^2))H(x)Big]_0^1+4int_0^1int_0^1frac{x^2ln(tx)}{(1+x^2)(1-t^2x^2)},dt,dx\
&=text{G}pi+4int_0^1int_0^1frac{x^2ln(tx)}{(1+x^2)(1-t^2x^2)},dt,dx\
&=text{G}pi+4int_0^1int_0^1frac{x^2ln t}{(1+x^2)(1-t^2x^2)},dt,dx+4int_0^1int_0^1frac{x^2ln x}{(1+x^2)(1-t^2x^2)},dt,dx\
&=text{G}pi+4int_0^1Big[frac{ln t}{1+t^2}left(frac{ln(1+tx)}{2t}-frac{ln(1-tx)}{2t}-arctan xright)Big]_{x=0}^{x=1},dt+\
&2int_0^1 Big[frac{xln x}{1+x^2}lnleft(frac{1+tx}{1-tx}right)Big]_{t=0}^{t=1},dx\
&=text{G}pi+2int_0^1 frac{ln t}{t(1+t^2)}lnleft(frac{1+t}{1-t}right),dt-piint_0^1 frac{ln t}{1+t^2},dt+2int_0^1 frac{xln x}{1+x^2}lnleft(frac{1+x}{1-x}right),dx\
&=2text{G}pi+2int_0^1 frac{ln x}{x}lnleft(frac{1+x}{1-x}right),dx\
end{align}$



But, for $0leq x<1$,



$displaystyle frac{1}{x}lnleft(frac{1+x}{1-x}right)=2sum_{n=0}^{infty}frac{x^{2n}}{2n+1}$



Therefore,



$begin{align}int_0^1 frac{ln x}{x}lnleft(frac{1+x}{1-x}right),dx&=2int_0^1 left(sum_{n=0}^{infty}frac{x^{2n}}{2n+1}right)ln x,dx\
&=2 sum_{n=0}^{infty}int_0^1 frac{x^{2n}ln x}{2n+1},dx\
&=-2sum_{n=0}^{infty}frac{1}{(2n+1)^3}\
&=-2left(sum_{n=1}^{infty} frac{1}{n^3}-sum_{n=1}^{infty} frac{1}{(2n)^3}right)\
&=-2left(zeta(3)-frac{1}{8}zeta(3)right)\
&=-frac{7}{4}zeta(3)\
end{align}$



Therefore,



$ boxed{J=2text{G}pi-frac{7}{2}zeta(3)}$






share|cite|improve this answer




























    up vote
    3
    down vote













    Observe we have
    begin{align}
    I=int^{pi/2}_0 frac{x^2}{sin x} dx = int^{pi/2}_0 frac{x^2}{cosleft(frac{pi}{2}-x right)} dx = int^{pi/2}_0 frac{(frac{pi}{2}-u)^2}{cos u} du.
    end{align}

    Then using integration by parts, we see that
    begin{align}
    I&=left(frac{pi}{2}-uright)^2left{logleft|1 + sin uright|-log|cos u|right}bigg|^{pi/2}_0 + 2int^{pi/2}_0left(frac{pi}{2}-u right)log|sec u + tan u| du\
    &= 2pi left(frac{1}{2}int_{0}^{pi/2}log|sec u+tan u| du right)-frac{7}{2}left(frac{4}{7}int^{pi/2}_0 u log|sec u+tan u| du right)\
    &= 2pi G - frac{7}{2}zeta(3).
    end{align}



    Here, I have used the facts that
    begin{align}
    G= frac{1}{2}int_{0}^{pi/2}log|sec u+tan u| du
    end{align}

    and
    begin{align}
    zeta(3) = frac{4}{7}int^{pi/2}_0 u log|sec u+tan u| du.
    end{align}

    See here for reference.






    share|cite|improve this answer























    • Thanks for your link,it is helpful for me.
      – FofX
      Mar 30 at 6:08


















    up vote
    2
    down vote













    $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
    newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
    newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
    newcommand{dd}{mathrm{d}}
    newcommand{ds}[1]{displaystyle{#1}}
    newcommand{expo}[1]{,mathrm{e}^{#1},}
    newcommand{ic}{mathrm{i}}
    newcommand{mc}[1]{mathcal{#1}}
    newcommand{mrm}[1]{mathrm{#1}}
    newcommand{pars}[1]{left(,{#1},right)}
    newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
    newcommand{root}[2]{,sqrt[#1]{,{#2},},}
    newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
    newcommand{verts}[1]{leftvert,{#1},rightvert}$
    enter image description here
    begin{align}
    int_{0}^{pi/2}{x^{2} over sinpars{x}},dd x & =
    left.Reint_{x = 0}^{x = pi/2}{bracks{-iclnpars{z}}^{2} over
    pars{z - 1/z}/pars{2ic}},{dd z over ic z}
    ,rightvert_{ z = exppars{ic x}}
    \[5mm] & =
    left.2,Reint_{x = 0}^{x = pi/2}{ln^{2}pars{z} over 1 - z^{2}},dd z
    ,rightvert_{ z = exppars{ic x}}
    end{align}




    $ds{ln}$ is the $ds{log}$-principal branch. Integration of $ds{{ln^{2}pars{z} over 1 - z^{2}}}$ along the path
    $ds{C_{x}cup C_{R}cup C_{y}}$ vanishes out such that



    $ds{int_{large C_{R}}{ln^{2}pars{z} over 1 - z^{2}},dd z =
    -int_{large C_{y}}{ln^{2}pars{z} over 1 - z^{2}},dd z -
    int_{large C_{x}}{ln^{2}pars{z} over 1 - z^{2}},dd z}$




    Then,
    begin{align}
    int_{0}^{pi/2}{x^{2} over sinpars{x}},dd x & =
    overbrace{-2,Reint_{1}^{0}{bracks{lnpars{y} + piic/2}^{, 2} over
    1 + y^{2}},ic,dd y}^{ds{mbox{along} C_{y}}} -
    overbrace{2,Reint_{0}^{1}{ln^{2}pars{x} over 1 - x^{2}},dd x}
    ^{ds{mbox{along} C_{x}}}
    \[5mm] & =
    -2pi,int_{0}^{1}{lnpars{y} over 1 + y^{2}},dd y -
    2int_{0}^{1}{ln^{2}pars{x} over 1 - x^{2}},dd x
    end{align}




    However, $ds{int_{0}^{1}{lnpars{y} over 1 + y^{2}},dd y = -G}$ where
    $ds{G}$ is the Catalan Constant such that




    begin{align}
    int_{0}^{pi/2}{x^{2} over sinpars{x}},dd x & =
    2pi G - 2sum_{n = 0}^{infty}
    overbrace{int_{0}^{1}ln^{2}pars{x}x^{2n},dd x}
    ^{ds{2 over pars{2n + 1}^{3}}}
    \[5mm] & =
    2pi G - 4bracks{sum_{n = 1}^{infty}{1 over n^{3}} -
    sum_{n = 1}^{infty}{1 over pars{2n}^{3}}} =
    2pi G - {7 over 2}sum_{n = 1}^{infty}{1 over n^{3}}
    \[5mm] & = bbx{2pi G - {7 over 2},zetapars{3}} approx 1.5480
    end{align}






    share|cite|improve this answer






























      up vote
      1
      down vote













      As pointed out within the other answers we want to prove that




      $$mathfrak{I}=int_0^{pi/2}frac{x^2}{sin x}~dx=2pi G-frac72zeta(3)$$




      As the OP showed $mathfrak{I}$ can be reduced to a linear combination of $x$ and the function $log(cot x)$



      $$mathfrak{I}=int_0^{pi/2}frac{x^2}{sin x}~dx=8int_0^{pi/4}xlog(cot x)~dx$$



      By applying the definition of the cotangent function followed up by the usage of the well-known Fourier series expansions of $log(cos x)$ and $log(sin x)$ this can be further simplified. Therefore we get



      $$smallbegin{align}
      mathfrak{I}=8int_0^{pi/4}xlog(cot x)~dx&=8left[int_0^{pi/4}xlog(cos x)~dx-int_0^{pi/4}xlog(sin x)~dxright]\
      &=8left[int_0^{pi/4}xleft(-log(2)-sum_{n=1}^{infty}(-1)^nfrac{cos(2nx)}{n}right)~dx-int_0^{pi/4}xleft(-log(2)-sum_{n=1}^{infty}frac{cos(2nx)}{n}right)~dxright]\
      &=8left[-sum_{n=1}^{infty}frac{(-1)^n}{n}underbrace{int_0^{pi/4}xcos(2nx)~dx}_I+sum_{n=1}^{infty}frac{1}{n}underbrace{int_0^{pi/4}xcos(2nx)~dx}_Iright]\
      end{align}$$



      The inner integral $I$ can be easily evaluated using IBP which leads to



      $$I=int_0^{pi/4}xcos(2nx)~dx=frac{pi}{8n}sinleft(nfrac{pi}2right)-frac1{(2n)^2}$$



      Plugging this into our original formula and followed by a little bit of algebraic manipulation we get



      $$smallbegin{align}
      mathfrak{I}&=8left[-sum_{n=1}^{infty}frac{(-1)^n}{n}left(frac{pi}{8n}sinleft(nfrac{pi}2right)-frac1{(2n)^2}right)+sum_{n=1}^{infty}frac{1}{n}left(frac{pi}{8n}sinleft(nfrac{pi}2right)-frac1{(2n)^2}right)right]\
      &=2left[sum_{n=1}^{infty}frac{(-1)^n}{n^3}-sum_{n=1}^{infty}frac{1}{n^3}right]+pileft[sum_{n=1}^{infty}frac{1}{n^2}sinleft(nfrac{pi}2right)-sum_{n=1}^{infty}frac{(-1)^n}{n^2}sinleft(nfrac{pi}2right)right]
      end{align}$$



      The first terms can be evaluated in terms of the Riemann Zeta Function $zeta(s)$ and the Dirichlet Eta Function $eta(s)$ whereas for the second term we have to consider some basic properties of the Sine function. For $ninmathbb{N}>0$ the function $sinleft(nfrac{pi}2right)$ will be zero for all even $n$ and $-1$ and $1$ respectively for odd $n$ starting with $sinleft(frac{pi}2right)=1$ for $n=1$. Therefore all even terms vanish while the odd ones will remain with a oscillating negative sign. This leads to



      $$smallbegin{align}
      mathfrak{I}&=2left[sum_{n=1}^{infty}frac{(-1)^n}{n^3}-sum_{n=1}^{infty}frac{1}{n^3}right]+pileft[sum_{n=1}^{infty}frac{1}{n^2}sinleft(nfrac{pi}2right)-sum_{n=1}^{infty}frac{(-1)^n}{n^2}sinleft(nfrac{pi}2right)right]\
      &=2[-eta(3)-zeta(3)]+pileft[sum_{n=0}^{infty}frac{1}{(2n+1)^2}(-1)^n-sum_{n=0}^{infty}frac{(-1)^{2n+1}}{(2n+1)^2}(-1)^nright]\
      &=-2[(1-2^{-2})zeta(3)+zeta(3)]+2pisum_{n=0}^{infty}frac{(-1)^n}{(2n+1)^2}\
      Leftrightarrowmathfrak{I}&=-frac72zeta(3)+2pi G
      end{align}$$



      where within the last step the functional relation between the Riemann Zeta Function and the Dirichlet Eta Function aswell as the series defintions of Catalan's Constant $G$ where used.






      share|cite|improve this answer






























        up vote
        1
        down vote













        We can adapt the formula derived in $(2)$ of this answer:
        $$
        log(2cos(x/2))=sum_{k=1}^inftyfrac{(-1)^{k-1}}kcos(kx)tag{1a}
        $$

        Substituting $xmapstopi-x$ in $text{(1a)}$, we get
        $$
        log(2sin(x/2))=sum_{k=1}^inftyfrac{-1}kcos(kx)tag{1b}
        $$

        Subtracting $text{(1a)}$ from $text{(1b)}$, the even terms cancel and we get
        $$
        bbox[5px,border:2px solid #C0A000]{log(tan(x/2))=sum_{k=0}^inftyfrac{-2}{2k+1}cos((2k+1)x)}tag2
        $$





        Therefore,
        $$
        begin{align}
        int_0^{pi/2}frac{x^2}{sin(x)},mathrm{d}x
        &=int_0^{pi/2}x^2,mathrm{d}log(tan(x/2))tag3\
        &=-2int_0^{pi/2}xlog(tan(x/2)),mathrm{d}xtag4\
        &=sum_{k=0}^inftyfrac4{2k+1}int_0^{pi/2}xcos((2k+1)x),mathrm{d}xtag5\
        &=sum_{k=0}^inftyfrac4{(2k+1)^2}int_0^{pi/2}x,mathrm{d}sin((2k+1)x)tag6\
        &=sum_{k=0}^inftyfrac4{(2k+1)^2}left[xsin((2k+1)x)+frac{cos((2k+1)x)}{2k+1}right]_0^{pi/2}tag7\
        &=sum_{k=0}^inftyfrac4{(2k+1)^2}left[fracpi2(-1)^k-frac1{2k+1}right]tag8\
        &=bbox[5px,border:2px solid #C0A000]{2pimathrm{G}-frac72zeta(3)}tag9
        end{align}
        $$

        Explanation:
        $(3)$: prepare to integrate by parts
        $(4)$: integrate by parts
        $(5)$: apply $(2)$
        $(6)$: prepare to integrate by parts
        $(7)$: integrate by parts
        $(8)$: apply the limits of integration
        $(9)$: evaluate, where $mathrm{G}$ is Catalan's Constant






        share|cite|improve this answer























          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2714146%2fevaluate-int-0-frac-pi2-fracx2-sin-xdx%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          7 Answers
          7






          active

          oldest

          votes








          7 Answers
          7






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          3
          down vote



          accepted










          At the price of special functions, the antiderivative could be computed
          $$I=intfrac{x^2}{ sin x},dx=-4 i x text{Li}_2left(e^{i x}right)+i x text{Li}_2left(e^{2 i x}right)+4
          text{Li}_3left(e^{i x}right)-frac{1}{2} text{Li}_3left(e^{2 i x}right)-2
          x^2 tanh ^{-1}left(e^{i x}right)$$ where appear the polylogarithm functions.



          $$lim_{xto frac{pi }{2}} , I=2 pi Cqquad text{and} qquadlim_{xto 0} , I=frac{7 }{2}zeta (3)implies int_{0}^{frac{pi}{2}}frac{x^2}{ sin x}dx=2 pi C-frac{7 }{2}zeta (3)$$ as given by Wolfram Alpha. This evaluates a $approx 1.54798$.



