Prove that $int_0^{frac{npi}{4}} frac{1}{3sin^4(x) + 3cos^4(x) -1} dx = frac{npi}{4} $
$begingroup$
Prove that $$int_0^frac{npi}{4} left(frac{1}{3sin^4(x) + 3cos^4(x) -1}right) dx = frac{n pi}{4} $$
is true for all integers $n$.
Here I've looked at the case where $n=1$ as $t=tan(x)$ is injective in that domain. Then I could perhaps try to use some argument about periodicity and symmetry to extend it to all the integers.
$$
= int_0^frac{pi}{4} frac{sec^4(x)}{3tan^4(x)+3-sec^4(x)} text{d}x
= frac12 int_0^1 frac{t^2+1}{t^4-t^2+1} text{d}t
$$
Which looks a little tough but reminiscent of the well-known integral:
$$ int_0^infty frac{1}{x^4 + 2x^2cos(2a) + 1} text{d}x = frac12int_0^infty frac{x^2+1}{x^4 + 2x^2cos(2a) + 1} text{d}x = frac{pi}{4cos(a)} $$
Where we choose $a=fracpi3$. But I can't seem to adjust the bounds to get an answer. How would you evaluate this integral?
calculus integration definite-integrals trigonometric-integrals
$endgroup$
add a comment |
$begingroup$
Prove that $$int_0^frac{npi}{4} left(frac{1}{3sin^4(x) + 3cos^4(x) -1}right) dx = frac{n pi}{4} $$
is true for all integers $n$.
Here I've looked at the case where $n=1$ as $t=tan(x)$ is injective in that domain. Then I could perhaps try to use some argument about periodicity and symmetry to extend it to all the integers.
$$
= int_0^frac{pi}{4} frac{sec^4(x)}{3tan^4(x)+3-sec^4(x)} text{d}x
= frac12 int_0^1 frac{t^2+1}{t^4-t^2+1} text{d}t
$$
Which looks a little tough but reminiscent of the well-known integral:
$$ int_0^infty frac{1}{x^4 + 2x^2cos(2a) + 1} text{d}x = frac12int_0^infty frac{x^2+1}{x^4 + 2x^2cos(2a) + 1} text{d}x = frac{pi}{4cos(a)} $$
Where we choose $a=fracpi3$. But I can't seem to adjust the bounds to get an answer. How would you evaluate this integral?
calculus integration definite-integrals trigonometric-integrals
$endgroup$
add a comment |
$begingroup$
Prove that $$int_0^frac{npi}{4} left(frac{1}{3sin^4(x) + 3cos^4(x) -1}right) dx = frac{n pi}{4} $$
is true for all integers $n$.
Here I've looked at the case where $n=1$ as $t=tan(x)$ is injective in that domain. Then I could perhaps try to use some argument about periodicity and symmetry to extend it to all the integers.
$$
= int_0^frac{pi}{4} frac{sec^4(x)}{3tan^4(x)+3-sec^4(x)} text{d}x
= frac12 int_0^1 frac{t^2+1}{t^4-t^2+1} text{d}t
$$
Which looks a little tough but reminiscent of the well-known integral:
$$ int_0^infty frac{1}{x^4 + 2x^2cos(2a) + 1} text{d}x = frac12int_0^infty frac{x^2+1}{x^4 + 2x^2cos(2a) + 1} text{d}x = frac{pi}{4cos(a)} $$
Where we choose $a=fracpi3$. But I can't seem to adjust the bounds to get an answer. How would you evaluate this integral?
calculus integration definite-integrals trigonometric-integrals
$endgroup$
Prove that $$int_0^frac{npi}{4} left(frac{1}{3sin^4(x) + 3cos^4(x) -1}right) dx = frac{n pi}{4} $$
is true for all integers $n$.
