Line Integral in second quadrant of Unit Circle
$begingroup$
If I am asked to compute
$$int_c F . dr$$
Where
$$F(x,y) = <d/dx f(x, y), d/dy f(x,y)>$$
and
$$f(x,y) =sin(x^3 + y^3)$$
and C is the portion of the unit circle in the second quadrant, oriented counterclockwise, how would I go about doing that?
line-integrals greens-theorem
$endgroup$
|
show 1 more comment
$begingroup$
If I am asked to compute
$$int_c F . dr$$
Where
$$F(x,y) = <d/dx f(x, y), d/dy f(x,y)>$$
and
$$f(x,y) =sin(x^3 + y^3)$$
and C is the portion of the unit circle in the second quadrant, oriented counterclockwise, how would I go about doing that?
line-integrals greens-theorem
$endgroup$
$begingroup$
What is $F(x,y)$ ?
$endgroup$
– Nosrati
Nov 3 '18 at 18:56
$begingroup$
I had trouble using MathJax. F(x, y) equals the partial derivatives with respect to x and y (in vector form) of the function sin(x^3 + y^3)
$endgroup$
– Joshua
Nov 3 '18 at 18:59
$begingroup$
Can you use Green theorem?
$endgroup$
– Nosrati
Nov 3 '18 at 19:01
$begingroup$
Technically not because Green's theorem, as far as I know, would be used for enclosed structures, not simple lines.
$endgroup$
– Joshua
Nov 3 '18 at 19:03
$begingroup$
So do straightforward
$endgroup$
– Nosrati
Nov 3 '18 at 19:04
|
show 1 more comment
$begingroup$
If I am asked to compute
$$int_c F . dr$$
Where
$$F(x,y) = <d/dx f(x, y), d/dy f(x,y)>$$
and
$$f(x,y) =sin(x^3 + y^3)$$
and C is the portion of the unit circle in the second quadrant, oriented counterclockwise, how would I go about doing that?
line-integrals greens-theorem
$endgroup$
If I am asked to compute
$$int_c F . dr$$
Where
$$F(x,y) = <d/dx f(x, y), d/dy f(x,y)>$$
and
$$f(x,y) =sin(x^3 + y^3)$$
and C is the portion of the unit circle in the second quadrant, oriented counterclockwise, how would I go about doing that?
line-integrals greens-theorem
line-integrals greens-theorem
edited Nov 3 '18 at 18:59
Nosrati
26.5k62354
26.5k62354
asked Nov 3 '18 at 18:54
JoshuaJoshua
172
172
$begingroup$
What is $F(x,y)$ ?
$endgroup$
– Nosrati
Nov 3 '18 at 18:56
$begingroup$
I had trouble using MathJax. F(x, y) equals the partial derivatives with respect to x and y (in vector form) of the function sin(x^3 + y^3)
$endgroup$
– Joshua
Nov 3 '18 at 18:59
$begingroup$
Can you use Green theorem?
$endgroup$
– Nosrati
Nov 3 '18 at 19:01
$begingroup$
Technically not because Green's theorem, as far as I know, would be used for enclosed structures, not simple lines.
$endgroup$
– Joshua
Nov 3 '18 at 19:03
$begingroup$
So do straightforward
$endgroup$
– Nosrati
Nov 3 '18 at 19:04
|
show 1 more comment
$begingroup$
What is $F(x,y)$ ?
$endgroup$
– Nosrati
Nov 3 '18 at 18:56
$begingroup$
I had trouble using MathJax. F(x, y) equals the partial derivatives with respect to x and y (in vector form) of the function sin(x^3 + y^3)
$endgroup$
– Joshua
Nov 3 '18 at 18:59
$begingroup$
Can you use Green theorem?
$endgroup$
– Nosrati
Nov 3 '18 at 19:01
$begingroup$
Technically not because Green's theorem, as far as I know, would be used for enclosed structures, not simple lines.
$endgroup$
– Joshua
Nov 3 '18 at 19:03
$begingroup$
So do straightforward
$endgroup$
– Nosrati
Nov 3 '18 at 19:04
$begingroup$
What is $F(x,y)$ ?
$endgroup$
– Nosrati
Nov 3 '18 at 18:56
$begingroup$
What is $F(x,y)$ ?
$endgroup$
– Nosrati
Nov 3 '18 at 18:56
$begingroup$
I had trouble using MathJax. F(x, y) equals the partial derivatives with respect to x and y (in vector form) of the function sin(x^3 + y^3)
$endgroup$
– Joshua
Nov 3 '18 at 18:59
$begingroup$
I had trouble using MathJax. F(x, y) equals the partial derivatives with respect to x and y (in vector form) of the function sin(x^3 + y^3)
$endgroup$
– Joshua
Nov 3 '18 at 18:59
$begingroup$
Can you use Green theorem?
$endgroup$
– Nosrati
Nov 3 '18 at 19:01
$begingroup$
Can you use Green theorem?
$endgroup$
– Nosrati
Nov 3 '18 at 19:01
$begingroup$
Technically not because Green's theorem, as far as I know, would be used for enclosed structures, not simple lines.
$endgroup$
– Joshua
Nov 3 '18 at 19:03
$begingroup$
Technically not because Green's theorem, as far as I know, would be used for enclosed structures, not simple lines.