          For a fast approximation, we could use the superb approximation $$sin(x) simeq frac{16 (pi -x) x}{5 pi ^2-4 (pi -x) x}qquad (0leq xleqpi)$$ which was proposed by Mahabhaskariya of Bhaskara I, a seventh-century Indian mathematician (have a look here).
          This would make
          $$I approx J= - int left(frac{x^2}{4}+frac{5 pi ^3}{16 (x-pi )}+frac{5 pi ^2}{16} right),dx=-frac{x^3}{12}-frac{5 pi ^2 x}{16}-frac{5}{16} pi ^3 log (pi -x)+frac{19
          pi ^3}{48}$$
          $$lim_{xto frac{pi }{2}} , J=frac{pi ^3}{48} left(11-15 log left(frac{pi }{2}right)right)qquad text{and} qquadlim_{xto 0} , J
          =frac{pi ^3}{48} (19-15 log (pi ))$$ leading to the approximation
          $$int_{0}^{frac{pi}{2}}frac{x^2}{ sin x}dxapprox frac{pi ^3}{48} (15 log (2)-8)approx 1.54851$$ which is not too bad.



          Tha advantage of such approximation is that it allows a fast evaluation of
          $$K(t)=int_{0}^{t}frac{x^2}{ sin x}dx$$ The table below compares the approximation to the exact result
          $$left(
          begin{array}{ccc}
          t & text{approximation} & text{exact} \
          frac{pi }{20} & 0.01221 & 0.01236 \
          frac{pi }{10} & 0.04936 & 0.04976 \
          frac{3 pi }{20} & 0.11258 & 0.11312 \
          frac{pi }{5} & 0.20358 & 0.20409 \
          frac{pi }{4} & 0.32475 & 0.32508 \
          frac{3 pi }{10} & 0.47939 & 0.47945 \
          frac{7 pi }{20} & 0.67196 & 0.67176 \
          frac{2 pi }{5} & 0.90847 & 0.90807 \
          frac{9 pi }{20} & 1.19701 & 1.19650 \
          frac{pi }{2} & 1.54851 & 1.54798 \
          frac{11 pi }{20} & 1.97802 & 1.97746 \
          frac{3 pi }{5} & 2.50657 & 2.50583 \
          frac{13 pi }{20} & 3.16447 & 3.16315 \
          frac{7 pi }{10} & 3.99696 & 3.99445 \
          frac{3 pi }{4} & 5.07529 & 5.07091 \
          frac{4 pi }{5} & 6.52008 & 6.51359 \
          frac{17 pi }{20} & 8.55922 & 8.55230 \
          frac{9 pi }{10} & 11.7067 & 11.7077 \
          frac{19 pi }{20} & 17.6067 & 17.6510
          end{array}
          right)$$






          share|cite|improve this answer























          • Thank you for your link ,thats very interesting!
            – FofX
            Mar 30 at 6:17






          • 1




            One may also accelerate the series $$ sum_{ngeq 1}frac{16^n}{4n^3 binom{2n}{n}^2} $$ to derive accurate numerical approximations of $I$.
            – Jack D'Aurizio
            Mar 30 at 14:30















          up vote
          3
          down vote



          accepted










          At the price of special functions, the antiderivative could be computed
          $$I=intfrac{x^2}{ sin x},dx=-4 i x text{Li}_2left(e^{i x}right)+i x text{Li}_2left(e^{2 i x}right)+4
          text{Li}_3left(e^{i x}right)-frac{1}{2} text{Li}_3left(e^{2 i x}right)-2
          x^2 tanh ^{-1}left(e^{i x}right)$$ where appear the polylogarithm functions.



          $$lim_{xto frac{pi }{2}} , I=2 pi Cqquad text{and} qquadlim_{xto 0} , I=frac{7 }{2}zeta (3)implies int_{0}^{frac{pi}{2}}frac{x^2}{ sin x}dx=2 pi C-frac{7 }{2}zeta (3)$$ as given by Wolfram Alpha. This evaluates a $approx 1.54798$.



          For a fast approximation, we could use the superb approximation $$sin(x) simeq frac{16 (pi -x) x}{5 pi ^2-4 (pi -x) x}qquad (0leq xleqpi)$$ which was proposed by Mahabhaskariya of Bhaskara I, a seventh-century Indian mathematician (have a look here).
          This would make
          $$I approx J= - int left(frac{x^2}{4}+frac{5 pi ^3}{16 (x-pi )}+frac{5 pi ^2}{16} right),dx=-frac{x^3}{12}-frac{5 pi ^2 x}{16}-frac{5}{16} pi ^3 log (pi -x)+frac{19
          pi ^3}{48}$$
          $$lim_{xto frac{pi }{2}} , J=frac{pi ^3}{48} left(11-15 log left(frac{pi }{2}right)right)qquad text{and} qquadlim_{xto 0} , J
          =frac{pi ^3}{48} (19-15 log (pi ))$$ leading to the approximation
          $$int_{0}^{frac{pi}{2}}frac{x^2}{ sin x}dxapprox frac{pi ^3}{48} (15 log (2)-8)approx 1.54851$$ which is not too bad.



          Tha advantage of such approximation is that it allows a fast evaluation of
          $$K(t)=int_{0}^{t}frac{x^2}{ sin x}dx$$ The table below compares the approximation to the exact result
          $$left(
          begin{array}{ccc}
          t & text{approximation} & text{exact} \
          frac{pi }{20} & 0.01221 & 0.01236 \
          frac{pi }{10} & 0.04936 & 0.04976 \
          frac{3 pi }{20} & 0.11258 & 0.11312 \
          frac{pi }{5} & 0.20358 & 0.20409 \
          frac{pi }{4} & 0.32475 & 0.32508 \
          frac{3 pi }{10} & 0.47939 & 0.47945 \
          frac{7 pi }{20} & 0.67196 & 0.67176 \
          frac{2 pi }{5} & 0.90847 & 0.90807 \
          frac{9 pi }{20} & 1.19701 & 1.19650 \
          frac{pi }{2} & 1.54851 & 1.54798 \
          frac{11 pi }{20} & 1.97802 & 1.97746 \
          frac{3 pi }{5} & 2.50657 & 2.50583 \
          frac{13 pi }{20} & 3.16447 & 3.16315 \
          frac{7 pi }{10} & 3.99696 & 3.99445 \
          frac{3 pi }{4} & 5.07529 & 5.07091 \
          frac{4 pi }{5} & 6.52008 & 6.51359 \
          frac{17 pi }{20} & 8.55922 & 8.55230 \
          frac{9 pi }{10} & 11.7067 & 11.7077 \
          frac{19 pi }{20} & 17.6067 & 17.6510
          end{array}
          right)$$






          share|cite|improve this answer























          • Thank you for your link ,thats very interesting!
            – FofX
            Mar 30 at 6:17






          • 1




            One may also accelerate the series $$ sum_{ngeq 1}frac{16^n}{4n^3 binom{2n}{n}^2} $$ to derive accurate numerical approximations of $I$.
            – Jack D'Aurizio
            Mar 30 at 14:30













          up vote
          3
          down vote



          accepted







          up vote
          3
          down vote



          accepted






          At the price of special functions, the antiderivative could be computed
          $$I=intfrac{x^2}{ sin x},dx=-4 i x text{Li}_2left(e^{i x}right)+i x text{Li}_2left(e^{2 i x}right)+4
          text{Li}_3left(e^{i x}right)-frac{1}{2} text{Li}_3left(e^{2 i x}right)-2
          x^2 tanh ^{-1}left(e^{i x}right)$$ where appear the polylogarithm functions.



          $$lim_{xto frac{pi }{2}} , I=2 pi Cqquad text{and} qquadlim_{xto 0} , I=frac{7 }{2}zeta (3)implies int_{0}^{frac{pi}{2}}frac{x^2}{ sin x}dx=2 pi C-frac{7 }{2}zeta (3)$$ as given by Wolfram Alpha. This evaluates a $approx 1.54798$.



          For a fast approximation, we could use the superb approximation $$sin(x) simeq frac{16 (pi -x) x}{5 pi ^2-4 (pi -x) x}qquad (0leq xleqpi)$$ which was proposed by Mahabhaskariya of Bhaskara I, a seventh-century Indian mathematician (have a look here).
          This would make
          $$I approx J= - int left(frac{x^2}{4}+frac{5 pi ^3}{16 (x-pi )}+frac{5 pi ^2}{16} right),dx=-frac{x^3}{12}-frac{5 pi ^2 x}{16}-frac{5}{16} pi ^3 log (pi -x)+frac{19
          pi ^3}{48}$$
          $$lim_{xto frac{pi }{2}} , J=frac{pi ^3}{48} left(11-15 log left(frac{pi }{2}right)right)qquad text{and} qquadlim_{xto 0} , J
          =frac{pi ^3}{48} (19-15 log (pi ))$$ leading to the approximation
          $$int_{0}^{frac{pi}{2}}frac{x^2}{ sin x}dxapprox frac{pi ^3}{48} (15 log (2)-8)approx 1.54851$$ which is not too bad.



          Tha advantage of such approximation is that it allows a fast evaluation of
          $$K(t)=int_{0}^{t}frac{x^2}{ sin x}dx$$ The table below compares the approximation to the exact result
          $$left(
          begin{array}{ccc}
          t & text{approximation} & text{exact} \
          frac{pi }{20} & 0.01221 & 0.01236 \
          frac{pi }{10} & 0.04936 & 0.04976 \
          frac{3 pi }{20} & 0.11258 & 0.11312 \
          frac{pi }{5} & 0.20358 & 0.20409 \
          frac{pi }{4} & 0.32475 & 0.32508 \
          frac{3 pi }{10} & 0.47939 & 0.47945 \
          frac{7 pi }{20} & 0.67196 & 0.67176 \
          frac{2 pi }{5} & 0.90847 & 0.90807 \
          frac{9 pi }{20} & 1.19701 & 1.19650 \
          frac{pi }{2} & 1.54851 & 1.54798 \
          frac{11 pi }{20} & 1.97802 & 1.97746 \
          frac{3 pi }{5} & 2.50657 & 2.50583 \
          frac{13 pi }{20} & 3.16447 & 3.16315 \
          frac{7 pi }{10} & 3.99696 & 3.99445 \
          frac{3 pi }{4} & 5.07529 & 5.07091 \
          frac{4 pi }{5} & 6.52008 & 6.51359 \
          frac{17 pi }{20} & 8.55922 & 8.55230 \
          frac{9 pi }{10} & 11.7067 & 11.7077 \
          frac{19 pi }{20} & 17.6067 & 17.6510
          end{array}
          right)$$






          share|cite|improve this answer














          At the price of special functions, the antiderivative could be computed
          $$I=intfrac{x^2}{ sin x},dx=-4 i x text{Li}_2left(e^{i x}right)+i x text{Li}_2left(e^{2 i x}right)+4
          text{Li}_3left(e^{i x}right)-frac{1}{2} text{Li}_3left(e^{2 i x}right)-2
          x^2 tanh ^{-1}left(e^{i x}right)$$ where appear the polylogarithm functions.



          $$lim_{xto frac{pi }{2}} , I=2 pi Cqquad text{and} qquadlim_{xto 0} , I=frac{7 }{2}zeta (3)implies int_{0}^{frac{pi}{2}}frac{x^2}{ sin x}dx=2 pi C-frac{7 }{2}zeta (3)$$ as given by Wolfram Alpha. This evaluates a $approx 1.54798$.