Here I've looked at the case where $n=1$ as $t=tan(x)$ is injective in that domain. Then I could perhaps try to use some argument about periodicity and symmetry to extend it to all the integers.
$$
= int_0^frac{pi}{4} frac{sec^4(x)}{3tan^4(x)+3-sec^4(x)} text{d}x
= frac12 int_0^1 frac{t^2+1}{t^4-t^2+1} text{d}t
$$
Which looks a little tough but reminiscent of the well-known integral:
$$ int_0^infty frac{1}{x^4 + 2x^2cos(2a) + 1} text{d}x = frac12int_0^infty frac{x^2+1}{x^4 + 2x^2cos(2a) + 1} text{d}x = frac{pi}{4cos(a)} $$
Where we choose $a=fracpi3$. But I can't seem to adjust the bounds to get an answer. How would you evaluate this integral?
calculus integration definite-integrals trigonometric-integrals
calculus integration definite-integrals trigonometric-integrals
edited Dec 2 '18 at 10:01
Chinnapparaj R
5,3641828
5,3641828
asked Dec 2 '18 at 9:11
MintMint
5301417
5301417
add a comment |
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
For $x in (0,pi/4)$,
the integral $$frac12 int_0^1 frac{t^2+1}{t^4-t^2+1} text{d}t$$ can also be written as $$frac12 int_0^1 frac{1+1/t^2}{(t-1/t)^2+1} text{d}t$$
Substituting $u=t-frac1t$, the integral becomes $$frac12 int_{-infty}^0 frac{1}{u^2+1} text{d}u$$ which is equal to $$frac12[arctan(u)]_{-infty}^0=pi/4$$
Similarly for $x in (pi/4,pi/2)$, the integral becomes$$frac12 int_1^infty frac{1+1/t^2}{(t-1/t)^2+1} text{d}t$$ which is equal to$$frac12 int_0^{infty} frac{1}{v^2+1} text{d}v$$ or$$frac12[arctan(u)]_0^{infty}=pi/4$$
And since the integrand has a period of $pi/2$ because $$sin^4x+cos^4x=1-frac12sin^22x$$
one can easily contemplate the proof by adding the areas of the curve on and on.
$endgroup$
add a comment |
$begingroup$
$$int_0^{pi/4}frac{1}{3sin^4(x) + 3cos^4(x) -1} dx = frac{pi}{4}$$
can be shown by using partial fraction in OP's substituted integral.
One can similarly show $$int_{pi/4}^{pi/2}frac{1}{3sin^4(x) + 3cos^4(x) -1} dx = frac{pi}{4}$$
Observe that the integrand has period $fracpi2$, the problem can be easily done by using induction.
$endgroup$
add a comment |
$begingroup$
$$3(sin^4x+cos^4x)-1=3((sin^2x+cos^2x)^2-2sin^2xcos^2x)-1=2-frac32sin^22x=frac{5+3cos4x}4$$
and your integral is also
$$int_0^{npi}frac{dx}{5+3cos x}=nint_0^{pi}frac{dx}{5+3cos x}$$ as the cosine is an even function.
Using the Weierstrass substitution, the last integral is shown to be $dfracpi4$.
$$int_0^pifrac{dx}{5+3cos4x}=int_0^inftyfrac{2,dt}{(1+t^2)left(5+3dfrac{1-t^2}{1+t^2}right)}=int_0^inftyfrac{dt}{4+t^2}.$$
$endgroup$
add a comment |
$begingroup$
Note that the integrand function $f(x)=frac{1}{3sin^4(x) + 3cos^4(x) -1}$ is even with period $pi/2$, so
$$int_0^frac{npi}{4} f(x) dx=
frac{1}{2}int_{-frac{npi}{4}}^frac{npi}{4} f(x) dx=
frac{1}{2}int_{0}^frac{npi}{2} f(x) dx
=frac{n}{2}int_{0}^frac{pi}{2} f(x) dx.$$
Now, following your approach, we have that
$$frac{t^2+1}{t^4-t^2+1} =
frac{2}{1+(2t+sqrt{3})^2} +frac{2}{1+(2t-sqrt{3})^2}.$$
Therefore
$$intfrac{t^2+1}{t^4-t^2+1},dt=arctan(2t+sqrt{3})+arctan(2t-sqrt{3})+c$$
Hence, for $t=tan(x)$,
$$int_0^frac{pi}{2} f(x) dx
= frac12 int_0^{infty} frac{t^2+1}{t^4-t^2+1} dt=frac{1}{2}left[arctan(2t+sqrt{3})+arctan(2t-sqrt{3})right]_0^{+infty}=frac{pi}{2}.$$
$endgroup$
$begingroup$
Oh wow thanks I wouldn't have thought of partial fraction decomposition.
