Error bounds for Gauss-Hermite quadrature, for analytic functions
$begingroup$
I am working with the class of analytic functions and I want to derive some estimates, using error bounds for Gauss-Hermite quadrature, for analytic functions (based on Bernstein ellipses).
The issue is that I only know the result for the class of functions with finite smoothness, which says that: if $f$ is such that $i)$ $f,f^{prime},dots,f^{(k-1)}$ are absolutely continuous in $(-infty,+infty)$ and $ii)$ for $j=0,1,dots,k$, for some $k ge 2$ such that
$$underset{x rightarrow infty}{lim} e^{-x^2/2} f^{(i)}(x)=0,quad U=sqrt{int_{-infty}^{+infty} e^{-x^2} [f^{(k+1)}(x)]^2 dx} < infty.$$
Then for each $N ge k/2+1$,
begin{align}
|I[f]-Q_N^{text{GH}}[f]|le frac{1.632 sqrt{pi (N-1) }U}{(k-1) sqrt{(2N-3) dots (2N-k-2)}}
end{align}
where $I[f]= int_{-infty}^{+infty} f(x) dx$ and $Q_N^{text{GH}}[f]$ is the Gauss-Hermite quadrature.
Is there any reference or a way to derive similar result for the class of analytic functions. Thanks.
reference-request numerical-methods analyticity analytic-functions gaussian-integral
$endgroup$
add a comment |
$begingroup$
I am working with the class of analytic functions and I want to derive some estimates, using error bounds for Gauss-Hermite quadrature, for analytic functions (based on Bernstein ellipses).
The issue is that I only know the result for the class of functions with finite smoothness, which says that: if $f$ is such that $i)$ $f,f^{prime},dots,f^{(k-1)}$ are absolutely continuous in $(-infty,+infty)$ and $ii)$ for $j=0,1,dots,k$, for some $k ge 2$ such that
$$underset{x rightarrow infty}{lim} e^{-x^2/2} f^{(i)}(x)=0,quad U=sqrt{int_{-infty}^{+infty} e^{-x^2} [f^{(k+1)}(x)]^2 dx} < infty.$$
Then for each $N ge k/2+1$,
begin{align}
|I[f]-Q_N^{text{GH}}[f]|le frac{1.632 sqrt{pi (N-1) }U}{(k-1) sqrt{(2N-3) dots (2N-k-2)}}
end{align}
where $I[f]= int_{-infty}^{+infty} f(x) dx$ and $Q_N^{text{GH}}[f]$ is the Gauss-Hermite quadrature.
Is there any reference or a way to derive similar result for the class of analytic functions. Thanks.
reference-request numerical-methods analyticity analytic-functions gaussian-integral
$endgroup$
add a comment |
$begingroup$
I am working with the class of analytic functions and I want to derive some estimates, using error bounds for Gauss-Hermite quadrature, for analytic functions (based on Bernstein ellipses).
The issue is that I only know the result for the class of functions with finite smoothness, which says that: if $f$ is such that $i)$ $f,f^{prime},dots,f^{(k-1)}$ are absolutely continuous in $(-infty,+infty)$ and $ii)$ for $j=0,1,dots,k$, for some $k ge 2$ such that
$$underset{x rightarrow infty}{lim} e^{-x^2/2} f^{(i)}(x)=0,quad U=sqrt{int_{-infty}^{+infty} e^{-x^2} [f^{(k+1)}(x)]^2 dx} < infty.$$
Then for each $N ge k/2+1$,
begin{align}
|I[f]-Q_N^{text{GH}}[f]|le frac{1.632 sqrt{pi (N-1) }U}{(k-1) sqrt{(2N-3) dots (2N-k-2)}}
end{align}
where $I[f]= int_{-infty}^{+infty} f(x) dx$ and $Q_N^{text{GH}}[f]$ is the Gauss-Hermite quadrature.
Is there any reference or a way to derive similar result for the class of analytic functions. Thanks.
reference-request numerical-methods analyticity analytic-functions gaussian-integral
$endgroup$
I am working with the class of analytic functions and I want to derive some estimates, using error bounds for Gauss-Hermite quadrature, for analytic functions (based on Bernstein ellipses).
The issue is that I only know the result for the class of functions with finite smoothness, which says that: if $f$ is such that $i)$ $f,f^{prime},dots,f^{(k-1)}$ are absolutely continuous in $(-infty,+infty)$ and $ii)$ for $j=0,1,dots,k$, for some $k ge 2$ such that
$$underset{x rightarrow infty}{lim} e^{-x^2/2} f^{(i)}(x)=0,quad U=sqrt{int_{-infty}^{+infty} e^{-x^2} [f^{(k+1)}(x)]^2 dx} < infty.$$
Then for each $N ge k/2+1$,
begin{align}
|I[f]-Q_N^{text{GH}}[f]|le frac{1.632 sqrt{pi (N-1) }U}{(k-1) sqrt{(2N-3) dots (2N-k-2)}}
end{align}
where $I[f]= int_{-infty}^{+infty} f(x) dx$ and $Q_N^{text{GH}}[f]$ is the Gauss-Hermite quadrature.
Is there any reference or a way to derive similar result for the class of analytic functions. Thanks.
reference-request numerical-methods analyticity analytic-functions gaussian-integral
reference-request numerical-methods analyticity analytic-functions gaussian-integral
edited Dec 2 '18 at 8:33
user144209
asked Jul 22 '18 at 13:35
user144209user144209
62214
62214
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2859407%2ferror-bounds-for-gauss-hermite-quadrature-for-analytic-functions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2859407%2ferror-bounds-for-gauss-hermite-quadrature-for-analytic-functions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown