Polygamma expression for $frac{Gamma^{(k)}(z)}{Gamma(z)}$?











up vote
1
down vote

favorite












I'm trying to simplify



$$frac{Gamma^{(k)}(z)}{Gamma(z)}$$



for $k=1,2,cdots$, using polygamma notation





Try



I've calculated a few, using



$$Gamma^{(k)}(z) = int_0^infty (log x)^k x^{z-1} e^{-x} dx$$



but I'm not sure if there is any way to generalize.



$$
begin{aligned}
frac{Gamma^{(1)}(z)}{Gamma(z)} &= psi^{(0)}(z) \
frac{Gamma^{(2)}(z)}{Gamma(z)} &= psi^{(1)}(z) +left(psi^{(0)}(z)right)^2 \
frac{Gamma^{(3)}(z)}{Gamma(z)} &= psi^{(2)}(z) + 3 psi^{(1)}(z) psi^{(0)}(z)+left(psi^{(0)}(z)right)^3 \
frac{Gamma^{(4)}(z)}{Gamma(z)} &= psi^{(3)}(z) + 4 psi^{(2)}(z) psi^{(0)}(z)+ 6 psi^{(1)}(z) left(psi^{(0)}(z)right)^2+ 3 psi^{(1)}(z)^2 +left(psi^{(0)}(z)right)^4 \
end{aligned}
$$










share|cite|improve this question




















  • 1




    I think you've mixed up $x$ and $z$ in your integral formula.
    – Robert Israel
    Nov 21 at 15:29










  • @RobertIsrael True, a lot to edit. Thnx
    – Moreblue
    Nov 21 at 15:31















up vote
1
down vote

favorite












I'm trying to simplify



$$frac{Gamma^{(k)}(z)}{Gamma(z)}$$



for $k=1,2,cdots$, using polygamma notation





Try



I've calculated a few, using



$$Gamma^{(k)}(z) = int_0^infty (log x)^k x^{z-1} e^{-x} dx$$



but I'm not sure if there is any way to generalize.



$$
begin{aligned}
frac{Gamma^{(1)}(z)}{Gamma(z)} &= psi^{(0)}(z) \
frac{Gamma^{(2)}(z)}{Gamma(z)} &= psi^{(1)}(z) +left(psi^{(0)}(z)right)^2 \
frac{Gamma^{(3)}(z)}{Gamma(z)} &= psi^{(2)}(z) + 3 psi^{(1)}(z) psi^{(0)}(z)+left(psi^{(0)}(z)right)^3 \
frac{Gamma^{(4)}(z)}{Gamma(z)} &= psi^{(3)}(z) + 4 psi^{(2)}(z) psi^{(0)}(z)+ 6 psi^{(1)}(z) left(psi^{(0)}(z)right)^2+ 3 psi^{(1)}(z)^2 +left(psi^{(0)}(z)right)^4 \
end{aligned}
$$










share|cite|improve this question




















  • 1




    I think you've mixed up $x$ and $z$ in your integral formula.
    – Robert Israel
    Nov 21 at 15:29










  • @RobertIsrael True, a lot to edit. Thnx
    – Moreblue
    Nov 21 at 15:31













up vote
1
down vote

favorite









up vote
1
down vote

favorite











I'm trying to simplify



$$frac{Gamma^{(k)}(z)}{Gamma(z)}$$



for $k=1,2,cdots$, using polygamma notation





Try



I've calculated a few, using



$$Gamma^{(k)}(z) = int_0^infty (log x)^k x^{z-1} e^{-x} dx$$



but I'm not sure if there is any way to generalize.