$endgroup$
– Mint
Dec 2 '18 at 9:39
1
$begingroup$
@jiaminglimjm I tried to simplify the idea of your approach.
$endgroup$
– Robert Z
Dec 2 '18 at 10:12
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022425%2fprove-that-int-0-fracn-pi4-frac13-sin4x-3-cos4x-1-dx-f%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For $x in (0,pi/4)$,
the integral $$frac12 int_0^1 frac{t^2+1}{t^4-t^2+1} text{d}t$$ can also be written as $$frac12 int_0^1 frac{1+1/t^2}{(t-1/t)^2+1} text{d}t$$
Substituting $u=t-frac1t$, the integral becomes $$frac12 int_{-infty}^0 frac{1}{u^2+1} text{d}u$$ which is equal to $$frac12[arctan(u)]_{-infty}^0=pi/4$$
Similarly for $x in (pi/4,pi/2)$, the integral becomes$$frac12 int_1^infty frac{1+1/t^2}{(t-1/t)^2+1} text{d}t$$ which is equal to$$frac12 int_0^{infty} frac{1}{v^2+1} text{d}v$$ or$$frac12[arctan(u)]_0^{infty}=pi/4$$
And since the integrand has a period of $pi/2$ because $$sin^4x+cos^4x=1-frac12sin^22x$$
one can easily contemplate the proof by adding the areas of the curve on and on.
$endgroup$
add a comment |
$begingroup$
For $x in (0,pi/4)$,
the integral $$frac12 int_0^1 frac{t^2+1}{t^4-t^2+1} text{d}t$$ can also be written as $$frac12 int_0^1 frac{1+1/t^2}{(t-1/t)^2+1} text{d}t$$
Substituting $u=t-frac1t$, the integral becomes $$frac12 int_{-infty}^0 frac{1}{u^2+1} text{d}u$$ which is equal to $$frac12[arctan(u)]_{-infty}^0=pi/4$$
Similarly for $x in (pi/4,pi/2)$, the integral becomes$$frac12 int_1^infty frac{1+1/t^2}{(t-1/t)^2+1} text{d}t$$ which is equal to$$frac12 int_0^{infty} frac{1}{v^2+1} text{d}v$$ or$$frac12[arctan(u)]_0^{infty}=pi/4$$
And since the integrand has a period of $pi/2$ because $$sin^4x+cos^4x=1-frac12sin^22x$$
one can easily contemplate the proof by adding the areas of the curve on and on.
$endgroup$
add a comment |
$begingroup$
For $x in (0,pi/4)$,
the integral $$frac12 int_0^1 frac{t^2+1}{t^4-t^2+1} text{d}t$$ can also be written as $$frac12 int_0^1 frac{1+1/t^2}{(t-1/t)^2+1} text{d}t$$
Substituting $u=t-frac1t$, the integral becomes $$frac12 int_{-infty}^0 frac{1}{u^2+1} text{d}u$$ which is equal to $$frac12[arctan(u)]_{-infty}^0=pi/4$$
Similarly for $x in (pi/4,pi/2)$, the integral becomes$$frac12 int_1^infty frac{1+1/t^2}{(t-1/t)^2+1} text{d}t$$ which is equal to$$frac12 int_0^{infty} frac{1}{v^2+1} text{d}v$$ or$$frac12[arctan(u)]_0^{infty}=pi/4$$
And since the integrand has a period of $pi/2$ because $$sin^4x+cos^4x=1-frac12sin^22x$$
one can easily contemplate the proof by adding the areas of the curve on and on.
$endgroup$
For $x in (0,pi/4)$,
the integral $$frac12 int_0^1 frac{t^2+1}{t^4-t^2+1} text{d}t$$ can also be written as $$frac12 int_0^1 frac{1+1/t^2}{(t-1/t)^2+1} text{d}t$$
Substituting $u=t-frac1t$, the integral becomes $$frac12 int_{-infty}^0 frac{1}{u^2+1} text{d}u$$ which is equal to $$frac12[arctan(u)]_{-infty}^0=pi/4$$
Similarly for $x in (pi/4,pi/2)$, the integral becomes$$frac12 int_1^infty frac{1+1/t^2}{(t-1/t)^2+1} text{d}t$$ which is equal to$$frac12 int_0^{infty} frac{1}{v^2+1} text{d}v$$ or$$frac12[arctan(u)]_0^{infty}=pi/4$$
And since the integrand has a period of $pi/2$ because $$sin^4x+cos^4x=1-frac12sin^22x$$
one can easily contemplate the proof by adding the areas of the curve on and on.
edited Dec 2 '18 at 10:26
Mint
5301417
5301417
answered Dec 2 '18 at 10:12
Sameer BahetiSameer Baheti
5168
5168
add a comment |
add a comment |
$begingroup$
$$int_0^{pi/4}frac{1}{3sin^4(x) + 3cos^4(x) -1} dx = frac{pi}{4}$$
can be shown by using partial fraction in OP's substituted integral.
One can similarly show $$int_{pi/4}^{pi/2}frac{1}{3sin^4(x) + 3cos^4(x) -1} dx = frac{pi}{4}$$
Observe that the integrand has period $fracpi2$, the problem can be easily done by using induction.
$endgroup$
add a comment |
$begingroup$
$$int_0^{pi/4}frac{1}{3sin^4(x) + 3cos^4(x) -1} dx = frac{pi}{4}$$
can be shown by using partial fraction in OP's substituted integral.
One can similarly show $$int_{pi/4}^{pi/2}frac{1}{3sin^4(x) + 3cos^4(x) -1} dx = frac{pi}{4}$$
Observe that the integrand has period $fracpi2$, the problem can be easily done by using induction.
$endgroup$
add a comment |
$begingroup$
$$int_0^{pi/4}frac{1}{3sin^4(x) + 3cos^4(x) -1} dx = frac{pi}{4}$$
can be shown by using partial fraction in OP's substituted integral.
One can similarly show $$int_{pi/4}^{pi/2}frac{1}{3sin^4(x) + 3cos^4(x) -1} dx = frac{pi}{4}$$
Observe that the integrand has period $fracpi2$, the problem can be easily done by using induction.
$endgroup$
$$int_0^{pi/4}frac{1}{3sin^4(x) + 3cos^4(x) -1} dx = frac{pi}{4}$$
can be shown by using partial fraction in OP's substituted integral.
One can similarly show $$int_{pi/4}^{pi/2}frac{1}{3sin^4(x) + 3cos^4(x) -1} dx = frac{pi}{4}$$
Observe that the integrand has period $fracpi2$, the problem can be easily done by using induction.
edited Dec 2 '18 at 9:42
answered Dec 2 '18 at 9:26
Kemono ChenKemono Chen
3,0421743
3,0421743
add a comment |
add a comment |
$begingroup$
$$3(sin^4x+cos^4x)-1=3((sin^2x+cos^2x)^2-2sin^2xcos^2x)-1=2-frac32sin^22x=frac{5+3cos4x}4$$
and your integral is also
$$int_0^{npi}frac{dx}{5+3cos x}=nint_0^{pi}frac{dx}{5+3cos x}$$ as the cosine is an even function.
Using the Weierstrass substitution, the last integral is shown to be $dfracpi4$.
$$int_0^pifrac{dx}{5+3cos4x}=int_0^inftyfrac{2,dt}{(1+t^2)left(5+3dfrac{1-t^2}{1+t^2}right)}=int_0^inftyfrac{dt}{4+t^2}.$$
$endgroup$
add a comment |
$begingroup$
$$3(sin^4x+cos^4x)-1=3((sin^2x+cos^2x)^2-2sin^2xcos^2x)-1=2-frac32sin^22x=frac{5+3cos4x}4$$
and your integral is also
$$int_0^{npi}frac{dx}{5+3cos x}=nint_0^{pi}frac{dx}{5+3cos x}$$ as the cosine is an even function.
Using the Weierstrass substitution, the last integral is shown to be $dfracpi4$.
$$int_0^pifrac{dx}{5+3cos4x}=int_0^inftyfrac{2,dt}{(1+t^2)left(5+3dfrac{1-t^2}{1+t^2}right)}=int_0^inftyfrac{dt}{4+t^2}.$$
$endgroup$
add a comment |
$begingroup$
$$3(sin^4x+cos^4x)-1=3((sin^2x+cos^2x)^2-2sin^2xcos^2x)-1=2-frac32sin^22x=frac{5+3cos4x}4$$
and your integral is also
$$int_0^{npi}frac{dx}{5+3cos x}=nint_0^{pi}frac{dx}{5+3cos x}$$ as the cosine is an even function.