$endgroup$
– Joshua
Nov 3 '18 at 19:03
$begingroup$
So do straightforward
$endgroup$
– Nosrati
Nov 3 '18 at 19:04
$begingroup$
So do straightforward
$endgroup$
– Nosrati
Nov 3 '18 at 19:04
|
show 1 more comment
2 Answers
2
active
oldest
votes
$begingroup$
Let $r=(cos t,sin t)$ with $tin[dfrac{pi}{2},pi]$ be the parametrization of $C$. Then
begin{align}
int_C F.dr
&= int_{frac{pi}{2}}^{pi}left(3cos^2tcos(cos^3t+sin^3t),3sin^2tcos(cos^3t+sin^3t)right)(-sin t,cos t) dt \
&= int_{frac{pi}{2}}^{pi}left(-3cos^2tsin t+3sin^2tcos tright)cos(cos^3t+sin^3t) dt \
&= sin(cos^3t+sin^3t)Big|_{frac{pi}{2}}^{pi} \
&= color{blue}{-2sin1}
end{align}
$endgroup$
add a comment |
$begingroup$
You need the gradient theorem:
$$int_gamma (nabla f) cdot dmathbf r =
f(mathbf r_2) - f(mathbf r_1) =
f(-1, 0) - f(0, 1) =
-2 sin 1.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2983263%2fline-integral-in-second-quadrant-of-unit-circle%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $r=(cos t,sin t)$ with $tin[dfrac{pi}{2},pi]$ be the parametrization of $C$. Then
begin{align}
int_C F.dr
&= int_{frac{pi}{2}}^{pi}left(3cos^2tcos(cos^3t+sin^3t),3sin^2tcos(cos^3t+sin^3t)right)(-sin t,cos t) dt \
&= int_{frac{pi}{2}}^{pi}left(-3cos^2tsin t+3sin^2tcos tright)cos(cos^3t+sin^3t) dt \
&= sin(cos^3t+sin^3t)Big|_{frac{pi}{2}}^{pi} \
&= color{blue}{-2sin1}
end{align}
$endgroup$
add a comment |
$begingroup$
Let $r=(cos t,sin t)$ with $tin[dfrac{pi}{2},pi]$ be the parametrization of $C$. Then
begin{align}
int_C F.dr
&= int_{frac{pi}{2}}^{pi}left(3cos^2tcos(cos^3t+sin^3t),3sin^2tcos(cos^3t+sin^3t)right)(-sin t,cos t) dt \
&= int_{frac{pi}{2}}^{pi}left(-3cos^2tsin t+3sin^2tcos tright)cos(cos^3t+sin^3t) dt \
&= sin(cos^3t+sin^3t)Big|_{frac{pi}{2}}^{pi} \
&= color{blue}{-2sin1}
end{align}
$endgroup$
add a comment |
$begingroup$
Let $r=(cos t,sin t)$ with $tin[dfrac{pi}{2},pi]$ be the parametrization of $C$. Then
begin{align}
int_C F.dr
&= int_{frac{pi}{2}}^{pi}left(3cos^2tcos(cos^3t+sin^3t),3sin^2tcos(cos^3t+sin^3t)right)(-sin t,cos t) dt \
&= int_{frac{pi}{2}}^{pi}left(-3cos^2tsin t+3sin^2tcos tright)cos(cos^3t+sin^3t) dt \
&= sin(cos^3t+sin^3t)Big|_{frac{pi}{2}}^{pi} \
&= color{blue}{-2sin1}
end{align}
$endgroup$
Let $r=(cos t,sin t)$ with $tin[dfrac{pi}{2},pi]$ be the parametrization of $C$. Then
begin{align}
int_C F.dr
&= int_{frac{pi}{2}}^{pi}left(3cos^2tcos(cos^3t+sin^3t),3sin^2tcos(cos^3t+sin^3t)right)(-sin t,cos t) dt \
&= int_{frac{pi}{2}}^{pi}left(-3cos^2tsin t+3sin^2tcos tright)cos(cos^3t+sin^3t) dt \
&= sin(cos^3t+sin^3t)Big|_{frac{pi}{2}}^{pi} \
&= color{blue}{-2sin1}
end{align}
edited Nov 3 '18 at 19:27
answered Nov 3 '18 at 19:15
NosratiNosrati
26.5k62354
26.5k62354
add a comment |
add a comment |
$begingroup$
You need the gradient theorem:
$$int_gamma (nabla f) cdot dmathbf r =
f(mathbf r_2) - f(mathbf r_1) =
f(-1, 0) - f(0, 1) =
-2 sin 1.$$
$endgroup$
add a comment |
$begingroup$
You need the gradient theorem:
$$int_gamma (nabla f) cdot dmathbf r =
f(mathbf r_2) - f(mathbf r_1) =
f(-1, 0) - f(0, 1) =
-2 sin 1.$$
$endgroup$
add a comment |
$begingroup$
You need the gradient theorem:
$$int_gamma (nabla f) cdot dmathbf r =
f(mathbf r_2) - f(mathbf r_1) =
f(-1, 0) - f(0, 1) =
-2 sin 1.$$
$endgroup$
You need the gradient theorem:
$$int_gamma (nabla f) cdot dmathbf r =
f(mathbf r_2) - f(mathbf r_1) =
f(-1, 0) - f(0, 1) =
-2 sin 1.$$
answered Dec 2 '18 at 9:49
MaximMaxim
5,0881219
5,0881219
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2983263%2fline-integral-in-second-quadrant-of-unit-circle%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
What is $F(x,y)$ ?
$endgroup$
– Nosrati
Nov 3 '18 at 18:56
$begingroup$
I had trouble using MathJax. F(x, y) equals the partial derivatives with respect to x and y (in vector form) of the function sin(x^3 + y^3)
$endgroup$
– Joshua
Nov 3 '18 at 18:59
$begingroup$
Can you use Green theorem?
$endgroup$
– Nosrati
Nov 3 '18 at 19:01
$begingroup$
Technically not because Green's theorem, as far as I know, would be used for enclosed structures, not simple lines.
$endgroup$
– Joshua
Nov 3 '18 at 19:03
$begingroup$
So do straightforward
$endgroup$
– Nosrati
Nov 3 '18 at 19:04