$$
begin{aligned}
frac{Gamma^{(1)}(z)}{Gamma(z)} &= psi^{(0)}(z) \
frac{Gamma^{(2)}(z)}{Gamma(z)} &= psi^{(1)}(z) +left(psi^{(0)}(z)right)^2 \
frac{Gamma^{(3)}(z)}{Gamma(z)} &= psi^{(2)}(z) + 3 psi^{(1)}(z) psi^{(0)}(z)+left(psi^{(0)}(z)right)^3 \
frac{Gamma^{(4)}(z)}{Gamma(z)} &= psi^{(3)}(z) + 4 psi^{(2)}(z) psi^{(0)}(z)+ 6 psi^{(1)}(z) left(psi^{(0)}(z)right)^2+ 3 psi^{(1)}(z)^2 +left(psi^{(0)}(z)right)^4 \
end{aligned}
$$










share|cite|improve this question















I'm trying to simplify



$$frac{Gamma^{(k)}(z)}{Gamma(z)}$$



for $k=1,2,cdots$, using polygamma notation





Try



I've calculated a few, using



$$Gamma^{(k)}(z) = int_0^infty (log x)^k x^{z-1} e^{-x} dx$$



but I'm not sure if there is any way to generalize.



$$
begin{aligned}
frac{Gamma^{(1)}(z)}{Gamma(z)} &= psi^{(0)}(z) \
frac{Gamma^{(2)}(z)}{Gamma(z)} &= psi^{(1)}(z) +left(psi^{(0)}(z)right)^2 \
frac{Gamma^{(3)}(z)}{Gamma(z)} &= psi^{(2)}(z) + 3 psi^{(1)}(z) psi^{(0)}(z)+left(psi^{(0)}(z)right)^3 \
frac{Gamma^{(4)}(z)}{Gamma(z)} &= psi^{(3)}(z) + 4 psi^{(2)}(z) psi^{(0)}(z)+ 6 psi^{(1)}(z) left(psi^{(0)}(z)right)^2+ 3 psi^{(1)}(z)^2 +left(psi^{(0)}(z)right)^4 \
end{aligned}
$$







gamma-function polygamma






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 21 at 15:34

























asked Nov 21 at 15:27









Moreblue

851216




851216








  • 1




    I think you've mixed up $x$ and $z$ in your integral formula.
    – Robert Israel
    Nov 21 at 15:29










  • @RobertIsrael True, a lot to edit. Thnx
    – Moreblue
    Nov 21 at 15:31














  • 1




    I think you've mixed up $x$ and $z$ in your integral formula.
    – Robert Israel
    Nov 21 at 15:29










  • @RobertIsrael True, a lot to edit. Thnx
    – Moreblue
    Nov 21 at 15:31








1




1




I think you've mixed up $x$ and $z$ in your integral formula.
– Robert Israel
Nov 21 at 15:29




I think you've mixed up $x$ and $z$ in your integral formula.
– Robert Israel
Nov 21 at 15:29












@RobertIsrael True, a lot to edit. Thnx
– Moreblue
Nov 21 at 15:31




@RobertIsrael True, a lot to edit. Thnx
– Moreblue
Nov 21 at 15:31










1 Answer
1






active

oldest

votes

















up vote
1
down vote



accepted










Of course the exponential generating function is



$$ sum_{n=0}^infty frac{s^n}{n!} frac{Gamma^{(n)}(z)}{Gamma(z)} = frac{Gamma(z+s)}{Gamma(z)} $$
so basically you want the Taylor coefficients of $Gamma$ around $z$.



Now $ln(Gamma)$ has a nice series:



$$ ln(Gamma(z+s)) = ln(Gamma(z)) + sum_{k=1}^{infty} frac{Psi^{(k-1)}(z)}{k!} s^k $$



so



$$ frac{Gamma(z+s)}{Gamma(z)} = exp left(sum_{k=1}^infty frac{Psi^{(k-1)}(z)}{k!} s^k right) = prod_{k=1}^infty expleft(frac{Psi^{(k-1)}(z)}{k!} s^kright) $$



and the coefficient of $s^n$ here is



$$ sum_{sum_k k m_k = n} prod_{k=1}^infty frac{(Psi^{(k-1)}(z))^{m_k}}{(k!)^{m_k} m_k!}$$



the sum being over all sequences $m = (m_1, m_2, ldots)$ of nonnegative integers with $sum_k k m_k = n$. These correspond to partitions of $n$, where $m_k$ is the number of occurences of $k$ in the partition. Multiply by $n!$
to get $Gamma^{(n)}(z)/Gamma(z)$. Thus for $n=3$, the partitions of $3$ are $1+1+1$, $1+2$ and $3$, corresponding to the terms
$Psi^{(0)}(z)^3$, $3 Psi^{(0)}(z) Psi^{(1)}(z)$ and $Psi^{(2)}(z)$ respectively.






