Polygamma expression for $frac{Gamma^{(k)}(z)}{Gamma(z)}$?
up vote
1
down vote
favorite
I'm trying to simplify
$$frac{Gamma^{(k)}(z)}{Gamma(z)}$$
for $k=1,2,cdots$, using polygamma notation
Try
I've calculated a few, using
$$Gamma^{(k)}(z) = int_0^infty (log x)^k x^{z-1} e^{-x} dx$$
but I'm not sure if there is any way to generalize.
$$
begin{aligned}
frac{Gamma^{(1)}(z)}{Gamma(z)} &= psi^{(0)}(z) \
frac{Gamma^{(2)}(z)}{Gamma(z)} &= psi^{(1)}(z) +left(psi^{(0)}(z)right)^2 \
frac{Gamma^{(3)}(z)}{Gamma(z)} &= psi^{(2)}(z) + 3 psi^{(1)}(z) psi^{(0)}(z)+left(psi^{(0)}(z)right)^3 \
frac{Gamma^{(4)}(z)}{Gamma(z)} &= psi^{(3)}(z) + 4 psi^{(2)}(z) psi^{(0)}(z)+ 6 psi^{(1)}(z) left(psi^{(0)}(z)right)^2+ 3 psi^{(1)}(z)^2 +left(psi^{(0)}(z)right)^4 \
end{aligned}
$$
gamma-function polygamma
add a comment |
up vote
1
down vote
favorite
I'm trying to simplify
$$frac{Gamma^{(k)}(z)}{Gamma(z)}$$
for $k=1,2,cdots$, using polygamma notation
Try
I've calculated a few, using
$$Gamma^{(k)}(z) = int_0^infty (log x)^k x^{z-1} e^{-x} dx$$
but I'm not sure if there is any way to generalize.
$$
begin{aligned}
frac{Gamma^{(1)}(z)}{Gamma(z)} &= psi^{(0)}(z) \
frac{Gamma^{(2)}(z)}{Gamma(z)} &= psi^{(1)}(z) +left(psi^{(0)}(z)right)^2 \
frac{Gamma^{(3)}(z)}{Gamma(z)} &= psi^{(2)}(z) + 3 psi^{(1)}(z) psi^{(0)}(z)+left(psi^{(0)}(z)right)^3 \
frac{Gamma^{(4)}(z)}{Gamma(z)} &= psi^{(3)}(z) + 4 psi^{(2)}(z) psi^{(0)}(z)+ 6 psi^{(1)}(z) left(psi^{(0)}(z)right)^2+ 3 psi^{(1)}(z)^2 +left(psi^{(0)}(z)right)^4 \
end{aligned}
$$
gamma-function polygamma
1
I think you've mixed up $x$ and $z$ in your integral formula.
– Robert Israel
Nov 21 at 15:29
@RobertIsrael True, a lot to edit. Thnx
– Moreblue
Nov 21 at 15:31
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
I'm trying to simplify
$$frac{Gamma^{(k)}(z)}{Gamma(z)}$$
for $k=1,2,cdots$, using polygamma notation
Try
I've calculated a few, using
$$Gamma^{(k)}(z) = int_0^infty (log x)^k x^{z-1} e^{-x} dx$$
but I'm not sure if there is any way to generalize.
$$
begin{aligned}
frac{Gamma^{(1)}(z)}{Gamma(z)} &= psi^{(0)}(z) \
frac{Gamma^{(2)}(z)}{Gamma(z)} &= psi^{(1)}(z) +left(psi^{(0)}(z)right)^2 \
frac{Gamma^{(3)}(z)}{Gamma(z)} &= psi^{(2)}(z) + 3 psi^{(1)}(z) psi^{(0)}(z)+left(psi^{(0)}(z)right)^3 \
frac{Gamma^{(4)}(z)}{Gamma(z)} &= psi^{(3)}(z) + 4 psi^{(2)}(z) psi^{(0)}(z)+ 6 psi^{(1)}(z) left(psi^{(0)}(z)right)^2+ 3 psi^{(1)}(z)^2 +left(psi^{(0)}(z)right)^4 \
end{aligned}
$$
gamma-function polygamma
I'm trying to simplify
$$frac{Gamma^{(k)}(z)}{Gamma(z)}$$
for $k=1,2,cdots$, using polygamma notation
Try
I've calculated a few, using
$$Gamma^{(k)}(z) = int_0^infty (log x)^k x^{z-1} e^{-x} dx$$
but I'm not sure if there is any way to generalize.
$$
begin{aligned}
frac{Gamma^{(1)}(z)}{Gamma(z)} &= psi^{(0)}(z) \
frac{Gamma^{(2)}(z)}{Gamma(z)} &= psi^{(1)}(z) +left(psi^{(0)}(z)right)^2 \
frac{Gamma^{(3)}(z)}{Gamma(z)} &= psi^{(2)}(z) + 3 psi^{(1)}(z) psi^{(0)}(z)+left(psi^{(0)}(z)right)^3 \
frac{Gamma^{(4)}(z)}{Gamma(z)} &= psi^{(3)}(z) + 4 psi^{(2)}(z) psi^{(0)}(z)+ 6 psi^{(1)}(z) left(psi^{(0)}(z)right)^2+ 3 psi^{(1)}(z)^2 +left(psi^{(0)}(z)right)^4 \
end{aligned}
$$
gamma-function polygamma
gamma-function polygamma
edited Nov 21 at 15:34
asked Nov 21 at 15:27
Moreblue
851216
851216
1
I think you've mixed up $x$ and $z$ in your integral formula.