Using the Weierstrass substitution, the last integral is shown to be $dfracpi4$.
$$int_0^pifrac{dx}{5+3cos4x}=int_0^inftyfrac{2,dt}{(1+t^2)left(5+3dfrac{1-t^2}{1+t^2}right)}=int_0^inftyfrac{dt}{4+t^2}.$$
$endgroup$
$$3(sin^4x+cos^4x)-1=3((sin^2x+cos^2x)^2-2sin^2xcos^2x)-1=2-frac32sin^22x=frac{5+3cos4x}4$$
and your integral is also
$$int_0^{npi}frac{dx}{5+3cos x}=nint_0^{pi}frac{dx}{5+3cos x}$$ as the cosine is an even function.
Using the Weierstrass substitution, the last integral is shown to be $dfracpi4$.
$$int_0^pifrac{dx}{5+3cos4x}=int_0^inftyfrac{2,dt}{(1+t^2)left(5+3dfrac{1-t^2}{1+t^2}right)}=int_0^inftyfrac{dt}{4+t^2}.$$
edited Dec 2 '18 at 9:43
answered Dec 2 '18 at 9:37
Yves DaoustYves Daoust
125k671223
125k671223
add a comment |
add a comment |
$begingroup$
Note that the integrand function $f(x)=frac{1}{3sin^4(x) + 3cos^4(x) -1}$ is even with period $pi/2$, so
$$int_0^frac{npi}{4} f(x) dx=
frac{1}{2}int_{-frac{npi}{4}}^frac{npi}{4} f(x) dx=
frac{1}{2}int_{0}^frac{npi}{2} f(x) dx
=frac{n}{2}int_{0}^frac{pi}{2} f(x) dx.$$
Now, following your approach, we have that
$$frac{t^2+1}{t^4-t^2+1} =
frac{2}{1+(2t+sqrt{3})^2} +frac{2}{1+(2t-sqrt{3})^2}.$$
Therefore
$$intfrac{t^2+1}{t^4-t^2+1},dt=arctan(2t+sqrt{3})+arctan(2t-sqrt{3})+c$$
Hence, for $t=tan(x)$,
$$int_0^frac{pi}{2} f(x) dx
= frac12 int_0^{infty} frac{t^2+1}{t^4-t^2+1} dt=frac{1}{2}left[arctan(2t+sqrt{3})+arctan(2t-sqrt{3})right]_0^{+infty}=frac{pi}{2}.$$
$endgroup$
$begingroup$
Oh wow thanks I wouldn't have thought of partial fraction decomposition.
$endgroup$
– Mint
Dec 2 '18 at 9:39
1
$begingroup$
@jiaminglimjm I tried to simplify the idea of your approach.
$endgroup$
– Robert Z
Dec 2 '18 at 10:12
add a comment |
$begingroup$
Note that the integrand function $f(x)=frac{1}{3sin^4(x) + 3cos^4(x) -1}$ is even with period $pi/2$, so
$$int_0^frac{npi}{4} f(x) dx=
frac{1}{2}int_{-frac{npi}{4}}^frac{npi}{4} f(x) dx=
frac{1}{2}int_{0}^frac{npi}{2} f(x) dx
=frac{n}{2}int_{0}^frac{pi}{2} f(x) dx.$$
Now, following your approach, we have that
$$frac{t^2+1}{t^4-t^2+1} =
frac{2}{1+(2t+sqrt{3})^2} +frac{2}{1+(2t-sqrt{3})^2}.$$
Therefore
$$intfrac{t^2+1}{t^4-t^2+1},dt=arctan(2t+sqrt{3})+arctan(2t-sqrt{3})+c$$
Hence, for $t=tan(x)$,
$$int_0^frac{pi}{2} f(x) dx
= frac12 int_0^{infty} frac{t^2+1}{t^4-t^2+1} dt=frac{1}{2}left[arctan(2t+sqrt{3})+arctan(2t-sqrt{3})right]_0^{+infty}=frac{pi}{2}.$$
$endgroup$
$begingroup$
Oh wow thanks I wouldn't have thought of partial fraction decomposition.
