Line Integral in second quadrant of Unit Circle












0












$begingroup$


If I am asked to compute



$$int_c F . dr$$



Where



$$F(x,y) = <d/dx f(x, y), d/dy f(x,y)>$$
and
$$f(x,y) =sin(x^3 + y^3)$$



and C is the portion of the unit circle in the second quadrant, oriented counterclockwise, how would I go about doing that?










share|cite|improve this question











$endgroup$












  • $begingroup$
    What is $F(x,y)$ ?
    $endgroup$
    – Nosrati
    Nov 3 '18 at 18:56










  • $begingroup$
    I had trouble using MathJax. F(x, y) equals the partial derivatives with respect to x and y (in vector form) of the function sin(x^3 + y^3)
    $endgroup$
    – Joshua
    Nov 3 '18 at 18:59










  • $begingroup$
    Can you use Green theorem?
    $endgroup$
    – Nosrati
    Nov 3 '18 at 19:01










  • $begingroup$
    Technically not because Green's theorem, as far as I know, would be used for enclosed structures, not simple lines.
    $endgroup$
    – Joshua
    Nov 3 '18 at 19:03










  • $begingroup$
    So do straightforward
    $endgroup$
    – Nosrati
    Nov 3 '18 at 19:04
















0












$begingroup$


If I am asked to compute



$$int_c F . dr$$



Where



$$F(x,y) = <d/dx f(x, y), d/dy f(x,y)>$$
and
$$f(x,y) =sin(x^3 + y^3)$$



and C is the portion of the unit circle in the second quadrant, oriented counterclockwise, how would I go about doing that?










share|cite|improve this question











$endgroup$












  • $begingroup$
    What is $F(x,y)$ ?
    $endgroup$
    – Nosrati
    Nov 3 '18 at 18:56










  • $begingroup$
    I had trouble using MathJax. F(x, y) equals the partial derivatives with respect to x and y (in vector form) of the function sin(x^3 + y^3)
    $endgroup$
    – Joshua
    Nov 3 '18 at 18:59










  • $begingroup$
    Can you use Green theorem?
    $endgroup$
    – Nosrati
    Nov 3 '18 at 19:01










  • $begingroup$
    Technically not because Green's theorem, as far as I know, would be used for enclosed structures, not simple lines.
    $endgroup$
    – Joshua
    Nov 3 '18 at 19:03










  • $begingroup$
    So do straightforward
    $endgroup$
    – Nosrati
    Nov 3 '18 at 19:04














0












0








0





$begingroup$


If I am asked to compute



$$int_c F . dr$$



Where



$$F(x,y) = <d/dx f(x, y), d/dy f(x,y)>$$
and
$$f(x,y) =sin(x^3 + y^3)$$



and C is the portion of the unit circle in the second quadrant, oriented counterclockwise, how would I go about doing that?










share|cite|improve this question











$endgroup$




If I am asked to compute



$$int_c F . dr$$



Where



$$F(x,y) = <d/dx f(x, y), d/dy f(x,y)>$$
and
$$f(x,y) =sin(x^3 + y^3)$$



and C is the portion of the unit circle in the second quadrant, oriented counterclockwise, how would I go about doing that?







line-integrals greens-theorem






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 3 '18 at 18:59









Nosrati

26.5k62354




26.5k62354










asked Nov 3 '18 at 18:54









JoshuaJoshua

172




172












  • $begingroup$
    What is $F(x,y)$ ?
    $endgroup$
    – Nosrati
    Nov 3 '18 at 18:56










  • $begingroup$
    I had trouble using MathJax. F(x, y) equals the partial derivatives with respect to x and y (in vector form) of the function sin(x^3 + y^3)
    $endgroup$
    – Joshua
    Nov 3 '18 at 18:59










  • $begingroup$
    Can you use Green theorem?
    $endgroup$
    – Nosrati
    Nov 3 '18 at 19:01










  • $begingroup$
    Technically not because Green's theorem, as far as I know, would be used for enclosed structures, not simple lines.
    $endgroup$
    – Joshua
    Nov 3 '18 at 19:03










