Finding the norm of $w + frac{1 - |w|^2}{|w - z|^2}(w - z)$, where $w$ and $z$ are in $mathbb{R}^n$












3












$begingroup$


I'm trying to show a result from Manfred Stoll's book on Hyperbolic geometry. Consider the function
$$M_w(z) = w + frac{1 - |w|^2}{|w - z|^2}(w - z)$$ where $w,z in mathbb{R}^n$ and $|w| < 1$. (I am using different variable names than Stoll). This function generalizes the Möbius transformations on the complex numbers.



Stoll writes that
$$|M_w(z)|^2 = frac{|w - z|^2 + (1 - |w|^2)(1-|z|^2)}{|w - z|^2}$$
How do you show this? I tried computing $langle M_w(z), M_w(z) rangle$, but I'm not getting any closer.



This result ultimately shows that $M_w(z)$ maps into the unit ball.










share|cite|improve this question











$endgroup$

















    3












    $begingroup$


    I'm trying to show a result from Manfred Stoll's book on Hyperbolic geometry. Consider the function
    $$M_w(z) = w + frac{1 - |w|^2}{|w - z|^2}(w - z)$$ where $w,z in mathbb{R}^n$ and $|w| < 1$. (I am using different variable names than Stoll). This function generalizes the Möbius transformations on the complex numbers.



    Stoll writes that
    $$|M_w(z)|^2 = frac{|w - z|^2 + (1 - |w|^2)(1-|z|^2)}{|w - z|^2}$$
    How do you show this? I tried computing $langle M_w(z), M_w(z) rangle$, but I'm not getting any closer.



    This result ultimately shows that $M_w(z)$ maps into the unit ball.










    share|cite|improve this question











    $endgroup$















      3












      3








      3





      $begingroup$


      I'm trying to show a result from Manfred Stoll's book on Hyperbolic geometry. Consider the function
      $$M_w(z) = w + frac{1 - |w|^2}{|w - z|^2}(w - z)$$ where $w,z in mathbb{R}^n$ and $|w| < 1$. (I am using different variable names than Stoll). This function generalizes the Möbius transformations on the complex numbers.



      Stoll writes that
      $$|M_w(z)|^2 = frac{|w - z|^2 + (1 - |w|^2)(1-|z|^2)}{|w - z|^2}$$
      How do you show this? I tried computing $langle M_w(z), M_w(z) rangle$, but I'm not getting any closer.



      This result ultimately shows that $M_w(z)$ maps into the unit ball.










      share|cite|improve this question











      $endgroup$




      I'm trying to show a result from Manfred Stoll's book on Hyperbolic geometry. Consider the function
      $$M_w(z) = w + frac{1 - |w|^2}{|w - z|^2}(w - z)$$ where $w,z in mathbb{R}^n$ and $|w| < 1$. (I am using different variable names than Stoll). This function generalizes the Möbius transformations on the complex numbers.



      Stoll writes that
      $$|M_w(z)|^2 = frac{|w - z|^2 + (1 - |w|^2)(1-|z|^2)}{|w - z|^2}$$
      How do you show this? I tried computing $langle M_w(z), M_w(z) rangle$, but I'm not getting any closer.



      This result ultimately shows that $M_w(z)$ maps into the unit ball.







      hyperbolic-geometry mobius-transformation






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 3 '18 at 2:36









      Blue

      48k870153




      48k870153










      asked Dec 2 '18 at 21:47









      dinstructiondinstruction

      554423




      554423






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          $$begin{align}
          left|M_w(z)right|^2 &=
          |w|^2+frac{left(1-|w|^2right)^2}{|w-z|^4}|w-z|^2+2frac{1-|w|^2}{|w-z|^2};wcdot(w-z) \[8pt]
          |w-z|^2;left|M_w(z)right|^2 &=
          |w|^2|w-z|^2+left(1-|w|^2right)^2+2left(1-|w|^2right);left(|w|^2-wcdot zright) \[8pt]
          &=
          phantom{+2}|w|^2left(|w|^2+|z|^2-2wcdot zright)\
          &phantom{=}+phantom{2}left(1-2|w|^2+|w|^4right)\
          &phantom{=}+2left(|w|^2-wcdot z-|w|^4+|w|^2wcdot z right) \[8pt]
          &=
          left(-2wcdot zright)+ left(1 + |w|^2|z|^2right)\[6pt]
          &=
          left(|w|^2+|z|^2-2wcdot zright)+ left(1 -|w|^2-|z|^2+ |w|^2|z|^2right)\[6pt]
          &=
          |w-z|^2+ left(1 -|w|^2right)left(1-|z|^2right)\
          end{align}$$