          For a fast approximation, we could use the superb approximation $$sin(x) simeq frac{16 (pi -x) x}{5 pi ^2-4 (pi -x) x}qquad (0leq xleqpi)$$ which was proposed by Mahabhaskariya of Bhaskara I, a seventh-century Indian mathematician (have a look here).
          This would make
          $$I approx J= - int left(frac{x^2}{4}+frac{5 pi ^3}{16 (x-pi )}+frac{5 pi ^2}{16} right),dx=-frac{x^3}{12}-frac{5 pi ^2 x}{16}-frac{5}{16} pi ^3 log (pi -x)+frac{19
          pi ^3}{48}$$
          $$lim_{xto frac{pi }{2}} , J=frac{pi ^3}{48} left(11-15 log left(frac{pi }{2}right)right)qquad text{and} qquadlim_{xto 0} , J
          =frac{pi ^3}{48} (19-15 log (pi ))$$ leading to the approximation
          $$int_{0}^{frac{pi}{2}}frac{x^2}{ sin x}dxapprox frac{pi ^3}{48} (15 log (2)-8)approx 1.54851$$ which is not too bad.



          Tha advantage of such approximation is that it allows a fast evaluation of
          $$K(t)=int_{0}^{t}frac{x^2}{ sin x}dx$$ The table below compares the approximation to the exact result
          $$left(
          begin{array}{ccc}
          t & text{approximation} & text{exact} \
          frac{pi }{20} & 0.01221 & 0.01236 \
          frac{pi }{10} & 0.04936 & 0.04976 \
          frac{3 pi }{20} & 0.11258 & 0.11312 \
          frac{pi }{5} & 0.20358 & 0.20409 \
          frac{pi }{4} & 0.32475 & 0.32508 \
          frac{3 pi }{10} & 0.47939 & 0.47945 \
          frac{7 pi }{20} & 0.67196 & 0.67176 \
          frac{2 pi }{5} & 0.90847 & 0.90807 \
          frac{9 pi }{20} & 1.19701 & 1.19650 \
          frac{pi }{2} & 1.54851 & 1.54798 \
          frac{11 pi }{20} & 1.97802 & 1.97746 \
          frac{3 pi }{5} & 2.50657 & 2.50583 \
          frac{13 pi }{20} & 3.16447 & 3.16315 \
          frac{7 pi }{10} & 3.99696 & 3.99445 \
          frac{3 pi }{4} & 5.07529 & 5.07091 \
          frac{4 pi }{5} & 6.52008 & 6.51359 \
          frac{17 pi }{20} & 8.55922 & 8.55230 \
          frac{9 pi }{10} & 11.7067 & 11.7077 \
          frac{19 pi }{20} & 17.6067 & 17.6510
          end{array}
          right)$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Mar 30 at 5:11

























          answered Mar 30 at 4:47









          Claude Leibovici

          116k1156131




          116k1156131












          • Thank you for your link ,thats very interesting!
            – FofX
            Mar 30 at 6:17






          • 1




            One may also accelerate the series $$ sum_{ngeq 1}frac{16^n}{4n^3 binom{2n}{n}^2} $$ to derive accurate numerical approximations of $I$.
            – Jack D'Aurizio
            Mar 30 at 14:30


















          • Thank you for your link ,thats very interesting!
            – FofX
            Mar 30 at 6:17






          • 1




            One may also accelerate the series $$ sum_{ngeq 1}frac{16^n}{4n^3 binom{2n}{n}^2} $$ to derive accurate numerical approximations of $I$.
            – Jack D'Aurizio
            Mar 30 at 14:30
















          Thank you for your link ,thats very interesting!
          – FofX
          Mar 30 at 6:17




          Thank you for your link ,thats very interesting!
          – FofX
          Mar 30 at 6:17




          1




          1




          One may also accelerate the series $$ sum_{ngeq 1}frac{16^n}{4n^3 binom{2n}{n}^2} $$ to derive accurate numerical approximations of $I$.
          – Jack D'Aurizio
          Mar 30 at 14:30




          One may also accelerate the series $$ sum_{ngeq 1}frac{16^n}{4n^3 binom{2n}{n}^2} $$ to derive accurate numerical approximations of $I$.
          – Jack D'Aurizio
          Mar 30 at 14:30










          up vote
          3
          down vote













          $$mathcal{J}=int_{0}^{pi/2}frac{x^2}{sin x},dx = int_{0}^{1}frac{arcsin^2(x)}{xsqrt{1-x^2}},dx=sum_{ngeq 1}frac{2^{2n-1}}{n^2binom{2n}{n}}int_{0}^{1}frac{x^{2n-1}}{sqrt{1-x^2}},dx tag{1}$$
          by the Maclaurin series of $arcsin^2(x)$. Euler's Beta function then leads to
          $$ mathcal{J}=sum_{ngeq 1}frac{16^n}{4n^3 binom{2n}{n}^2}=phantom{}_4 F_3left(1,1,1,1;tfrac{3}{2},tfrac{3}{2},2;1right)tag{2} $$
          where the RHS is a manageable hypergeometric function (similar objects are evaluated both here and here) and as already shown by Claude Leibovici, $mathcal{J}=4int_{0}^{1}frac{arctan^2(u)}{u},du $ is simply given by a combination of a dilogarithm and a trilogarithm. Indeed
          $$ int_{0}^{pi/2}int_{0}^{theta}frac{u}{sin u},du,dtheta =-pi G+frac{7}{2}zeta(3)tag{3}$$
          leading to $mathcal{J}=2pi G-frac{7}{2}zeta(3)$, has already been a key lemma in this historical thread.

          An alternative way for proving this identity is just to write $frac{x}{sin x}$ and $|x|$ as Fourier cosine series.

          The Shafer-Fink inequality leads to
          $$ int_{0}^{pi/2}frac{x^2}{sin x},dx = 4 int_{0}^{1}frac{arctan^2(u)}{u},du approx frac{6}{7}(3sqrt{2}-5)+9logleft(frac{2sqrt{2}+1}{3}right)approx 1.54.tag{4}$$






          share|cite|improve this answer























          • @ Wow, thank you for your detailed play. I learned a lot.
            – FofX
            Mar 31 at 3:55















          up vote
          3
          down vote













          $$mathcal{J}=int_{0}^{pi/2}frac{x^2}{sin x},dx = int_{0}^{1}frac{arcsin^2(x)}{xsqrt{1-x^2}},dx=sum_{ngeq 1}frac{2^{2n-1}}{n^2binom{2n}{n}}int_{0}^{1}frac{x^{2n-1}}{sqrt{1-x^2}},dx tag{1}$$
          by the Maclaurin series of $arcsin^2(x)$. Euler's Beta function then leads to
          $$ mathcal{J}=sum_{ngeq 1}frac{16^n}{4n^3 binom{2n}{n}^2}=phantom{}_4 F_3left(1,1,1,1;tfrac{3}{2},tfrac{3}{2},2;1right)tag{2} $$
          where the RHS is a manageable hypergeometric function (similar objects are evaluated both here and here) and as already shown by Claude Leibovici, $mathcal{J}=4int_{0}^{1}frac{arctan^2(u)}{u},du $ is simply given by a combination of a dilogarithm and a trilogarithm. Indeed
          $$ int_{0}^{pi/2}int_{0}^{theta}frac{u}{sin u},du,dtheta =-pi G+frac{7}{2}zeta(3)tag{3}$$
          leading to $mathcal{J}=2pi G-frac{7}{2}zeta(3)$, has already been a key lemma in this historical thread.

          An alternative way for proving this identity is just to write $frac{x}{sin x}$ and $|x|$ as Fourier cosine series.

          The Shafer-Fink inequality leads to
          $$ int_{0}^{pi/2}frac{x^2}{sin x},dx = 4 int_{0}^{1}frac{arctan^2(u)}{u},du approx frac{6}{7}(3sqrt{2}-5)+9logleft(frac{2sqrt{2}+1}{3}right)approx 1.54.tag{4}$$






          share|cite|improve this answer























          • @ Wow, thank you for your detailed play. I learned a lot.
            – FofX
            Mar 31 at 3:55













          up vote
          3
          down vote










          up vote
          3
          down vote









          $$mathcal{J}=int_{0}^{pi/2}frac{x^2}{sin x},dx = int_{0}^{1}frac{arcsin^2(x)}{xsqrt{1-x^2}},dx=sum_{ngeq 1}frac{2^{2n-1}}{n^2binom{2n}{n}}int_{0}^{1}frac{x^{2n-1}}{sqrt{1-x^2}},dx tag{1}$$
          by the Maclaurin series of $arcsin^2(x)$. Euler's Beta function then leads to
          $$ mathcal{J}=sum_{ngeq 1}frac{16^n}{4n^3 binom{2n}{n}^2}=phantom{}_4 F_3left(1,1,1,1;tfrac{3}{2},tfrac{3}{2},2;1right)tag{2} $$
          where the RHS is a manageable hypergeometric function (similar objects are evaluated both here and here) and as already shown by Claude Leibovici, $mathcal{J}=4int_{0}^{1}frac{arctan^2(u)}{u},du $ is simply given by a combination of a dilogarithm and a trilogarithm. Indeed
          $$ int_{0}^{pi/2}int_{0}^{theta}frac{u}{sin u},du,dtheta =-pi G+frac{7}{2}zeta(3)tag{3}$$
          leading to $mathcal{J}=2pi G-frac{7}{2}zeta(3)$, has already been a key lemma in this historical thread.

          An alternative way for proving this identity is just to write $frac{x}{sin x}$ and $|x|$ as Fourier cosine series.

          The Shafer-Fink inequality leads to
          $$ int_{0}^{pi/2}frac{x^2}{sin x},dx = 4 int_{0}^{1}frac{arctan^2(u)}{u},du approx frac{6}{7}(3sqrt{2}-5)+9logleft(frac{2sqrt{2}+1}{3}right)approx 1.54.tag{4}$$






          share|cite|improve this answer














          $$mathcal{J}=int_{0}^{pi/2}frac{x^2}{sin x},dx = int_{0}^{1}frac{arcsin^2(x)}{xsqrt{1-x^2}},dx=sum_{ngeq 1}frac{2^{2n-1}}{n^2binom{2n}{n}}int_{0}^{1}frac{x^{2n-1}}{sqrt{1-x^2}},dx tag{1}$$
          by the Maclaurin series of $arcsin^2(x)$. Euler's Beta function then leads to
          $$ mathcal{J}=sum_{ngeq 1}frac{16^n}{4n^3 binom{2n}{n}^2}=phantom{}_4 F_3left(1,1,1,1;tfrac{3}{2},tfrac{3}{2},2;1right)tag{2} $$
          where the RHS is a manageable hypergeometric function (similar objects are evaluated both here and here) and as already shown by Claude Leibovici, $mathcal{J}=4int_{0}^{1}frac{arctan^2(u)}{u},du $ is simply given by a combination of a dilogarithm and a trilogarithm. Indeed
          $$ int_{0}^{pi/2}int_{0}^{theta}frac{u}{sin u},du,dtheta =-pi G+frac{7}{2}zeta(3)tag{3}$$
          leading to $mathcal{J}=2pi G-frac{7}{2}zeta(3)$, has already been a key lemma in this historical thread.

          An alternative way for proving this identity is just to write $frac{x}{sin x}$ and $|x|$ as Fourier cosine series.

          The Shafer-Fink inequality leads to
          $$ int_{0}^{pi/2}frac{x^2}{sin x},dx = 4 int_{0}^{1}frac{arctan^2(u)}{u},du approx frac{6}{7}(3sqrt{2}-5)+9logleft(frac{2sqrt{2}+1}{3}right)approx 1.54.tag{4}$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Mar 30 at 14:48

























          answered Mar 30 at 14:22









          Jack D'Aurizio

          283k33275653




          283k33275653












          • @ Wow, thank you for your detailed play. I learned a lot.
            – FofX
            Mar 31 at 3:55


















          • @ Wow, thank you for your detailed play. I learned a lot.
            – FofX
            Mar 31 at 3:55
















          @ Wow, thank you for your detailed play. I learned a lot.
          – FofX
          Mar 31 at 3:55




          @ Wow, thank you for your detailed play. I learned a lot.
          – FofX
          Mar 31 at 3:55










          up vote
          3
          down vote













          $begin{align}
          J&=int_{0}^{pi/2}frac{x^2}{sin x},dx&
          end{align}$



          Perform the change of variable,



          $displaystyle y=tanleft(frac{x}{2}right)$,



          $begin{align}
          J&=4int_0^1 frac{arctan^2 x}{x},dx\
          &=4Big[ln xarctan ^2 xBig]_0^1-8int_0^1 frac{arctan xln x}{1+x^2},dx\
          &=-8int_0^1 frac{arctan xln x}{1+x^2},dx\
          end{align}$



          For $xin [0;1]$, define $F$,



          $begin{align} F(x)&=int_0^x frac{ln t}{1+t^2},dt\
          &=int_0^1 frac{xln(xt)}{1+x^2t^2},dt
          end{align}$



          Observe that,



          $displaystyle F(0)=0$ and, $displaystyle F(1)=-text{G}$.



          $text{G}$ is the Catalan constant.



          $begin{align}J&=-8Big[F(x)arctan xBig]_0^1+8int_0^1 int_0^1 frac{xln(tx)}{(1+t^2x^2)(1+x^2)},dt,dx\
          &=2Gpi+8int_0^1 int_0^1 frac{xln x}{(1+t^2x^2)(1+x^2)},dt,dx+8int_0^1 int_0^1 frac{xln t}{(1+t^2x^2)(1+x^2)},dt,dx\
          &=2Gpi+8int_0^1 Big[frac{arctan(tx)ln x}{1+x^2}Big]_{t=0}^{t=1},dx+4int_0^1 Big[frac{(ln(1+t^2x^2)-ln(1+x^2))ln t}{t^2-1}Big]_{x=0}^{x=1},dt\
          &=2Gpi+8int_0^1 frac{arctan xln x}{1+x^2},dx+4int_0^1 frac{(ln(1+t^2)-ln 2)ln t }{t^2-1},dt\
          &=2Gpi-J+4int_0^1 frac{(ln 2-ln(1+t^2))ln t }{1-t^2},dt\
          end{align}$



          Therefore,



          $displaystyle J=text{G}pi+2int_0^1 frac{(ln 2-ln(1+x^2))ln x }{1-x^2},dx$



          For $xin[0;1]$, define,



          $begin{align}H(x)&=int_0^x frac{ln t}{1-t^2},dt\
          &=int_0^1 frac{xln(tx)}{1-t^2x^2},dt\
          end{align}$



          Observe that,



          $displaystyle H(0)=0$ and $displaystyle H(1)=-frac{pi^2}{8}$.



          $begin{align}J&=text{G}pi+2Big[(ln 2-ln(1+x^2))H(x)Big]_0^1+4int_0^1int_0^1frac{x^2ln(tx)}{(1+x^2)(1-t^2x^2)},dt,dx\
          &=text{G}pi+4int_0^1int_0^1frac{x^2ln(tx)}{(1+x^2)(1-t^2x^2)},dt,dx\
          &=text{G}pi+4int_0^1int_0^1frac{x^2ln t}{(1+x^2)(1-t^2x^2)},dt,dx+4int_0^1int_0^1frac{x^2ln x}{(1+x^2)(1-t^2x^2)},dt,dx\
          &=text{G}pi+4int_0^1Big[frac{ln t}{1+t^2}left(frac{ln(1+tx)}{2t}-frac{ln(1-tx)}{2t}-arctan xright)Big]_{x=0}^{x=1},dt+\
          &2int_0^1 Big[frac{xln x}{1+x^2}lnleft(frac{1+tx}{1-tx}right)Big]_{t=0}^{t=1},dx\
          &=text{G}pi+2int_0^1 frac{ln t}{t(1+t^2)}lnleft(frac{1+t}{1-t}right),dt-piint_0^1 frac{ln t}{1+t^2},dt+2int_0^1 frac{xln x}{1+x^2}lnleft(frac{1+x}{1-x}right),dx\
          &=2text{G}pi+2int_0^1 frac{ln x}{x}lnleft(frac{1+x}{1-x}right),dx\
          end{align}$



          But, for $0leq x<1$,



          $displaystyle frac{1}{x}lnleft(frac{1+x}{1-x}right)=2sum_{n=0}^{infty}frac{x^{2n}}{2n+1}$



          Therefore,



          $begin{align}int_0^1 frac{ln x}{x}lnleft(frac{1+x}{1-x}right),dx&=2int_0^1 left(sum_{n=0}^{infty}frac{x^{2n}}{2n+1}right)ln x,dx\
          &=2 sum_{n=0}^{infty}int_0^1 frac{x^{2n}ln x}{2n+1},dx\
          &=-2sum_{n=0}^{infty}frac{1}{(2n+1)^3}\
          &=-2left(sum_{n=1}^{infty} frac{1}{n^3}-sum_{n=1}^{infty} frac{1}{(2n)^3}right)\
          &=-2left(zeta(3)-frac{1}{8}zeta(3)right)\
          &=-frac{7}{4}zeta(3)\
          end{align}$



          Therefore,



          $ boxed{J=2text{G}pi-frac{7}{2}zeta(3)}$






          share|cite|improve this answer

























            up vote
            3
            down vote













            $begin{align}
            J&=int_{0}^{pi/2}frac{x^2}{sin x},dx&
            end{align}$



            Perform the change of variable,



            $displaystyle y=tanleft(frac{x}{2}right)$,



            $begin{align}
            J&=4int_0^1 frac{arctan^2 x}{x},dx\
            &=4Big[ln xarctan ^2 xBig]_0^1-8int_0^1 frac{arctan xln x}{1+x^2},dx\
            &=-8int_0^1 frac{arctan xln x}{1+x^2},dx\
            end{align}$



            For $xin [0;1]$, define $F$,



            $begin{align} F(x)&=int_0^x frac{ln t}{1+t^2},dt\
            &=int_0^1 frac{xln(xt)}{1+x^2t^2},dt
            end{align}$



            Observe that,



            $displaystyle F(0)=0$ and, $displaystyle F(1)=-text{G}$.



            $text{G}$ is the Catalan constant.



            $begin{align}J&=-8Big[F(x)arctan xBig]_0^1+8int_0^1 int_0^1 frac{xln(tx)}{(1+t^2x^2)(1+x^2)},dt,dx\
            &=2Gpi+8int_0^1 int_0^1 frac{xln x}{(1+t^2x^2)(1+x^2)},dt,dx+8int_0^1 int_0^1 frac{xln t}{(1+t^2x^2)(1+x^2)},dt,dx\
            &=2Gpi+8int_0^1 Big[frac{arctan(tx)ln x}{1+x^2}Big]_{t=0}^{t=1},dx+4int_0^1 Big[frac{(ln(1+t^2x^2)-ln(1+x^2))ln t}{t^2-1}Big]_{x=0}^{x=1},dt\
            &=2Gpi+8int_0^1 frac{arctan xln x}{1+x^2},dx+4int_0^1 frac{(ln(1+t^2)-ln 2)ln t }{t^2-1},dt\
            &=2Gpi-J+4int_0^1 frac{(ln 2-ln(1+t^2))ln t }{1-t^2},dt\
            end{align}$



            Therefore,



            $displaystyle J=text{G}pi+2int_0^1 frac{(ln 2-ln(1+x^2))ln x }{1-x^2},dx$



            For $xin[0;1]$, define,



            $begin{align}H(x)&=int_0^x frac{ln t}{1-t^2},dt\
            &=int_0^1 frac{xln(tx)}{1-t^2x^2},dt\
            end{align}$



            Observe that,



            $displaystyle H(0)=0$ and $displaystyle H(1)=-frac{pi^2}{8}$.



            $begin{align}J&=text{G}pi+2Big[(ln 2-ln(1+x^2))H(x)Big]_0^1+4int_0^1int_0^1frac{x^2ln(tx)}{(1+x^2)(1-t^2x^2)},dt,dx\
            &=text{G}pi+4int_0^1int_0^1frac{x^2ln(tx)}{(1+x^2)(1-t^2x^2)},dt,dx\
            &=text{G}pi+4int_0^1int_0^1frac{x^2ln t}{(1+x^2)(1-t^2x^2)},dt,dx+4int_0^1int_0^1frac{x^2ln x}{(1+x^2)(1-t^2x^2)},dt,dx\
            &=text{G}pi+4int_0^1Big[frac{ln t}{1+t^2}left(frac{ln(1+tx)}{2t}-frac{ln(1-tx)}{2t}-arctan xright)Big]_{x=0}^{x=1},dt+\
            &2int_0^1 Big[frac{xln x}{1+x^2}lnleft(frac{1+tx}{1-tx}right)Big]_{t=0}^{t=1},dx\
            &=text{G}pi+2int_0^1 frac{ln t}{t(1+t^2)}lnleft(frac{1+t}{1-t}right),dt-piint_0^1 frac{ln t}{1+t^2},dt+2int_0^1 frac{xln x}{1+x^2}lnleft(frac{1+x}{1-x}right),dx\
            &=2text{G}pi+2int_0^1 frac{ln x}{x}lnleft(frac{1+x}{1-x}right),dx\
            end{align}$



            But, for $0leq x<1$,



            $displaystyle frac{1}{x}lnleft(frac{1+x}{1-x}right)=2sum_{n=0}^{infty}frac{x^{2n}}{2n+1}$



            Therefore,



            $begin{align}int_0^1 frac{ln x}{x}lnleft(frac{1+x}{1-x}right),dx&=2int_0^1 left(sum_{n=0}^{infty}frac{x^{2n}}{2n+1}right)ln x,dx\
            &=2 sum_{n=0}^{infty}int_0^1 frac{x^{2n}ln x}{2n+1},dx\
            &=-2sum_{n=0}^{infty}frac{1}{(2n+1)^3}\
            &=-2left(sum_{n=1}^{infty} frac{1}{n^3}-sum_{n=1}^{infty} frac{1}{(2n)^3}right)\
            &=-2left(zeta(3)-frac{1}{8}zeta(3)right)\
            &=-frac{7}{4}zeta(3)\
            end{align}$



            Therefore,



            $ boxed{J=2text{G}pi-frac{7}{2}zeta(3)}$






            share|cite|improve this answer























              up vote
              3
              down vote










              up vote
              3
              down vote









              $begin{align}
              J&=int_{0}^{pi/2}frac{x^2}{sin x},dx&
              end{align}$



              Perform the change of variable,



              $displaystyle y=tanleft(frac{x}{2}right)$,



              $begin{align}
              J&=4int_0^1 frac{arctan^2 x}{x},dx\
              &=4Big[ln xarctan ^2 xBig]_0^1-8int_0^1 frac{arctan xln x}{1+x^2},dx\
              &=-8int_0^1 frac{arctan xln x}{1+x^2},dx\
              end{align}$



              For $xin [0;1]$, define $F$,



              $begin{align} F(x)&=int_0^x frac{ln t}{1+t^2},dt\
              &=int_0^1 frac{xln(xt)}{1+x^2t^2},dt
              end{align}$



              Observe that,



              $displaystyle F(0)=0$ and, $displaystyle F(1)=-text{G}$.



              $text{G}$ is the Catalan constant.



              $begin{align}J&=-8Big[F(x)arctan xBig]_0^1+8int_0^1 int_0^1 frac{xln(tx)}{(1+t^2x^2)(1+x^2)},dt,dx\
              &=2Gpi+8int_0^1 int_0^1 frac{xln x}{(1+t^2x^2)(1+x^2)},dt,dx+8int_0^1 int_0^1 frac{xln t}{(1+t^2x^2)(1+x^2)},dt,dx\
              &=2Gpi+8int_0^1 Big[frac{arctan(tx)ln x}{1+x^2}Big]_{t=0}^{t=1},dx+4int_0^1 Big[frac{(ln(1+t^2x^2)-ln(1+x^2))ln t}{t^2-1}Big]_{x=0}^{x=1},dt\
              &=2Gpi+8int_0^1 frac{arctan xln x}{1+x^2},dx+4int_0^1 frac{(ln(1+t^2)-ln 2)ln t }{t^2-1},dt\
              &=2Gpi-J+4int_0^1 frac{(ln 2-ln(1+t^2))ln t }{1-t^2},dt\
              end{align}$



              Therefore,



              $displaystyle J=text{G}pi+2int_0^1 frac{(ln 2-ln(1+x^2))ln x }{1-x^2},dx$



              For $xin[0;1]$, define,



              $begin{align}H(x)&=int_0^x frac{ln t}{1-t^2},dt\
              &=int_0^1 frac{xln(tx)}{1-t^2x^2},dt\
              end{align}$



              Observe that,



              $displaystyle H(0)=0$ and $displaystyle H(1)=-frac{pi^2}{8}$.



              $begin{align}J&=text{G}pi+2Big[(ln 2-ln(1+x^2))H(x)Big]_0^1+4int_0^1int_0^1frac{x^2ln(tx)}{(1+x^2)(1-t^2x^2)},dt,dx\
              &=text{G}pi+4int_0^1int_0^1frac{x^2ln(tx)}{(1+x^2)(1-t^2x^2)},dt,dx\
              &=text{G}pi+4int_0^1int_0^1frac{x^2ln t}{(1+x^2)(1-t^2x^2)},dt,dx+4int_0^1int_0^1frac{x^2ln x}{(1+x^2)(1-t^2x^2)},dt,dx\
              &=text{G}pi+4int_0^1Big[frac{ln t}{1+t^2}left(frac{ln(1+tx)}{2t}-frac{ln(1-tx)}{2t}-arctan xright)Big]_{x=0}^{x=1},dt+\
              &2int_0^1 Big[frac{xln x}{1+x^2}lnleft(frac{1+tx}{1-tx}right)Big]_{t=0}^{t=1},dx\
              &=text{G}pi+2int_0^1 frac{ln t}{t(1+t^2)}lnleft(frac{1+t}{1-t}right),dt-piint_0^1 frac{ln t}{1+t^2},dt+2int_0^1 frac{xln x}{1+x^2}lnleft(frac{1+x}{1-x}right),dx\
              &=2text{G}pi+2int_0^1 frac{ln x}{x}lnleft(frac{1+x}{1-x}right),dx\
              end{align}$



              But, for $0leq x<1$,



              $displaystyle frac{1}{x}lnleft(frac{1+x}{1-x}right)=2sum_{n=0}^{infty}frac{x^{2n}}{2n+1}$



              Therefore,



              $begin{align}int_0^1 frac{ln x}{x}lnleft(frac{1+x}{1-x}right),dx&=2int_0^1 left(sum_{n=0}^{infty}frac{x^{2n}}{2n+1}right)ln x,dx\
              &=2 sum_{n=0}^{infty}int_0^1 frac{x^{2n}ln x}{2n+1},dx\
              &=-2sum_{n=0}^{infty}frac{1}{(2n+1)^3}\
              &=-2left(sum_{n=1}^{infty} frac{1}{n^3}-sum_{n=1}^{infty} frac{1}{(2n)^3}right)\
              &=-2left(zeta(3)-frac{1}{8}zeta(3)right)\
              &=-frac{7}{4}zeta(3)\
              end{align}$



              Therefore,



              $ boxed{J=2text{G}pi-frac{7}{2}zeta(3)}$






              share|cite|improve this answer












              $begin{align}
              J&=int_{0}^{pi/2}frac{x^2}{sin x},dx&
              end{align}$



              Perform the change of variable,



              $displaystyle y=tanleft(frac{x}{2}right)$,



              $begin{align}
              J&=4int_0^1 frac{arctan^2 x}{x},dx\
              &=4Big[ln xarctan ^2 xBig]_0^1-8int_0^1 frac{arctan xln x}{1+x^2},dx\
              &=-8int_0^1 frac{arctan xln x}{1+x^2},dx\
              end{align}$



              For $xin [0;1]$, define $F$,



              $begin{align} F(x)&=int_0^x frac{ln t}{1+t^2},dt\
              &=int_0^1 frac{xln(xt)}{1+x^2t^2},dt
              end{align}$



              Observe that,



              $displaystyle F(0)=0$ and, $displaystyle F(1)=-text{G}$.