  • $begingroup$
    So do straightforward
    $endgroup$
    – Nosrati
    Nov 3 '18 at 19:04


















  • $begingroup$
    What is $F(x,y)$ ?
    $endgroup$
    – Nosrati
    Nov 3 '18 at 18:56










  • $begingroup$
    I had trouble using MathJax. F(x, y) equals the partial derivatives with respect to x and y (in vector form) of the function sin(x^3 + y^3)
    $endgroup$
    – Joshua
    Nov 3 '18 at 18:59










  • $begingroup$
    Can you use Green theorem?
    $endgroup$
    – Nosrati
    Nov 3 '18 at 19:01










  • $begingroup$
    Technically not because Green's theorem, as far as I know, would be used for enclosed structures, not simple lines.
    $endgroup$
    – Joshua
    Nov 3 '18 at 19:03










  • $begingroup$
    So do straightforward
    $endgroup$
    – Nosrati
    Nov 3 '18 at 19:04
















$begingroup$
What is $F(x,y)$ ?
$endgroup$
– Nosrati
Nov 3 '18 at 18:56




$begingroup$
What is $F(x,y)$ ?
$endgroup$
– Nosrati
Nov 3 '18 at 18:56












$begingroup$
I had trouble using MathJax. F(x, y) equals the partial derivatives with respect to x and y (in vector form) of the function sin(x^3 + y^3)
$endgroup$
– Joshua
Nov 3 '18 at 18:59




$begingroup$
I had trouble using MathJax. F(x, y) equals the partial derivatives with respect to x and y (in vector form) of the function sin(x^3 + y^3)
$endgroup$
– Joshua
Nov 3 '18 at 18:59












$begingroup$
Can you use Green theorem?
$endgroup$
– Nosrati
Nov 3 '18 at 19:01




$begingroup$
Can you use Green theorem?
$endgroup$
– Nosrati
Nov 3 '18 at 19:01












$begingroup$
Technically not because Green's theorem, as far as I know, would be used for enclosed structures, not simple lines.
$endgroup$
– Joshua
Nov 3 '18 at 19:03




$begingroup$
Technically not because Green's theorem, as far as I know, would be used for enclosed structures, not simple lines.
$endgroup$
– Joshua
Nov 3 '18 at 19:03












$begingroup$
So do straightforward
$endgroup$
– Nosrati
Nov 3 '18 at 19:04




$begingroup$
So do straightforward
$endgroup$
– Nosrati
Nov 3 '18 at 19:04










2 Answers
2






active

oldest

votes


















1












$begingroup$

Let $r=(cos t,sin t)$ with $tin[dfrac{pi}{2},pi]$ be the parametrization of $C$. Then
begin{align}
int_C F.dr
&= int_{frac{pi}{2}}^{pi}left(3cos^2tcos(cos^3t+sin^3t),3sin^2tcos(cos^3t+sin^3t)right)(-sin t,cos t) dt \
&= int_{frac{pi}{2}}^{pi}left(-3cos^2tsin t+3sin^2tcos tright)cos(cos^3t+sin^3t) dt \
&= sin(cos^3t+sin^3t)Big|_{frac{pi}{2}}^{pi} \
&= color{blue}{-2sin1}
end{align}






share|cite|improve this answer











$endgroup$





















    0












    $begingroup$

    You need the gradient theorem:
    $$int_gamma (nabla f) cdot dmathbf r =
    f(mathbf r_2) - f(mathbf r_1) =
    f(-1, 0) - f(0, 1) =
    -2 sin 1.$$






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2983263%2fline-integral-in-second-quadrant-of-unit-circle%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1