share|cite|improve this answer























    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007862%2fpolygamma-expression-for-frac-gammakz-gammaz%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    1
    down vote



    accepted










    Of course the exponential generating function is



    $$ sum_{n=0}^infty frac{s^n}{n!} frac{Gamma^{(n)}(z)}{Gamma(z)} = frac{Gamma(z+s)}{Gamma(z)} $$
    so basically you want the Taylor coefficients of $Gamma$ around $z$.



    Now $ln(Gamma)$ has a nice series:



    $$ ln(Gamma(z+s)) = ln(Gamma(z)) + sum_{k=1}^{infty} frac{Psi^{(k-1)}(z)}{k!} s^k $$



    so



    $$ frac{Gamma(z+s)}{Gamma(z)} = exp left(sum_{k=1}^infty frac{Psi^{(k-1)}(z)}{k!} s^k right) = prod_{k=1}^infty expleft(frac{Psi^{(k-1)}(z)}{k!} s^kright) $$



    and the coefficient of $s^n$ here is



    $$ sum_{sum_k k m_k = n} prod_{k=1}^infty frac{(Psi^{(k-1)}(z))^{m_k}}{(k!)^{m_k} m_k!}$$



    the sum being over all sequences $m = (m_1, m_2, ldots)$ of nonnegative integers with $sum_k k m_k = n$. These correspond to partitions of $n$, where $m_k$ is the number of occurences of $k$ in the partition. Multiply by $n!$
    to get $Gamma^{(n)}(z)/Gamma(z)$. Thus for $n=3$, the partitions of $3$ are $1+1+1$, $1+2$ and $3$, corresponding to the terms
    $Psi^{(0)}(z)^3$, $3 Psi^{(0)}(z) Psi^{(1)}(z)$ and $Psi^{(2)}(z)$ respectively.






    share|cite|improve this answer



























      up vote
      1
      down vote



      accepted










      Of course the exponential generating function is



      $$ sum_{n=0}^infty frac{s^n}{n!} frac{Gamma^{(n)}(z)}{Gamma(z)} = frac{Gamma(z+s)}{Gamma(z)} $$
      so basically you want the Taylor coefficients of $Gamma$ around $z$.



      Now $ln(Gamma)$ has a nice series:



      $$ ln(Gamma(z+s)) = ln(Gamma(z)) + sum_{k=1}^{infty} frac{Psi^{(k-1)}(z)}{k!} s^k $$



      so



      $$ frac{Gamma(z+s)}{Gamma(z)} = exp left(sum_{k=1}^infty frac{Psi^{(k-1)}(z)}{k!} s^k right) = prod_{k=1}^infty expleft(frac{Psi^{(k-1)}(z)}{k!} s^kright) $$



      and the coefficient of $s^n$ here is



      $$ sum_{sum_k k m_k = n} prod_{k=1}^infty frac{(Psi^{(k-1)}(z))^{m_k}}{(k!)^{m_k} m_k!}$$



      the sum being over all sequences $m = (m_1, m_2, ldots)$ of nonnegative integers with $sum_k k m_k = n$. These correspond to partitions of $n$, where $m_k$ is the number of occurences of $k$ in the partition. Multiply by $n!$
      to get $Gamma^{(n)}(z)/Gamma(z)$. Thus for $n=3$, the partitions of $3$ are $1+1+1$, $1+2$ and $3$, corresponding to the terms
      $Psi^{(0)}(z)^3$, $3 Psi^{(0)}(z) Psi^{(1)}(z)$ and $Psi^{(2)}(z)$ respectively.






      share|cite|improve this answer

























        up vote
        1
        down vote



        accepted







        up vote
        1
        down vote



        accepted






        Of course the exponential generating function is



        $$ sum_{n=0}^infty frac{s^n}{n!} frac{Gamma^{(n)}(z)}{Gamma(z)} = frac{Gamma(z+s)}{Gamma(z)} $$
        so basically you want the Taylor coefficients of $Gamma$ around $z$.



        Now $ln(Gamma)$ has a nice series:



        $$ ln(Gamma(z+s)) = ln(Gamma(z)) + sum_{k=1}^{infty} frac{Psi^{(k-1)}(z)}{k!} s^k $$



        so



        $$ frac{Gamma(z+s)}{Gamma(z)} = exp left(sum_{k=1}^infty frac{Psi^{(k-1)}(z)}{k!} s^k right) = prod_{k=1}^infty expleft(frac{Psi^{(k-1)}(z)}{k!} s^kright) $$



        and the coefficient of $s^n$ here is



        $$ sum_{sum_k k m_k = n} prod_{k=1}^infty frac{(Psi^{(k-1)}(z))^{m_k}}{(k!)^{m_k} m_k!}$$



        the sum being over all sequences $m = (m_1, m_2, ldots)$ of nonnegative integers with $sum_k k m_k = n$. These correspond to partitions of $n$, where $m_k$ is the number of occurences of $k$ in the partition. Multiply by $n!$
        to get $Gamma^{(n)}(z)/Gamma(z)$. Thus for $n=3$, the partitions of $3$ are $1+1+1$, $1+2$ and $3$, corresponding to the terms
        $Psi^{(0)}(z)^3$, $3 Psi^{(0)}(z) Psi^{(1)}(z)$ and $Psi^{(2)}(z)$ respectively.






        share|cite|improve this answer














        Of course the exponential generating function is



        $$ sum_{n=0}^infty frac{s^n}{n!} frac{Gamma^{(n)}(z)}{Gamma(z)} = frac{Gamma(z+s)}{Gamma(z)} $$
        so basically you want the Taylor coefficients of $Gamma$ around $z$.



        Now $ln(Gamma)$ has a nice series:



        $$ ln(Gamma(z+s)) = ln(Gamma(z)) + sum_{k=1}^{infty} frac{Psi^{(k-1)}(z)}{k!} s^k $$



        so



        $$ frac{Gamma(z+s)}{Gamma(z)} = exp left(sum_{k=1}^infty frac{Psi^{(k-1)}(z)}{k!} s^k right) = prod_{k=1}^infty expleft(frac{Psi^{(k-1)}(z)}{k!} s^kright) $$



        and the coefficient of $s^n$ here is



        $$ sum_{sum_k k m_k = n} prod_{k=1}^infty frac{(Psi^{(k-1)}(z))^{m_k}}{(k!)^{m_k} m_k!}$$



        the sum being over all sequences $m = (m_1, m_2, ldots)$ of nonnegative integers with $sum_k k m_k = n$. These correspond to partitions of $n$, where $m_k$ is the number of occurences of $k$ in the partition. Multiply by $n!$
        to get $Gamma^{(n)}(z)/Gamma(z)$. Thus for $n=3$, the partitions of $3$ are $1+1+1$, $1+2$ and $3$, corresponding to the terms
        $Psi^{(0)}(z)^3$, $3 Psi^{(0)}(z) Psi^{(1)}(z)$ and $Psi^{(2)}(z)$ respectively.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Nov 21 at 16:17

























        answered Nov 21 at 16:07









        Robert Israel

        317k23206457




        317k23206457






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007862%2fpolygamma-expression-for-frac-gammakz-gammaz%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Plaza Victoria

            Puebla de Zaragoza

            Musa