– Robert Israel
Nov 21 at 15:29
@RobertIsrael True, a lot to edit. Thnx
– Moreblue
Nov 21 at 15:31
add a comment |
1
I think you've mixed up $x$ and $z$ in your integral formula.
– Robert Israel
Nov 21 at 15:29
@RobertIsrael True, a lot to edit. Thnx
– Moreblue
Nov 21 at 15:31
1
1
I think you've mixed up $x$ and $z$ in your integral formula.
– Robert Israel
Nov 21 at 15:29
I think you've mixed up $x$ and $z$ in your integral formula.
– Robert Israel
Nov 21 at 15:29
@RobertIsrael True, a lot to edit. Thnx
– Moreblue
Nov 21 at 15:31
@RobertIsrael True, a lot to edit. Thnx
– Moreblue
Nov 21 at 15:31
add a comment |
1 Answer
1
active
oldest
votes
up vote
1
down vote
accepted
Of course the exponential generating function is
$$ sum_{n=0}^infty frac{s^n}{n!} frac{Gamma^{(n)}(z)}{Gamma(z)} = frac{Gamma(z+s)}{Gamma(z)} $$
so basically you want the Taylor coefficients of $Gamma$ around $z$.
Now $ln(Gamma)$ has a nice series:
$$ ln(Gamma(z+s)) = ln(Gamma(z)) + sum_{k=1}^{infty} frac{Psi^{(k-1)}(z)}{k!} s^k $$
so
$$ frac{Gamma(z+s)}{Gamma(z)} = exp left(sum_{k=1}^infty frac{Psi^{(k-1)}(z)}{k!} s^k right) = prod_{k=1}^infty expleft(frac{Psi^{(k-1)}(z)}{k!} s^kright) $$
and the coefficient of $s^n$ here is
$$ sum_{sum_k k m_k = n} prod_{k=1}^infty frac{(Psi^{(k-1)}(z))^{m_k}}{(k!)^{m_k} m_k!}$$
the sum being over all sequences $m = (m_1, m_2, ldots)$ of nonnegative integers with $sum_k k m_k = n$. These correspond to partitions of $n$, where $m_k$ is the number of occurences of $k$ in the partition. Multiply by $n!$
to get $Gamma^{(n)}(z)/Gamma(z)$. Thus for $n=3$, the partitions of $3$ are $1+1+1$, $1+2$ and $3$, corresponding to the terms
$Psi^{(0)}(z)^3$, $3 Psi^{(0)}(z) Psi^{(1)}(z)$ and $Psi^{(2)}(z)$ respectively.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007862%2fpolygamma-expression-for-frac-gammakz-gammaz%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
Of course the exponential generating function is
$$ sum_{n=0}^infty frac{s^n}{n!} frac{Gamma^{(n)}(z)}{Gamma(z)} = frac{Gamma(z+s)}{Gamma(z)} $$
so basically you want the Taylor coefficients of $Gamma$ around $z$.
Now $ln(Gamma)$ has a nice series:
$$ ln(Gamma(z+s)) = ln(Gamma(z)) + sum_{k=1}^{infty} frac{Psi^{(k-1)}(z)}{k!} s^k $$
so
$$ frac{Gamma(z+s)}{Gamma(z)} = exp left(sum_{k=1}^infty frac{Psi^{(k-1)}(z)}{k!} s^k right) = prod_{k=1}^infty expleft(frac{Psi^{(k-1)}(z)}{k!} s^kright) $$
and the coefficient of $s^n$ here is
$$ sum_{sum_k k m_k = n} prod_{k=1}^infty frac{(Psi^{(k-1)}(z))^{m_k}}{(k!)^{m_k} m_k!}$$
the sum being over all sequences $m = (m_1, m_2, ldots)$ of nonnegative integers with $sum_k k m_k = n$. These correspond to partitions of $n$, where $m_k$ is the number of occurences of $k$ in the partition. Multiply by $n!$
to get $Gamma^{(n)}(z)/Gamma(z)$. Thus for $n=3$, the partitions of $3$ are $1+1+1$, $1+2$ and $3$, corresponding to the terms
$Psi^{(0)}(z)^3$, $3 Psi^{(0)}(z) Psi^{(1)}(z)$ and $Psi^{(2)}(z)$ respectively.
add a comment |
up vote
1
down vote
accepted
Of course the exponential generating function is
$$ sum_{n=0}^infty frac{s^n}{n!} frac{Gamma^{(n)}(z)}{Gamma(z)} = frac{Gamma(z+s)}{Gamma(z)} $$
so basically you want the Taylor coefficients of $Gamma$ around $z$.