      $begingroup$

      Let $r=(cos t,sin t)$ with $tin[dfrac{pi}{2},pi]$ be the parametrization of $C$. Then
      begin{align}
      int_C F.dr
      &= int_{frac{pi}{2}}^{pi}left(3cos^2tcos(cos^3t+sin^3t),3sin^2tcos(cos^3t+sin^3t)right)(-sin t,cos t) dt \
      &= int_{frac{pi}{2}}^{pi}left(-3cos^2tsin t+3sin^2tcos tright)cos(cos^3t+sin^3t) dt \
      &= sin(cos^3t+sin^3t)Big|_{frac{pi}{2}}^{pi} \
      &= color{blue}{-2sin1}
      end{align}






      share|cite|improve this answer











      $endgroup$


















        1












        $begingroup$

        Let $r=(cos t,sin t)$ with $tin[dfrac{pi}{2},pi]$ be the parametrization of $C$. Then
        begin{align}
        int_C F.dr
        &= int_{frac{pi}{2}}^{pi}left(3cos^2tcos(cos^3t+sin^3t),3sin^2tcos(cos^3t+sin^3t)right)(-sin t,cos t) dt \
        &= int_{frac{pi}{2}}^{pi}left(-3cos^2tsin t+3sin^2tcos tright)cos(cos^3t+sin^3t) dt \
        &= sin(cos^3t+sin^3t)Big|_{frac{pi}{2}}^{pi} \
        &= color{blue}{-2sin1}
        end{align}






        share|cite|improve this answer











        $endgroup$
















          1












          1








          1





          $begingroup$

          Let $r=(cos t,sin t)$ with $tin[dfrac{pi}{2},pi]$ be the parametrization of $C$. Then
          begin{align}
          int_C F.dr
          &= int_{frac{pi}{2}}^{pi}left(3cos^2tcos(cos^3t+sin^3t),3sin^2tcos(cos^3t+sin^3t)right)(-sin t,cos t) dt \
          &= int_{frac{pi}{2}}^{pi}left(-3cos^2tsin t+3sin^2tcos tright)cos(cos^3t+sin^3t) dt \
          &= sin(cos^3t+sin^3t)Big|_{frac{pi}{2}}^{pi} \
          &= color{blue}{-2sin1}
          end{align}






          share|cite|improve this answer











          $endgroup$



          Let $r=(cos t,sin t)$ with $tin[dfrac{pi}{2},pi]$ be the parametrization of $C$. Then
          begin{align}
          int_C F.dr
          &= int_{frac{pi}{2}}^{pi}left(3cos^2tcos(cos^3t+sin^3t),3sin^2tcos(cos^3t+sin^3t)right)(-sin t,cos t) dt \
          &= int_{frac{pi}{2}}^{pi}left(-3cos^2tsin t+3sin^2tcos tright)cos(cos^3t+sin^3t) dt \
          &= sin(cos^3t+sin^3t)Big|_{frac{pi}{2}}^{pi} \
          &= color{blue}{-2sin1}
          end{align}







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Nov 3 '18 at 19:27

























          answered Nov 3 '18 at 19:15









          NosratiNosrati

          26.5k62354




          26.5k62354























              0












              $begingroup$

              You need the gradient theorem:
              $$int_gamma (nabla f) cdot dmathbf r =
              f(mathbf r_2) - f(mathbf r_1) =
              f(-1, 0) - f(0, 1) =
              -2 sin 1.$$






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                You need the gradient theorem:
                $$int_gamma (nabla f) cdot dmathbf r =
                f(mathbf r_2) - f(mathbf r_1) =
                f(-1, 0) - f(0, 1) =
                -2 sin 1.$$






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  You need the gradient theorem:
                  $$int_gamma (nabla f) cdot dmathbf r =
                  f(mathbf r_2) - f(mathbf r_1) =
                  f(-1, 0) - f(0, 1) =
                  -2 sin 1.$$






                  share|cite|improve this answer









                  $endgroup$



                  You need the gradient theorem:
                  $$int_gamma (nabla f) cdot dmathbf r =
                  f(mathbf r_2) - f(mathbf r_1) =
                  f(-1, 0) - f(0, 1) =
                  -2 sin 1.$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 2 '18 at 9:49









                  MaximMaxim

                  5,0881219




                  5,0881219






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2983263%2fline-integral-in-second-quadrant-of-unit-circle%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Plaza Victoria

                      Puebla de Zaragoza

                      Musa