              $text{G}$ is the Catalan constant.



              $begin{align}J&=-8Big[F(x)arctan xBig]_0^1+8int_0^1 int_0^1 frac{xln(tx)}{(1+t^2x^2)(1+x^2)},dt,dx\
              &=2Gpi+8int_0^1 int_0^1 frac{xln x}{(1+t^2x^2)(1+x^2)},dt,dx+8int_0^1 int_0^1 frac{xln t}{(1+t^2x^2)(1+x^2)},dt,dx\
              &=2Gpi+8int_0^1 Big[frac{arctan(tx)ln x}{1+x^2}Big]_{t=0}^{t=1},dx+4int_0^1 Big[frac{(ln(1+t^2x^2)-ln(1+x^2))ln t}{t^2-1}Big]_{x=0}^{x=1},dt\
              &=2Gpi+8int_0^1 frac{arctan xln x}{1+x^2},dx+4int_0^1 frac{(ln(1+t^2)-ln 2)ln t }{t^2-1},dt\
              &=2Gpi-J+4int_0^1 frac{(ln 2-ln(1+t^2))ln t }{1-t^2},dt\
              end{align}$



              Therefore,



              $displaystyle J=text{G}pi+2int_0^1 frac{(ln 2-ln(1+x^2))ln x }{1-x^2},dx$



              For $xin[0;1]$, define,



              $begin{align}H(x)&=int_0^x frac{ln t}{1-t^2},dt\
              &=int_0^1 frac{xln(tx)}{1-t^2x^2},dt\
              end{align}$



              Observe that,



              $displaystyle H(0)=0$ and $displaystyle H(1)=-frac{pi^2}{8}$.



              $begin{align}J&=text{G}pi+2Big[(ln 2-ln(1+x^2))H(x)Big]_0^1+4int_0^1int_0^1frac{x^2ln(tx)}{(1+x^2)(1-t^2x^2)},dt,dx\
              &=text{G}pi+4int_0^1int_0^1frac{x^2ln(tx)}{(1+x^2)(1-t^2x^2)},dt,dx\
              &=text{G}pi+4int_0^1int_0^1frac{x^2ln t}{(1+x^2)(1-t^2x^2)},dt,dx+4int_0^1int_0^1frac{x^2ln x}{(1+x^2)(1-t^2x^2)},dt,dx\
              &=text{G}pi+4int_0^1Big[frac{ln t}{1+t^2}left(frac{ln(1+tx)}{2t}-frac{ln(1-tx)}{2t}-arctan xright)Big]_{x=0}^{x=1},dt+\
              &2int_0^1 Big[frac{xln x}{1+x^2}lnleft(frac{1+tx}{1-tx}right)Big]_{t=0}^{t=1},dx\
              &=text{G}pi+2int_0^1 frac{ln t}{t(1+t^2)}lnleft(frac{1+t}{1-t}right),dt-piint_0^1 frac{ln t}{1+t^2},dt+2int_0^1 frac{xln x}{1+x^2}lnleft(frac{1+x}{1-x}right),dx\
              &=2text{G}pi+2int_0^1 frac{ln x}{x}lnleft(frac{1+x}{1-x}right),dx\
              end{align}$



              But, for $0leq x<1$,



              $displaystyle frac{1}{x}lnleft(frac{1+x}{1-x}right)=2sum_{n=0}^{infty}frac{x^{2n}}{2n+1}$



              Therefore,



              $begin{align}int_0^1 frac{ln x}{x}lnleft(frac{1+x}{1-x}right),dx&=2int_0^1 left(sum_{n=0}^{infty}frac{x^{2n}}{2n+1}right)ln x,dx\
              &=2 sum_{n=0}^{infty}int_0^1 frac{x^{2n}ln x}{2n+1},dx\
              &=-2sum_{n=0}^{infty}frac{1}{(2n+1)^3}\
              &=-2left(sum_{n=1}^{infty} frac{1}{n^3}-sum_{n=1}^{infty} frac{1}{(2n)^3}right)\
              &=-2left(zeta(3)-frac{1}{8}zeta(3)right)\
              &=-frac{7}{4}zeta(3)\
              end{align}$



              Therefore,



              $ boxed{J=2text{G}pi-frac{7}{2}zeta(3)}$







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered Mar 31 at 22:25









              FDP

              4,44411221




              4,44411221






















                  up vote
                  3
                  down vote













                  Observe we have
                  begin{align}
                  I=int^{pi/2}_0 frac{x^2}{sin x} dx = int^{pi/2}_0 frac{x^2}{cosleft(frac{pi}{2}-x right)} dx = int^{pi/2}_0 frac{(frac{pi}{2}-u)^2}{cos u} du.
                  end{align}

                  Then using integration by parts, we see that
                  begin{align}
                  I&=left(frac{pi}{2}-uright)^2left{logleft|1 + sin uright|-log|cos u|right}bigg|^{pi/2}_0 + 2int^{pi/2}_0left(frac{pi}{2}-u right)log|sec u + tan u| du\
                  &= 2pi left(frac{1}{2}int_{0}^{pi/2}log|sec u+tan u| du right)-frac{7}{2}left(frac{4}{7}int^{pi/2}_0 u log|sec u+tan u| du right)\
                  &= 2pi G - frac{7}{2}zeta(3).
                  end{align}



                  Here, I have used the facts that
                  begin{align}
                  G= frac{1}{2}int_{0}^{pi/2}log|sec u+tan u| du
                  end{align}

                  and
                  begin{align}
                  zeta(3) = frac{4}{7}int^{pi/2}_0 u log|sec u+tan u| du.
                  end{align}

                  See here for reference.






                  share|cite|improve this answer























                  • Thanks for your link,it is helpful for me.
                    – FofX
                    Mar 30 at 6:08















                  up vote
                  3
                  down vote













                  Observe we have
                  begin{align}
                  I=int^{pi/2}_0 frac{x^2}{sin x} dx = int^{pi/2}_0 frac{x^2}{cosleft(frac{pi}{2}-x right)} dx = int^{pi/2}_0 frac{(frac{pi}{2}-u)^2}{cos u} du.
                  end{align}

                  Then using integration by parts, we see that
                  begin{align}
                  I&=left(frac{pi}{2}-uright)^2left{logleft|1 + sin uright|-log|cos u|right}bigg|^{pi/2}_0 + 2int^{pi/2}_0left(frac{pi}{2}-u right)log|sec u + tan u| du\
                  &= 2pi left(frac{1}{2}int_{0}^{pi/2}log|sec u+tan u| du right)-frac{7}{2}left(frac{4}{7}int^{pi/2}_0 u log|sec u+tan u| du right)\
                  &= 2pi G - frac{7}{2}zeta(3).
                  end{align}



                  Here, I have used the facts that
                  begin{align}
                  G= frac{1}{2}int_{0}^{pi/2}log|sec u+tan u| du
                  end{align}

                  and
                  begin{align}
                  zeta(3) = frac{4}{7}int^{pi/2}_0 u log|sec u+tan u| du.
                  end{align}

                  See here for reference.






                  share|cite|improve this answer























                  • Thanks for your link,it is helpful for me.
                    – FofX
                    Mar 30 at 6:08













                  up vote
                  3
                  down vote










                  up vote
                  3
                  down vote









                  Observe we have
                  begin{align}
                  I=int^{pi/2}_0 frac{x^2}{sin x} dx = int^{pi/2}_0 frac{x^2}{cosleft(frac{pi}{2}-x right)} dx = int^{pi/2}_0 frac{(frac{pi}{2}-u)^2}{cos u} du.
                  end{align}

                  Then using integration by parts, we see that
                  begin{align}
                  I&=left(frac{pi}{2}-uright)^2left{logleft|1 + sin uright|-log|cos u|right}bigg|^{pi/2}_0 + 2int^{pi/2}_0left(frac{pi}{2}-u right)log|sec u + tan u| du\
                  &= 2pi left(frac{1}{2}int_{0}^{pi/2}log|sec u+tan u| du right)-frac{7}{2}left(frac{4}{7}int^{pi/2}_0 u log|sec u+tan u| du right)\
                  &= 2pi G - frac{7}{2}zeta(3).
                  end{align}



                  Here, I have used the facts that
                  begin{align}
                  G= frac{1}{2}int_{0}^{pi/2}log|sec u+tan u| du
                  end{align}

                  and
                  begin{align}
                  zeta(3) = frac{4}{7}int^{pi/2}_0 u log|sec u+tan u| du.
                  end{align}

                  See here for reference.






                  share|cite|improve this answer














                  Observe we have
                  begin{align}
                  I=int^{pi/2}_0 frac{x^2}{sin x} dx = int^{pi/2}_0 frac{x^2}{cosleft(frac{pi}{2}-x right)} dx = int^{pi/2}_0 frac{(frac{pi}{2}-u)^2}{cos u} du.
                  end{align}

                  Then using integration by parts, we see that
                  begin{align}
                  I&=left(frac{pi}{2}-uright)^2left{logleft|1 + sin uright|-log|cos u|right}bigg|^{pi/2}_0 + 2int^{pi/2}_0left(frac{pi}{2}-u right)log|sec u + tan u| du\
                  &= 2pi left(frac{1}{2}int_{0}^{pi/2}log|sec u+tan u| du right)-frac{7}{2}left(frac{4}{7}int^{pi/2}_0 u log|sec u+tan u| du right)\
                  &= 2pi G - frac{7}{2}zeta(3).
                  end{align}



                  Here, I have used the facts that
                  begin{align}
                  G= frac{1}{2}int_{0}^{pi/2}log|sec u+tan u| du
                  end{align}

                  and
                  begin{align}
                  zeta(3) = frac{4}{7}int^{pi/2}_0 u log|sec u+tan u| du.
                  end{align}

                  See here for reference.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Nov 14 at 11:00









                  DavidG

                  805513




                  805513










                  answered Mar 30 at 4:43









                  Jacky Chong

                  17.2k21027




                  17.2k21027












                  • Thanks for your link,it is helpful for me.
                    – FofX
                    Mar 30 at 6:08


















                  • Thanks for your link,it is helpful for me.
                    – FofX
                    Mar 30 at 6:08
















                  Thanks for your link,it is helpful for me.
                  – FofX
                  Mar 30 at 6:08




                  Thanks for your link,it is helpful for me.
                  – FofX
                  Mar 30 at 6:08










                  up vote
                  2
                  down vote













                  $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                  newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                  newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                  newcommand{dd}{mathrm{d}}
                  newcommand{ds}[1]{displaystyle{#1}}
                  newcommand{expo}[1]{,mathrm{e}^{#1},}
                  newcommand{ic}{mathrm{i}}
                  newcommand{mc}[1]{mathcal{#1}}
                  newcommand{mrm}[1]{mathrm{#1}}
                  newcommand{pars}[1]{left(,{#1},right)}
                  newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                  newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                  newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                  newcommand{verts}[1]{leftvert,{#1},rightvert}$
                  enter image description here
                  begin{align}
                  int_{0}^{pi/2}{x^{2} over sinpars{x}},dd x & =
                  left.Reint_{x = 0}^{x = pi/2}{bracks{-iclnpars{z}}^{2} over
                  pars{z - 1/z}/pars{2ic}},{dd z over ic z}
                  ,rightvert_{ z = exppars{ic x}}
                  \[5mm] & =
                  left.2,Reint_{x = 0}^{x = pi/2}{ln^{2}pars{z} over 1 - z^{2}},dd z
                  ,rightvert_{ z = exppars{ic x}}
                  end{align}




                  $ds{ln}$ is the $ds{log}$-principal branch. Integration of $ds{{ln^{2}pars{z} over 1 - z^{2}}}$ along the path
                  $ds{C_{x}cup C_{R}cup C_{y}}$ vanishes out such that



                  $ds{int_{large C_{R}}{ln^{2}pars{z} over 1 - z^{2}},dd z =
                  -int_{large C_{y}}{ln^{2}pars{z} over 1 - z^{2}},dd z -
                  int_{large C_{x}}{ln^{2}pars{z} over 1 - z^{2}},dd z}$