$endgroup$
– Mint
Dec 2 '18 at 9:39
1
$begingroup$
@jiaminglimjm I tried to simplify the idea of your approach.
$endgroup$
– Robert Z
Dec 2 '18 at 10:12
add a comment |
$begingroup$
Note that the integrand function $f(x)=frac{1}{3sin^4(x) + 3cos^4(x) -1}$ is even with period $pi/2$, so
$$int_0^frac{npi}{4} f(x) dx=
frac{1}{2}int_{-frac{npi}{4}}^frac{npi}{4} f(x) dx=
frac{1}{2}int_{0}^frac{npi}{2} f(x) dx
=frac{n}{2}int_{0}^frac{pi}{2} f(x) dx.$$
Now, following your approach, we have that
$$frac{t^2+1}{t^4-t^2+1} =
frac{2}{1+(2t+sqrt{3})^2} +frac{2}{1+(2t-sqrt{3})^2}.$$
Therefore
$$intfrac{t^2+1}{t^4-t^2+1},dt=arctan(2t+sqrt{3})+arctan(2t-sqrt{3})+c$$
Hence, for $t=tan(x)$,
$$int_0^frac{pi}{2} f(x) dx
= frac12 int_0^{infty} frac{t^2+1}{t^4-t^2+1} dt=frac{1}{2}left[arctan(2t+sqrt{3})+arctan(2t-sqrt{3})right]_0^{+infty}=frac{pi}{2}.$$
$endgroup$
Note that the integrand function $f(x)=frac{1}{3sin^4(x) + 3cos^4(x) -1}$ is even with period $pi/2$, so
$$int_0^frac{npi}{4} f(x) dx=
frac{1}{2}int_{-frac{npi}{4}}^frac{npi}{4} f(x) dx=
frac{1}{2}int_{0}^frac{npi}{2} f(x) dx
=frac{n}{2}int_{0}^frac{pi}{2} f(x) dx.$$
Now, following your approach, we have that
$$frac{t^2+1}{t^4-t^2+1} =
frac{2}{1+(2t+sqrt{3})^2} +frac{2}{1+(2t-sqrt{3})^2}.$$
Therefore
$$intfrac{t^2+1}{t^4-t^2+1},dt=arctan(2t+sqrt{3})+arctan(2t-sqrt{3})+c$$
Hence, for $t=tan(x)$,
$$int_0^frac{pi}{2} f(x) dx
= frac12 int_0^{infty} frac{t^2+1}{t^4-t^2+1} dt=frac{1}{2}left[arctan(2t+sqrt{3})+arctan(2t-sqrt{3})right]_0^{+infty}=frac{pi}{2}.$$
edited Dec 2 '18 at 10:22
answered Dec 2 '18 at 9:27
Robert ZRobert Z
95.4k1064135
95.4k1064135
$begingroup$
Oh wow thanks I wouldn't have thought of partial fraction decomposition.
$endgroup$
– Mint
Dec 2 '18 at 9:39
1
$begingroup$
@jiaminglimjm I tried to simplify the idea of your approach.
$endgroup$
– Robert Z
Dec 2 '18 at 10:12
add a comment |
$begingroup$
Oh wow thanks I wouldn't have thought of partial fraction decomposition.
$endgroup$
– Mint
Dec 2 '18 at 9:39
1
$begingroup$
@jiaminglimjm I tried to simplify the idea of your approach.
$endgroup$
– Robert Z
Dec 2 '18 at 10:12
$begingroup$
Oh wow thanks I wouldn't have thought of partial fraction decomposition.
$endgroup$
– Mint
Dec 2 '18 at 9:39
$begingroup$
Oh wow thanks I wouldn't have thought of partial fraction decomposition.
$endgroup$
– Mint
Dec 2 '18 at 9:39
1
1
$begingroup$
@jiaminglimjm I tried to simplify the idea of your approach.
$endgroup$
– Robert Z
Dec 2 '18 at 10:12
$begingroup$
@jiaminglimjm I tried to simplify the idea of your approach.
$endgroup$
– Robert Z
Dec 2 '18 at 10:12
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022425%2fprove-that-int-0-fracn-pi4-frac13-sin4x-3-cos4x-1-dx-f%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown