Integrate $int_{-infty}^infty [4(log r_1 - log r_2) - 2(x_1^2/r_1^2 - x_2^2/r_2^2)]^2 dx$











up vote
1
down vote

favorite












As the title suggests, I am having trouble evaluating the following definite integral:



$$int_{-infty}^infty left[4left(log r_1 - log r_2right) - 2left(frac{x_1^2}{r_1^2} - frac{x_2^2}{r_2^2}right)right]^2 dx$$



where



$$begin{align}
x_1 &= x-a\
x_2 &= x+a\
r_1^2 &= x_1^2 + z^2\
r_2^2 &= x_2^2 + z^2
end{align}$$



and $a > 0$, $z > 0$.



I've started by expanding the square, which gives



$$int_{-infty}^infty left[16left(log r_1 - log r_2right)^2 - 16left(log r_1 - log r_2right)left(frac{x_1^2}{r_1^2} - frac{x_2^2}{r_2^2}right) + 4left(frac{x_1^2}{r_1^2} - frac{x_2^2}{r_2^2}right)^2right] dx.$$



I managed to integrate the rightmost term $4(x_1^2/r_1^2 - x_2^2/r_2^2)^2$ using a partial fraction decomposition. However, I'm struggling with the two remaining terms: $16(log r_1 - log r_2)^2$ and $-16(log r_1 - log r_2)(x_1^2/r_1^2 - x_2^2/r_2^2)$.



I only know that the integral converges, as I am able to approach it numericaly by fixing $a$ and $z$.



If anyone has an idea on how to proceed, or, even better, has a solution, I'll take it.



Thanks!










share|cite|improve this question


























    up vote
    1
    down vote

    favorite












    As the title suggests, I am having trouble evaluating the following definite integral:



    $$int_{-infty}^infty left[4left(log r_1 - log r_2right) - 2left(frac{x_1^2}{r_1^2} - frac{x_2^2}{r_2^2}right)right]^2 dx$$



    where



    $$begin{align}
    x_1 &= x-a\
    x_2 &= x+a\
    r_1^2 &= x_1^2 + z^2\
    r_2^2 &= x_2^2 + z^2
    end{align}$$



    and $a > 0$, $z > 0$.



    I've started by expanding the square, which gives



    $$int_{-infty}^infty left[16left(log r_1 - log r_2right)^2 - 16left(log r_1 - log r_2right)left(frac{x_1^2}{r_1^2} - frac{x_2^2}{r_2^2}right) + 4left(frac{x_1^2}{r_1^2} - frac{x_2^2}{r_2^2}right)^2right] dx.$$



    I managed to integrate the rightmost term $4(x_1^2/r_1^2 - x_2^2/r_2^2)^2$ using a partial fraction decomposition. However, I'm struggling with the two remaining terms: $16(log r_1 - log r_2)^2$ and $-16(log r_1 - log r_2)(x_1^2/r_1^2 - x_2^2/r_2^2)$.



    I only know that the integral converges, as I am able to approach it numericaly by fixing $a$ and $z$.



    If anyone has an idea on how to proceed, or, even better, has a solution, I'll take it.



    Thanks!










    share|cite|improve this question
























      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite











      As the title suggests, I am having trouble evaluating the following definite integral:



      $$int_{-infty}^infty left[4left(log r_1 - log r_2right) - 2left(frac{x_1^2}{r_1^2} - frac{x_2^2}{r_2^2}right)right]^2 dx$$



      where



      $$begin{align}
      x_1 &= x-a\
      x_2 &= x+a\
      r_1^2 &= x_1^2 + z^2\
      r_2^2 &= x_2^2 + z^2
      end{align}$$



      and $a > 0$, $z > 0$.



      I've started by expanding the square, which gives



      $$int_{-infty}^infty left[16left(log r_1 - log r_2right)^2 - 16left(log r_1 - log r_2right)left(frac{x_1^2}{r_1^2} - frac{x_2^2}{r_2^2}right) + 4left(frac{x_1^2}{r_1^2} - frac{x_2^2}{r_2^2}right)^2right] dx.$$



      I managed to integrate the rightmost term $4(x_1^2/r_1^2 - x_2^2/r_2^2)^2$ using a partial fraction decomposition. However, I'm struggling with the two remaining terms: $16(log r_1 - log r_2)^2$ and $-16(log r_1 - log r_2)(x_1^2/r_1^2 - x_2^2/r_2^2)$.



      I only know that the integral converges, as I am able to approach it numericaly by fixing $a$ and $z$.



      If anyone has an idea on how to proceed, or, even better, has a solution, I'll take it.



      Thanks!










      share|cite|improve this question













      As the title suggests, I am having trouble evaluating the following definite integral:



      $$int_{-infty}^infty left[4left(log r_1 - log r_2right) - 2left(frac{x_1^2}{r_1^2} - frac{x_2^2}{r_2^2}right)right]^2 dx$$



      where



      $$begin{align}
      x_1 &= x-a\
      x_2 &= x+a\
      r_1^2 &= x_1^2 + z^2\
      r_2^2 &= x_2^2 + z^2
      end{align}$$



      and $a > 0$, $z > 0$.



      I've started by expanding the square, which gives



      $$int_{-infty}^infty left[16left(log r_1 - log r_2right)^2 - 16left(log r_1 - log r_2right)left(frac{x_1^2}{r_1^2} - frac{x_2^2}{r_2^2}right) + 4left(frac{x_1^2}{r_1^2} - frac{x_2^2}{r_2^2}right)^2right] dx.$$



      I managed to integrate the rightmost term $4(x_1^2/r_1^2 - x_2^2/r_2^2)^2$ using a partial fraction decomposition. However, I'm struggling with the two remaining terms: $16(log r_1 - log r_2)^2$ and $-16(log r_1 - log r_2)(x_1^2/r_1^2 - x_2^2/r_2^2)$.



      I only know that the integral converges, as I am able to approach it numericaly by fixing $a$ and $z$.



      If anyone has an idea on how to proceed, or, even better, has a solution, I'll take it.



      Thanks!







      calculus integration logarithms polylogarithm






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Nov 21 at 15:15









      Son Pham-Ba

      61




      61



























          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007839%2fintegrate-int-infty-infty-4-log-r-1-log-r-2-2x-12-r-12-x-22%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007839%2fintegrate-int-infty-infty-4-log-r-1-log-r-2-2x-12-r-12-x-22%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Plaza Victoria

          Puebla de Zaragoza

          Musa