                  Then,
                  begin{align}
                  int_{0}^{pi/2}{x^{2} over sinpars{x}},dd x & =
                  overbrace{-2,Reint_{1}^{0}{bracks{lnpars{y} + piic/2}^{, 2} over
                  1 + y^{2}},ic,dd y}^{ds{mbox{along} C_{y}}} -
                  overbrace{2,Reint_{0}^{1}{ln^{2}pars{x} over 1 - x^{2}},dd x}
                  ^{ds{mbox{along} C_{x}}}
                  \[5mm] & =
                  -2pi,int_{0}^{1}{lnpars{y} over 1 + y^{2}},dd y -
                  2int_{0}^{1}{ln^{2}pars{x} over 1 - x^{2}},dd x
                  end{align}




                  However, $ds{int_{0}^{1}{lnpars{y} over 1 + y^{2}},dd y = -G}$ where
                  $ds{G}$ is the Catalan Constant such that




                  begin{align}
                  int_{0}^{pi/2}{x^{2} over sinpars{x}},dd x & =
                  2pi G - 2sum_{n = 0}^{infty}
                  overbrace{int_{0}^{1}ln^{2}pars{x}x^{2n},dd x}
                  ^{ds{2 over pars{2n + 1}^{3}}}
                  \[5mm] & =
                  2pi G - 4bracks{sum_{n = 1}^{infty}{1 over n^{3}} -
                  sum_{n = 1}^{infty}{1 over pars{2n}^{3}}} =
                  2pi G - {7 over 2}sum_{n = 1}^{infty}{1 over n^{3}}
                  \[5mm] & = bbx{2pi G - {7 over 2},zetapars{3}} approx 1.5480
                  end{align}






                  share|cite|improve this answer



























                    up vote
                    2
                    down vote













                    $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                    newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                    newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                    newcommand{dd}{mathrm{d}}
                    newcommand{ds}[1]{displaystyle{#1}}
                    newcommand{expo}[1]{,mathrm{e}^{#1},}
                    newcommand{ic}{mathrm{i}}
                    newcommand{mc}[1]{mathcal{#1}}
                    newcommand{mrm}[1]{mathrm{#1}}
                    newcommand{pars}[1]{left(,{#1},right)}
                    newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                    newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                    newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                    newcommand{verts}[1]{leftvert,{#1},rightvert}$
                    enter image description here
                    begin{align}
                    int_{0}^{pi/2}{x^{2} over sinpars{x}},dd x & =
                    left.Reint_{x = 0}^{x = pi/2}{bracks{-iclnpars{z}}^{2} over
                    pars{z - 1/z}/pars{2ic}},{dd z over ic z}
                    ,rightvert_{ z = exppars{ic x}}
                    \[5mm] & =
                    left.2,Reint_{x = 0}^{x = pi/2}{ln^{2}pars{z} over 1 - z^{2}},dd z
                    ,rightvert_{ z = exppars{ic x}}
                    end{align}




                    $ds{ln}$ is the $ds{log}$-principal branch. Integration of $ds{{ln^{2}pars{z} over 1 - z^{2}}}$ along the path
                    $ds{C_{x}cup C_{R}cup C_{y}}$ vanishes out such that



                    $ds{int_{large C_{R}}{ln^{2}pars{z} over 1 - z^{2}},dd z =
                    -int_{large C_{y}}{ln^{2}pars{z} over 1 - z^{2}},dd z -
                    int_{large C_{x}}{ln^{2}pars{z} over 1 - z^{2}},dd z}$




                    Then,
                    begin{align}
                    int_{0}^{pi/2}{x^{2} over sinpars{x}},dd x & =
                    overbrace{-2,Reint_{1}^{0}{bracks{lnpars{y} + piic/2}^{, 2} over
                    1 + y^{2}},ic,dd y}^{ds{mbox{along} C_{y}}} -
                    overbrace{2,Reint_{0}^{1}{ln^{2}pars{x} over 1 - x^{2}},dd x}
                    ^{ds{mbox{along} C_{x}}}
                    \[5mm] & =
                    -2pi,int_{0}^{1}{lnpars{y} over 1 + y^{2}},dd y -
                    2int_{0}^{1}{ln^{2}pars{x} over 1 - x^{2}},dd x
                    end{align}




                    However, $ds{int_{0}^{1}{lnpars{y} over 1 + y^{2}},dd y = -G}$ where
                    $ds{G}$ is the Catalan Constant such that




                    begin{align}
                    int_{0}^{pi/2}{x^{2} over sinpars{x}},dd x & =
                    2pi G - 2sum_{n = 0}^{infty}
                    overbrace{int_{0}^{1}ln^{2}pars{x}x^{2n},dd x}
                    ^{ds{2 over pars{2n + 1}^{3}}}
                    \[5mm] & =
                    2pi G - 4bracks{sum_{n = 1}^{infty}{1 over n^{3}} -
                    sum_{n = 1}^{infty}{1 over pars{2n}^{3}}} =
                    2pi G - {7 over 2}sum_{n = 1}^{infty}{1 over n^{3}}
                    \[5mm] & = bbx{2pi G - {7 over 2},zetapars{3}} approx 1.5480
                    end{align}






                    share|cite|improve this answer

























                      up vote
                      2
                      down vote










                      up vote
                      2
                      down vote









                      $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                      newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                      newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                      newcommand{dd}{mathrm{d}}
                      newcommand{ds}[1]{displaystyle{#1}}
                      newcommand{expo}[1]{,mathrm{e}^{#1},}
                      newcommand{ic}{mathrm{i}}
                      newcommand{mc}[1]{mathcal{#1}}
                      newcommand{mrm}[1]{mathrm{#1}}
                      newcommand{pars}[1]{left(,{#1},right)}
                      newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                      newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                      newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                      newcommand{verts}[1]{leftvert,{#1},rightvert}$
                      enter image description here
                      begin{align}
                      int_{0}^{pi/2}{x^{2} over sinpars{x}},dd x & =
                      left.Reint_{x = 0}^{x = pi/2}{bracks{-iclnpars{z}}^{2} over
                      pars{z - 1/z}/pars{2ic}},{dd z over ic z}
                      ,rightvert_{ z = exppars{ic x}}
                      \[5mm] & =
                      left.2,Reint_{x = 0}^{x = pi/2}{ln^{2}pars{z} over 1 - z^{2}},dd z
                      ,rightvert_{ z = exppars{ic x}}
                      end{align}




                      $ds{ln}$ is the $ds{log}$-principal branch. Integration of $ds{{ln^{2}pars{z} over 1 - z^{2}}}$ along the path
                      $ds{C_{x}cup C_{R}cup C_{y}}$ vanishes out such that



                      $ds{int_{large C_{R}}{ln^{2}pars{z} over 1 - z^{2}},dd z =
                      -int_{large C_{y}}{ln^{2}pars{z} over 1 - z^{2}},dd z -
                      int_{large C_{x}}{ln^{2}pars{z} over 1 - z^{2}},dd z}$




                      Then,
                      begin{align}
                      int_{0}^{pi/2}{x^{2} over sinpars{x}},dd x & =
                      overbrace{-2,Reint_{1}^{0}{bracks{lnpars{y} + piic/2}^{, 2} over
                      1 + y^{2}},ic,dd y}^{ds{mbox{along} C_{y}}} -
                      overbrace{2,Reint_{0}^{1}{ln^{2}pars{x} over 1 - x^{2}},dd x}
                      ^{ds{mbox{along} C_{x}}}
                      \[5mm] & =
                      -2pi,int_{0}^{1}{lnpars{y} over 1 + y^{2}},dd y -
                      2int_{0}^{1}{ln^{2}pars{x} over 1 - x^{2}},dd x
                      end{align}




                      However, $ds{int_{0}^{1}{lnpars{y} over 1 + y^{2}},dd y = -G}$ where
                      $ds{G}$ is the Catalan Constant such that




                      begin{align}
                      int_{0}^{pi/2}{x^{2} over sinpars{x}},dd x & =
                      2pi G - 2sum_{n = 0}^{infty}
                      overbrace{int_{0}^{1}ln^{2}pars{x}x^{2n},dd x}
                      ^{ds{2 over pars{2n + 1}^{3}}}
                      \[5mm] & =
                      2pi G - 4bracks{sum_{n = 1}^{infty}{1 over n^{3}} -
                      sum_{n = 1}^{infty}{1 over pars{2n}^{3}}} =
                      2pi G - {7 over 2}sum_{n = 1}^{infty}{1 over n^{3}}
                      \[5mm] & = bbx{2pi G - {7 over 2},zetapars{3}} approx 1.5480
                      end{align}






                      share|cite|improve this answer














                      $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                      newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                      newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                      newcommand{dd}{mathrm{d}}
                      newcommand{ds}[1]{displaystyle{#1}}
                      newcommand{expo}[1]{,mathrm{e}^{#1},}
                      newcommand{ic}{mathrm{i}}
                      newcommand{mc}[1]{mathcal{#1}}
                      newcommand{mrm}[1]{mathrm{#1}}
                      newcommand{pars}[1]{left(,{#1},right)}
                      newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                      newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                      newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                      newcommand{verts}[1]{leftvert,{#1},rightvert}$
                      enter image description here
                      begin{align}
                      int_{0}^{pi/2}{x^{2} over sinpars{x}},dd x & =
                      left.Reint_{x = 0}^{x = pi/2}{bracks{-iclnpars{z}}^{2} over
                      pars{z - 1/z}/pars{2ic}},{dd z over ic z}
                      ,rightvert_{ z = exppars{ic x}}
                      \[5mm] & =
                      left.2,Reint_{x = 0}^{x = pi/2}{ln^{2}pars{z} over 1 - z^{2}},dd z
                      ,rightvert_{ z = exppars{ic x}}
                      end{align}




                      $ds{ln}$ is the $ds{log}$-principal branch. Integration of $ds{{ln^{2}pars{z} over 1 - z^{2}}}$ along the path
                      $ds{C_{x}cup C_{R}cup C_{y}}$ vanishes out such that



                      $ds{int_{large C_{R}}{ln^{2}pars{z} over 1 - z^{2}},dd z =
                      -int_{large C_{y}}{ln^{2}pars{z} over 1 - z^{2}},dd z -
                      int_{large C_{x}}{ln^{2}pars{z} over 1 - z^{2}},dd z}$




                      Then,
                      begin{align}
                      int_{0}^{pi/2}{x^{2} over sinpars{x}},dd x & =
                      overbrace{-2,Reint_{1}^{0}{bracks{lnpars{y} + piic/2}^{, 2} over
                      1 + y^{2}},ic,dd y}^{ds{mbox{along} C_{y}}} -
                      overbrace{2,Reint_{0}^{1}{ln^{2}pars{x} over 1 - x^{2}},dd x}
                      ^{ds{mbox{along} C_{x}}}
                      \[5mm] & =
                      -2pi,int_{0}^{1}{lnpars{y} over 1 + y^{2}},dd y -
                      2int_{0}^{1}{ln^{2}pars{x} over 1 - x^{2}},dd x
                      end{align}




                      However, $ds{int_{0}^{1}{lnpars{y} over 1 + y^{2}},dd y = -G}$ where
                      $ds{G}$ is the Catalan Constant such that




                      begin{align}
                      int_{0}^{pi/2}{x^{2} over sinpars{x}},dd x & =
                      2pi G - 2sum_{n = 0}^{infty}
                      overbrace{int_{0}^{1}ln^{2}pars{x}x^{2n},dd x}
                      ^{ds{2 over pars{2n + 1}^{3}}}
                      \[5mm] & =
                      2pi G - 4bracks{sum_{n = 1}^{infty}{1 over n^{3}} -
                      sum_{n = 1}^{infty}{1 over pars{2n}^{3}}} =
                      2pi G - {7 over 2}sum_{n = 1}^{infty}{1 over n^{3}}
                      \[5mm] & = bbx{2pi G - {7 over 2},zetapars{3}} approx 1.5480
                      end{align}







                      share|cite|improve this answer














                      share|cite|improve this answer



                      share|cite|improve this answer








                      edited Apr 5 at 0:06

























                      answered Mar 31 at 6:49









                      Felix Marin

                      65.8k7107138




                      65.8k7107138






















                          up vote
                          1
                          down vote













                          As pointed out within the other answers we want to prove that




                          $$mathfrak{I}=int_0^{pi/2}frac{x^2}{sin x}~dx=2pi G-frac72zeta(3)$$




                          As the OP showed $mathfrak{I}$ can be reduced to a linear combination of $x$ and the function $log(cot x)$



                          $$mathfrak{I}=int_0^{pi/2}frac{x^2}{sin x}~dx=8int_0^{pi/4}xlog(cot x)~dx$$



                          By applying the definition of the cotangent function followed up by the usage of the well-known Fourier series expansions of $log(cos x)$ and $log(sin x)$ this can be further simplified. Therefore we get



                          $$smallbegin{align}
                          mathfrak{I}=8int_0^{pi/4}xlog(cot x)~dx&=8left[int_0^{pi/4}xlog(cos x)~dx-int_0^{pi/4}xlog(sin x)~dxright]\
                          &=8left[int_0^{pi/4}xleft(-log(2)-sum_{n=1}^{infty}(-1)^nfrac{cos(2nx)}{n}right)~dx-int_0^{pi/4}xleft(-log(2)-sum_{n=1}^{infty}frac{cos(2nx)}{n}right)~dxright]\
                          &=8left[-sum_{n=1}^{infty}frac{(-1)^n}{n}underbrace{int_0^{pi/4}xcos(2nx)~dx}_I+sum_{n=1}^{infty}frac{1}{n}underbrace{int_0^{pi/4}xcos(2nx)~dx}_Iright]\
                          end{align}$$



                          The inner integral $I$ can be easily evaluated using IBP which leads to



                          $$I=int_0^{pi/4}xcos(2nx)~dx=frac{pi}{8n}sinleft(nfrac{pi}2right)-frac1{(2n)^2}$$



                          Plugging this into our original formula and followed by a little bit of algebraic manipulation we get



                          $$smallbegin{align}
                          mathfrak{I}&=8left[-sum_{n=1}^{infty}frac{(-1)^n}{n}left(frac{pi}{8n}sinleft(nfrac{pi}2right)-frac1{(2n)^2}right)+sum_{n=1}^{infty}frac{1}{n}left(frac{pi}{8n}sinleft(nfrac{pi}2right)-frac1{(2n)^2}right)right]\
                          &=2left[sum_{n=1}^{infty}frac{(-1)^n}{n^3}-sum_{n=1}^{infty}frac{1}{n^3}right]+pileft[sum_{n=1}^{infty}frac{1}{n^2}sinleft(nfrac{pi}2right)-sum_{n=1}^{infty}frac{(-1)^n}{n^2}sinleft(nfrac{pi}2right)right]
                          end{align}$$



                          The first terms can be evaluated in terms of the Riemann Zeta Function $zeta(s)$ and the Dirichlet Eta Function $eta(s)$ whereas for the second term we have to consider some basic properties of the Sine function. For $ninmathbb{N}>0$ the function $sinleft(nfrac{pi}2right)$ will be zero for all even $n$ and $-1$ and $1$ respectively for odd $n$ starting with $sinleft(frac{pi}2right)=1$ for $n=1$. Therefore all even terms vanish while the odd ones will remain with a oscillating negative sign. This leads to



                          $$smallbegin{align}
                          mathfrak{I}&=2left[sum_{n=1}^{infty}frac{(-1)^n}{n^3}-sum_{n=1}^{infty}frac{1}{n^3}right]+pileft[sum_{n=1}^{infty}frac{1}{n^2}sinleft(nfrac{pi}2right)-sum_{n=1}^{infty}frac{(-1)^n}{n^2}sinleft(nfrac{pi}2right)right]\
                          &=2[-eta(3)-zeta(3)]+pileft[sum_{n=0}^{infty}frac{1}{(2n+1)^2}(-1)^n-sum_{n=0}^{infty}frac{(-1)^{2n+1}}{(2n+1)^2}(-1)^nright]\
                          &=-2[(1-2^{-2})zeta(3)+zeta(3)]+2pisum_{n=0}^{infty}frac{(-1)^n}{(2n+1)^2}\
                          Leftrightarrowmathfrak{I}&=-frac72zeta(3)+2pi G
                          end{align}$$



                          where within the last step the functional relation between the Riemann Zeta Function and the Dirichlet Eta Function aswell as the series defintions of Catalan's Constant $G$ where used.






                          share|cite|improve this answer



























                            up vote
                            1
                            down vote













                            As pointed out within the other answers we want to prove that




                            $$mathfrak{I}=int_0^{pi/2}frac{x^2}{sin x}~dx=2pi G-frac72zeta(3)$$




                            As the OP showed $mathfrak{I}$ can be reduced to a linear combination of $x$ and the function $log(cot x)$



                            $$mathfrak{I}=int_0^{pi/2}frac{x^2}{sin x}~dx=8int_0^{pi/4}xlog(cot x)~dx$$



                            By applying the definition of the cotangent function followed up by the usage of the well-known Fourier series expansions of $log(cos x)$ and $log(sin x)$ this can be further simplified. Therefore we get



                            $$smallbegin{align}
                            mathfrak{I}=8int_0^{pi/4}xlog(cot x)~dx&=8left[int_0^{pi/4}xlog(cos x)~dx-int_0^{pi/4}xlog(sin x)~dxright]\
                            &=8left[int_0^{pi/4}xleft(-log(2)-sum_{n=1}^{infty}(-1)^nfrac{cos(2nx)}{n}right)~dx-int_0^{pi/4}xleft(-log(2)-sum_{n=1}^{infty}frac{cos(2nx)}{n}right)~dxright]\
                            &=8left[-sum_{n=1}^{infty}frac{(-1)^n}{n}underbrace{int_0^{pi/4}xcos(2nx)~dx}_I+sum_{n=1}^{infty}frac{1}{n}underbrace{int_0^{pi/4}xcos(2nx)~dx}_Iright]\
                            end{align}$$



                            The inner integral $I$ can be easily evaluated using IBP which leads to



                            $$I=int_0^{pi/4}xcos(2nx)~dx=frac{pi}{8n}sinleft(nfrac{pi}2right)-frac1{(2n)^2}$$



                            Plugging this into our original formula and followed by a little bit of algebraic manipulation we get



                            $$smallbegin{align}
                            mathfrak{I}&=8left[-sum_{n=1}^{infty}frac{(-1)^n}{n}left(frac{pi}{8n}sinleft(nfrac{pi}2right)-frac1{(2n)^2}right)+sum_{n=1}^{infty}frac{1}{n}left(frac{pi}{8n}sinleft(nfrac{pi}2right)-frac1{(2n)^2}right)right]\
                            &=2left[sum_{n=1}^{infty}frac{(-1)^n}{n^3}-sum_{n=1}^{infty}frac{1}{n^3}right]+pileft[sum_{n=1}^{infty}frac{1}{n^2}sinleft(nfrac{pi}2right)-sum_{n=1}^{infty}frac{(-1)^n}{n^2}sinleft(nfrac{pi}2right)right]
                            end{align}$$



                            The first terms can be evaluated in terms of the Riemann Zeta Function $zeta(s)$ and the Dirichlet Eta Function $eta(s)$ whereas for the second term we have to consider some basic properties of the Sine function. For $ninmathbb{N}>0$ the function $sinleft(nfrac{pi}2right)$ will be zero for all even $n$ and $-1$ and $1$ respectively for odd $n$ starting with $sinleft(frac{pi}2right)=1$ for $n=1$. Therefore all even terms vanish while the odd ones will remain with a oscillating negative sign. This leads to



                            $$smallbegin{align}
                            mathfrak{I}&=2left[sum_{n=1}^{infty}frac{(-1)^n}{n^3}-sum_{n=1}^{infty}frac{1}{n^3}right]+pileft[sum_{n=1}^{infty}frac{1}{n^2}sinleft(nfrac{pi}2right)-sum_{n=1}^{infty}frac{(-1)^n}{n^2}sinleft(nfrac{pi}2right)right]\
                            &=2[-eta(3)-zeta(3)]+pileft[sum_{n=0}^{infty}frac{1}{(2n+1)^2}(-1)^n-sum_{n=0}^{infty}frac{(-1)^{2n+1}}{(2n+1)^2}(-1)^nright]\
                            &=-2[(1-2^{-2})zeta(3)+zeta(3)]+2pisum_{n=0}^{infty}frac{(-1)^n}{(2n+1)^2}\
                            Leftrightarrowmathfrak{I}&=-frac72zeta(3)+2pi G
                            end{align}$$



                            where within the last step the functional relation between the Riemann Zeta Function and the Dirichlet Eta Function aswell as the series defintions of Catalan's Constant $G$ where used.






                            share|cite|improve this answer

























                              up vote
                              1
                              down vote










                              up vote
                              1
                              down vote









                              As pointed out within the other answers we want to prove that




                              $$mathfrak{I}=int_0^{pi/2}frac{x^2}{sin x}~dx=2pi G-frac72zeta(3)$$




                              As the OP showed $mathfrak{I}$ can be reduced to a linear combination of $x$ and the function $log(cot x)$



                              $$mathfrak{I}=int_0^{pi/2}frac{x^2}{sin x}~dx=8int_0^{pi/4}xlog(cot x)~dx$$



                              By applying the definition of the cotangent function followed up by the usage of the well-known Fourier series expansions of $log(cos x)$ and $log(sin x)$ this can be further simplified. Therefore we get



                              $$smallbegin{align}
                              mathfrak{I}=8int_0^{pi/4}xlog(cot x)~dx&=8left[int_0^{pi/4}xlog(cos x)~dx-int_0^{pi/4}xlog(sin x)~dxright]\
                              &=8left[int_0^{pi/4}xleft(-log(2)-sum_{n=1}^{infty}(-1)^nfrac{cos(2nx)}{n}right)~dx-int_0^{pi/4}xleft(-log(2)-sum_{n=1}^{infty}frac{cos(2nx)}{n}right)~dxright]\
                              &=8left[-sum_{n=1}^{infty}frac{(-1)^n}{n}underbrace{int_0^{pi/4}xcos(2nx)~dx}_I+sum_{n=1}^{infty}frac{1}{n}underbrace{int_0^{pi/4}xcos(2nx)~dx}_Iright]\
                              end{align}$$



                              The inner integral $I$ can be easily evaluated using IBP which leads to



                              $$I=int_0^{pi/4}xcos(2nx)~dx=frac{pi}{8n}sinleft(nfrac{pi}2right)-frac1{(2n)^2}$$



                              Plugging this into our original formula and followed by a little bit of algebraic manipulation we get



                              $$smallbegin{align}
                              mathfrak{I}&=8left[-sum_{n=1}^{infty}frac{(-1)^n}{n}left(frac{pi}{8n}sinleft(nfrac{pi}2right)-frac1{(2n)^2}right)+sum_{n=1}^{infty}frac{1}{n}left(frac{pi}{8n}sinleft(nfrac{pi}2right)-frac1{(2n)^2}right)right]\
                              &=2left[sum_{n=1}^{infty}frac{(-1)^n}{n^3}-sum_{n=1}^{infty}frac{1}{n^3}right]+pileft[sum_{n=1}^{infty}frac{1}{n^2}sinleft(nfrac{pi}2right)-sum_{n=1}^{infty}frac{(-1)^n}{n^2}sinleft(nfrac{pi}2right)right]
                              end{align}$$



                              The first terms can be evaluated in terms of the Riemann Zeta Function $zeta(s)$ and the Dirichlet Eta Function $eta(s)$ whereas for the second term we have to consider some basic properties of the Sine function. For $ninmathbb{N}>0$ the function $sinleft(nfrac{pi}2right)$ will be zero for all even $n$ and $-1$ and $1$ respectively for odd $n$ starting with $sinleft(frac{pi}2right)=1$ for $n=1$. Therefore all even terms vanish while the odd ones will remain with a oscillating negative sign. This leads to



                              $$smallbegin{align}
                              mathfrak{I}&=2left[sum_{n=1}^{infty}frac{(-1)^n}{n^3}-sum_{n=1}^{infty}frac{1}{n^3}right]+pileft[sum_{n=1}^{infty}frac{1}{n^2}sinleft(nfrac{pi}2right)-sum_{n=1}^{infty}frac{(-1)^n}{n^2}sinleft(nfrac{pi}2right)right]\
                              &=2[-eta(3)-zeta(3)]+pileft[sum_{n=0}^{infty}frac{1}{(2n+1)^2}(-1)^n-sum_{n=0}^{infty}frac{(-1)^{2n+1}}{(2n+1)^2}(-1)^nright]\
                              &=-2[(1-2^{-2})zeta(3)+zeta(3)]+2pisum_{n=0}^{infty}frac{(-1)^n}{(2n+1)^2}\
                              Leftrightarrowmathfrak{I}&=-frac72zeta(3)+2pi G
                              end{align}$$



                              where within the last step the functional relation between the Riemann Zeta Function and the Dirichlet Eta Function aswell as the series defintions of Catalan's Constant $G$ where used.






                              share|cite|improve this answer














                              As pointed out within the other answers we want to prove that




                              $$mathfrak{I}=int_0^{pi/2}frac{x^2}{sin x}~dx=2pi G-frac72zeta(3)$$




                              As the OP showed $mathfrak{I}$ can be reduced to a linear combination of $x$ and the function $log(cot x)$



                              $$mathfrak{I}=int_0^{pi/2}frac{x^2}{sin x}~dx=8int_0^{pi/4}xlog(cot x)~dx$$



                              By applying the definition of the cotangent function followed up by the usage of the well-known Fourier series expansions of $log(cos x)$ and $log(sin x)$ this can be further simplified. Therefore we get



                              $$smallbegin{align}
                              mathfrak{I}=8int_0^{pi/4}xlog(cot x)~dx&=8left[int_0^{pi/4}xlog(cos x)~dx-int_0^{pi/4}xlog(sin x)~dxright]\
                              &=8left[int_0^{pi/4}xleft(-log(2)-sum_{n=1}^{infty}(-1)^nfrac{cos(2nx)}{n}right)~dx-int_0^{pi/4}xleft(-log(2)-sum_{n=1}^{infty}frac{cos(2nx)}{n}right)~dxright]\
                              &=8left[-sum_{n=1}^{infty}frac{(-1)^n}{n}underbrace{int_0^{pi/4}xcos(2nx)~dx}_I+sum_{n=1}^{infty}frac{1}{n}underbrace{int_0^{pi/4}xcos(2nx)~dx}_Iright]\
                              end{align}$$



                              The inner integral $I$ can be easily evaluated using IBP which leads to



                              $$I=int_0^{pi/4}xcos(2nx)~dx=frac{pi}{8n}sinleft(nfrac{pi}2right)-frac1{(2n)^2}$$



                              Plugging this into our original formula and followed by a little bit of algebraic manipulation we get



                              $$smallbegin{align}
                              mathfrak{I}&=8left[-sum_{n=1}^{infty}frac{(-1)^n}{n}left(frac{pi}{8n}sinleft(nfrac{pi}2right)-frac1{(2n)^2}right)+sum_{n=1}^{infty}frac{1}{n}left(frac{pi}{8n}sinleft(nfrac{pi}2right)-frac1{(2n)^2}right)right]\
                              &=2left[sum_{n=1}^{infty}frac{(-1)^n}{n^3}-sum_{n=1}^{infty}frac{1}{n^3}right]+pileft[sum_{n=1}^{infty}frac{1}{n^2}sinleft(nfrac{pi}2right)-sum_{n=1}^{infty}frac{(-1)^n}{n^2}sinleft(nfrac{pi}2right)right]
                              end{align}$$



                              The first terms can be evaluated in terms of the Riemann Zeta Function $zeta(s)$ and the Dirichlet Eta Function $eta(s)$ whereas for the second term we have to consider some basic properties of the Sine function. For $ninmathbb{N}>0$ the function $sinleft(nfrac{pi}2right)$ will be zero for all even $n$ and $-1$ and $1$ respectively for odd $n$ starting with $sinleft(frac{pi}2right)=1$ for $n=1$. Therefore all even terms vanish while the odd ones will remain with a oscillating negative sign. This leads to



                              $$smallbegin{align}
                              mathfrak{I}&=2left[sum_{n=1}^{infty}frac{(-1)^n}{n^3}-sum_{n=1}^{infty}frac{1}{n^3}right]+pileft[sum_{n=1}^{infty}frac{1}{n^2}sinleft(nfrac{pi}2right)-sum_{n=1}^{infty}frac{(-1)^n}{n^2}sinleft(nfrac{pi}2right)right]\
                              &=2[-eta(3)-zeta(3)]+pileft[sum_{n=0}^{infty}frac{1}{(2n+1)^2}(-1)^n-sum_{n=0}^{infty}frac{(-1)^{2n+1}}{(2n+1)^2}(-1)^nright]\
                              &=-2[(1-2^{-2})zeta(3)+zeta(3)]+2pisum_{n=0}^{infty}frac{(-1)^n}{(2n+1)^2}\
                              Leftrightarrowmathfrak{I}&=-frac72zeta(3)+2pi G
                              end{align}$$



                              where within the last step the functional relation between the Riemann Zeta Function and the Dirichlet Eta Function aswell as the series defintions of Catalan's Constant $G$ where used.







                              share|cite|improve this answer














                              share|cite|improve this answer



                              share|cite|improve this answer








                              edited Nov 12 at 22:42

























                              answered Nov 12 at 22:30









                              mrtaurho

                              2,3691726




                              2,3691726






















                                  up vote
                                  1
                                  down vote













                                  We can adapt the formula derived in $(2)$ of this answer:
                                  $$
                                  log(2cos(x/2))=sum_{k=1}^inftyfrac{(-1)^{k-1}}kcos(kx)tag{1a}
                                  $$

                                  Substituting $xmapstopi-x$ in $text{(1a)}$, we get
                                  $$
                                  log(2sin(x/2))=sum_{k=1}^inftyfrac{-1}kcos(kx)tag{1b}
                                  $$

                                  Subtracting $text{(1a)}$ from $text{(1b)}$, the even terms cancel and we get
                                  $$
                                  bbox[5px,border:2px solid #C0A000]{log(tan(x/2))=sum_{k=0}^inftyfrac{-2}{2k+1}cos((2k+1)x)}tag2
                                  $$





                                  Therefore,
                                  $$
                                  begin{align}
                                  int_0^{pi/2}frac{x^2}{sin(x)},mathrm{d}x
                                  &=int_0^{pi/2}x^2,mathrm{d}log(tan(x/2))tag3\
                                  &=-2int_0^{pi/2}xlog(tan(x/2)),mathrm{d}xtag4\
                                  &=sum_{k=0}^inftyfrac4{2k+1}int_0^{pi/2}xcos((2k+1)x),mathrm{d}xtag5\
                                  &=sum_{k=0}^inftyfrac4{(2k+1)^2}int_0^{pi/2}x,mathrm{d}sin((2k+1)x)tag6\
                                  &=sum_{k=0}^inftyfrac4{(2k+1)^2}left[xsin((2k+1)x)+frac{cos((2k+1)x)}{2k+1}right]_0^{pi/2}tag7\
                                  &=sum_{k=0}^inftyfrac4{(2k+1)^2}left[fracpi2(-1)^k-frac1{2k+1}right]tag8\
                                  &=bbox[5px,border:2px solid #C0A000]{2pimathrm{G}-frac72zeta(3)}tag9
                                  end{align}
                                  $$

                                  Explanation:
                                  $(3)$: prepare to integrate by parts
                                  $(4)$: integrate by parts
                                  $(5)$: apply $(2)$
                                  $(6)$: prepare to integrate by parts
                                  $(7)$: integrate by parts
                                  $(8)$: apply the limits of integration
                                  $(9)$: evaluate, where $mathrm{G}$ is Catalan's Constant






                                  share|cite|improve this answer



























                                    up vote
                                    1
                                    down vote













                                    We can adapt the formula derived in $(2)$ of this answer:
                                    $$
                                    log(2cos(x/2))=sum_{k=1}^inftyfrac{(-1)^{k-1}}kcos(kx)tag{1a}
                                    $$

                                    Substituting $xmapstopi-x$ in $text{(1a)}$, we get
                                    $$
                                    log(2sin(x/2))=sum_{k=1}^inftyfrac{-1}kcos(kx)tag{1b}
                                    $$

                                    Subtracting $text{(1a)}$ from $text{(1b)}$, the even terms cancel and we get
                                    $$
                                    bbox[5px,border:2px solid #C0A000]{log(tan(x/2))=sum_{k=0}^inftyfrac{-2}{2k+1}cos((2k+1)x)}tag2
                                    $$





                                    Therefore,
                                    $$
                                    begin{align}
                                    int_0^{pi/2}frac{x^2}{sin(x)},mathrm{d}x
                                    &=int_0^{pi/2}x^2,mathrm{d}log(tan(x/2))tag3\
                                    &=-2int_0^{pi/2}xlog(tan(x/2)),mathrm{d}xtag4\
                                    &=sum_{k=0}^inftyfrac4{2k+1}int_0^{pi/2}xcos((2k+1)x),mathrm{d}xtag5\
                                    &=sum_{k=0}^inftyfrac4{(2k+1)^2}int_0^{pi/2}x,mathrm{d}sin((2k+1)x)tag6\
                                    &=sum_{k=0}^inftyfrac4{(2k+1)^2}left[xsin((2k+1)x)+frac{cos((2k+1)x)}{2k+1}right]_0^{pi/2}tag7\
                                    &=sum_{k=0}^inftyfrac4{(2k+1)^2}left[fracpi2(-1)^k-frac1{2k+1}right]tag8\
                                    &=bbox[5px,border:2px solid #C0A000]{2pimathrm{G}-frac72zeta(3)}tag9
                                    end{align}
                                    $$

                                    Explanation:
                                    $(3)$: prepare to integrate by parts
                                    $(4)$: integrate by parts
                                    $(5)$: apply $(2)$
                                    $(6)$: prepare to integrate by parts
                                    $(7)$: integrate by parts
                                    $(8)$: apply the limits of integration
                                    $(9)$: evaluate, where $mathrm{G}$ is Catalan's Constant






                                    share|cite|improve this answer

























                                      up vote
                                      1
                                      down vote










                                      up vote
                                      1
                                      down vote









                                      We can adapt the formula derived in $(2)$ of this answer:
                                      $$
                                      log(2cos(x/2))=sum_{k=1}^inftyfrac{(-1)^{k-1}}kcos(kx)tag{1a}
                                      $$

                                      Substituting $xmapstopi-x$ in $text{(1a)}$, we get
                                      $$
                                      log(2sin(x/2))=sum_{k=1}^inftyfrac{-1}kcos(kx)tag{1b}
                                      $$

                                      Subtracting $text{(1a)}$ from $text{(1b)}$, the even terms cancel and we get
                                      $$
                                      bbox[5px,border:2px solid #C0A000]{log(tan(x/2))=sum_{k=0}^inftyfrac{-2}{2k+1}cos((2k+1)x)}tag2
                                      $$





                                      Therefore,
                                      $$
                                      begin{align}
                                      int_0^{pi/2}frac{x^2}{sin(x)},mathrm{d}x
                                      &=int_0^{pi/2}x^2,mathrm{d}log(tan(x/2))tag3\
                                      &=-2int_0^{pi/2}xlog(tan(x/2)),mathrm{d}xtag4\
                                      &=sum_{k=0}^inftyfrac4{2k+1}int_0^{pi/2}xcos((2k+1)x),mathrm{d}xtag5\
                                      &=sum_{k=0}^inftyfrac4{(2k+1)^2}int_0^{pi/2}x,mathrm{d}sin((2k+1)x)tag6\
                                      &=sum_{k=0}^inftyfrac4{(2k+1)^2}left[xsin((2k+1)x)+frac{cos((2k+1)x)}{2k+1}right]_0^{pi/2}tag7\
                                      &=sum_{k=0}^inftyfrac4{(2k+1)^2}left[fracpi2(-1)^k-frac1{2k+1}right]tag8\
                                      &=bbox[5px,border:2px solid #C0A000]{2pimathrm{G}-frac72zeta(3)}tag9
                                      end{align}
                                      $$

                                      Explanation:
                                      $(3)$: prepare to integrate by parts
                                      $(4)$: integrate by parts
                                      $(5)$: apply $(2)$
                                      $(6)$: prepare to integrate by parts
                                      $(7)$: integrate by parts
                                      $(8)$: apply the limits of integration
                                      $(9)$: evaluate, where $mathrm{G}$ is Catalan's Constant






                                      share|cite|improve this answer














                                      We can adapt the formula derived in $(2)$ of this answer:
                                      $$
                                      log(2cos(x/2))=sum_{k=1}^inftyfrac{(-1)^{k-1}}kcos(kx)tag{1a}
                                      $$

                                      Substituting $xmapstopi-x$ in $text{(1a)}$, we get
                                      $$
                                      log(2sin(x/2))=sum_{k=1}^inftyfrac{-1}kcos(kx)tag{1b}
                                      $$

                                      Subtracting $text{(1a)}$ from $text{(1b)}$, the even terms cancel and we get
                                      $$
                                      bbox[5px,border:2px solid #C0A000]{log(tan(x/2))=sum_{k=0}^inftyfrac{-2}{2k+1}cos((2k+1)x)}tag2
                                      $$





                                      Therefore,
                                      $$
                                      begin{align}
                                      int_0^{pi/2}frac{x^2}{sin(x)},mathrm{d}x
                                      &=int_0^{pi/2}x^2,mathrm{d}log(tan(x/2))tag3\
                                      &=-2int_0^{pi/2}xlog(tan(x/2)),mathrm{d}xtag4\
                                      &=sum_{k=0}^inftyfrac4{2k+1}int_0^{pi/2}xcos((2k+1)x),mathrm{d}xtag5\
                                      &=sum_{k=0}^inftyfrac4{(2k+1)^2}int_0^{pi/2}x,mathrm{d}sin((2k+1)x)tag6\
                                      &=sum_{k=0}^inftyfrac4{(2k+1)^2}left[xsin((2k+1)x)+frac{cos((2k+1)x)}{2k+1}right]_0^{pi/2}tag7\
                                      &=sum_{k=0}^inftyfrac4{(2k+1)^2}left[fracpi2(-1)^k-frac1{2k+1}right]tag8\
                                      &=bbox[5px,border:2px solid #C0A000]{2pimathrm{G}-frac72zeta(3)}tag9
                                      end{align}
                                      $$

                                      Explanation:
                                      $(3)$: prepare to integrate by parts
                                      $(4)$: integrate by parts
                                      $(5)$: apply $(2)$
                                      $(6)$: prepare to integrate by parts
                                      $(7)$: integrate by parts
                                      $(8)$: apply the limits of integration
                                      $(9)$: evaluate, where $mathrm{G}$ is Catalan's Constant







                                      share|cite|improve this answer














                                      share|cite|improve this answer



                                      share|cite|improve this answer








                                      edited Nov 15 at 3:31

























                                      answered Nov 14 at 7:22









                                      robjohn

                                      262k27300620




                                      262k27300620






























                                           

                                          draft saved


                                          draft discarded



















































                                           


                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function () {
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2714146%2fevaluate-int-0-frac-pi2-fracx2-sin-xdx%23new-answer', 'question_page');
                                          }
                                          );

                                          Post as a guest















                                          Required, but never shown





















































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown

































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown







                                          Popular posts from this blog

                                          Plaza Victoria

                                          In PowerPoint, is there a keyboard shortcut for bulleted / numbered list?

                                          How to put 3 figures in Latex with 2 figures side by side and 1 below these side by side images but in...