Now $ln(Gamma)$ has a nice series:
$$ ln(Gamma(z+s)) = ln(Gamma(z)) + sum_{k=1}^{infty} frac{Psi^{(k-1)}(z)}{k!} s^k $$
so
$$ frac{Gamma(z+s)}{Gamma(z)} = exp left(sum_{k=1}^infty frac{Psi^{(k-1)}(z)}{k!} s^k right) = prod_{k=1}^infty expleft(frac{Psi^{(k-1)}(z)}{k!} s^kright) $$
and the coefficient of $s^n$ here is
$$ sum_{sum_k k m_k = n} prod_{k=1}^infty frac{(Psi^{(k-1)}(z))^{m_k}}{(k!)^{m_k} m_k!}$$
the sum being over all sequences $m = (m_1, m_2, ldots)$ of nonnegative integers with $sum_k k m_k = n$. These correspond to partitions of $n$, where $m_k$ is the number of occurences of $k$ in the partition. Multiply by $n!$
to get $Gamma^{(n)}(z)/Gamma(z)$. Thus for $n=3$, the partitions of $3$ are $1+1+1$, $1+2$ and $3$, corresponding to the terms
$Psi^{(0)}(z)^3$, $3 Psi^{(0)}(z) Psi^{(1)}(z)$ and $Psi^{(2)}(z)$ respectively.
add a comment |
up vote
1
down vote
accepted
up vote
1
down vote
accepted
Of course the exponential generating function is
$$ sum_{n=0}^infty frac{s^n}{n!} frac{Gamma^{(n)}(z)}{Gamma(z)} = frac{Gamma(z+s)}{Gamma(z)} $$
so basically you want the Taylor coefficients of $Gamma$ around $z$.
Now $ln(Gamma)$ has a nice series:
$$ ln(Gamma(z+s)) = ln(Gamma(z)) + sum_{k=1}^{infty} frac{Psi^{(k-1)}(z)}{k!} s^k $$
so
$$ frac{Gamma(z+s)}{Gamma(z)} = exp left(sum_{k=1}^infty frac{Psi^{(k-1)}(z)}{k!} s^k right) = prod_{k=1}^infty expleft(frac{Psi^{(k-1)}(z)}{k!} s^kright) $$
and the coefficient of $s^n$ here is
$$ sum_{sum_k k m_k = n} prod_{k=1}^infty frac{(Psi^{(k-1)}(z))^{m_k}}{(k!)^{m_k} m_k!}$$
the sum being over all sequences $m = (m_1, m_2, ldots)$ of nonnegative integers with $sum_k k m_k = n$. These correspond to partitions of $n$, where $m_k$ is the number of occurences of $k$ in the partition. Multiply by $n!$
to get $Gamma^{(n)}(z)/Gamma(z)$. Thus for $n=3$, the partitions of $3$ are $1+1+1$, $1+2$ and $3$, corresponding to the terms
$Psi^{(0)}(z)^3$, $3 Psi^{(0)}(z) Psi^{(1)}(z)$ and $Psi^{(2)}(z)$ respectively.
Of course the exponential generating function is
$$ sum_{n=0}^infty frac{s^n}{n!} frac{Gamma^{(n)}(z)}{Gamma(z)} = frac{Gamma(z+s)}{Gamma(z)} $$
so basically you want the Taylor coefficients of $Gamma$ around $z$.
Now $ln(Gamma)$ has a nice series:
$$ ln(Gamma(z+s)) = ln(Gamma(z)) + sum_{k=1}^{infty} frac{Psi^{(k-1)}(z)}{k!} s^k $$
so
$$ frac{Gamma(z+s)}{Gamma(z)} = exp left(sum_{k=1}^infty frac{Psi^{(k-1)}(z)}{k!} s^k right) = prod_{k=1}^infty expleft(frac{Psi^{(k-1)}(z)}{k!} s^kright) $$
and the coefficient of $s^n$ here is
$$ sum_{sum_k k m_k = n} prod_{k=1}^infty frac{(Psi^{(k-1)}(z))^{m_k}}{(k!)^{m_k} m_k!}$$
the sum being over all sequences $m = (m_1, m_2, ldots)$ of nonnegative integers with $sum_k k m_k = n$. These correspond to partitions of $n$, where $m_k$ is the number of occurences of $k$ in the partition. Multiply by $n!$
to get $Gamma^{(n)}(z)/Gamma(z)$. Thus for $n=3$, the partitions of $3$ are $1+1+1$, $1+2$ and $3$, corresponding to the terms
$Psi^{(0)}(z)^3$, $3 Psi^{(0)}(z) Psi^{(1)}(z)$ and $Psi^{(2)}(z)$ respectively.
edited Nov 21 at 16:17
answered Nov 21 at 16:07
Robert Israel
317k23206457
317k23206457
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007862%2fpolygamma-expression-for-frac-gammakz-gammaz%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
I think you've mixed up $x$ and $z$ in your integral formula.
– Robert Israel
Nov 21 at 15:29
@RobertIsrael True, a lot to edit. Thnx
– Moreblue
Nov 21 at 15:31