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023257%2ffinding-the-norm-of-w-frac1-w2w-z2w-z-where-w-and-z%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            $$begin{align}
            left|M_w(z)right|^2 &=
            |w|^2+frac{left(1-|w|^2right)^2}{|w-z|^4}|w-z|^2+2frac{1-|w|^2}{|w-z|^2};wcdot(w-z) \[8pt]
            |w-z|^2;left|M_w(z)right|^2 &=
            |w|^2|w-z|^2+left(1-|w|^2right)^2+2left(1-|w|^2right);left(|w|^2-wcdot zright) \[8pt]
            &=
            phantom{+2}|w|^2left(|w|^2+|z|^2-2wcdot zright)\
            &phantom{=}+phantom{2}left(1-2|w|^2+|w|^4right)\
            &phantom{=}+2left(|w|^2-wcdot z-|w|^4+|w|^2wcdot z right) \[8pt]
            &=
            left(-2wcdot zright)+ left(1 + |w|^2|z|^2right)\[6pt]
            &=
            left(|w|^2+|z|^2-2wcdot zright)+ left(1 -|w|^2-|z|^2+ |w|^2|z|^2right)\[6pt]
            &=
            |w-z|^2+ left(1 -|w|^2right)left(1-|z|^2right)\
            end{align}$$






            share|cite|improve this answer









            $endgroup$


















              2












              $begingroup$

              $$begin{align}
              left|M_w(z)right|^2 &=
              |w|^2+frac{left(1-|w|^2right)^2}{|w-z|^4}|w-z|^2+2frac{1-|w|^2}{|w-z|^2};wcdot(w-z) \[8pt]
              |w-z|^2;left|M_w(z)right|^2 &=
              |w|^2|w-z|^2+left(1-|w|^2right)^2+2left(1-|w|^2right);left(|w|^2-wcdot zright) \[8pt]
              &=
              phantom{+2}|w|^2left(|w|^2+|z|^2-2wcdot zright)\
              &phantom{=}+phantom{2}left(1-2|w|^2+|w|^4right)\
              &phantom{=}+2left(|w|^2-wcdot z-|w|^4+|w|^2wcdot z right) \[8pt]
              &=
              left(-2wcdot zright)+ left(1 + |w|^2|z|^2right)\[6pt]
              &=
              left(|w|^2+|z|^2-2wcdot zright)+ left(1 -|w|^2-|z|^2+ |w|^2|z|^2right)\[6pt]
              &=
              |w-z|^2+ left(1 -|w|^2right)left(1-|z|^2right)\
              end{align}$$






              share|cite|improve this answer









              $endgroup$
















                2












                2








                2





                $begingroup$

                $$begin{align}
                left|M_w(z)right|^2 &=
                |w|^2+frac{left(1-|w|^2right)^2}{|w-z|^4}|w-z|^2+2frac{1-|w|^2}{|w-z|^2};wcdot(w-z) \[8pt]
                |w-z|^2;left|M_w(z)right|^2 &=
                |w|^2|w-z|^2+left(1-|w|^2right)^2+2left(1-|w|^2right);left(|w|^2-wcdot zright) \[8pt]
                &=
                phantom{+2}|w|^2left(|w|^2+|z|^2-2wcdot zright)\
                &phantom{=}+phantom{2}left(1-2|w|^2+|w|^4right)\
                &phantom{=}+2left(|w|^2-wcdot z-|w|^4+|w|^2wcdot z right) \[8pt]
                &=
                left(-2wcdot zright)+ left(1 + |w|^2|z|^2right)\[6pt]
                &=
                left(|w|^2+|z|^2-2wcdot zright)+ left(1 -|w|^2-|z|^2+ |w|^2|z|^2right)\[6pt]
                &=
                |w-z|^2+ left(1 -|w|^2right)left(1-|z|^2right)\
                end{align}$$






                share|cite|improve this answer









                $endgroup$



                $$begin{align}
                left|M_w(z)right|^2 &=
                |w|^2+frac{left(1-|w|^2right)^2}{|w-z|^4}|w-z|^2+2frac{1-|w|^2}{|w-z|^2};wcdot(w-z) \[8pt]
                |w-z|^2;left|M_w(z)right|^2 &=
                |w|^2|w-z|^2+left(1-|w|^2right)^2+2left(1-|w|^2right);left(|w|^2-wcdot zright) \[8pt]
                &=
                phantom{+2}|w|^2left(|w|^2+|z|^2-2wcdot zright)\
                &phantom{=}+phantom{2}left(1-2|w|^2+|w|^4right)\
                &phantom{=}+2left(|w|^2-wcdot z-|w|^4+|w|^2wcdot z right) \[8pt]
                &=
                left(-2wcdot zright)+ left(1 + |w|^2|z|^2right)\[6pt]
                &=
                left(|w|^2+|z|^2-2wcdot zright)+ left(1 -|w|^2-|z|^2+ |w|^2|z|^2right)\[6pt]
                &=
                |w-z|^2+ left(1 -|w|^2right)left(1-|z|^2right)\
                end{align}$$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Dec 3 '18 at 2:33









                BlueBlue

                48k870153




                48k870153






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023257%2ffinding-the-norm-of-w-frac1-w2w-z2w-z-where-w-and-z%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Plaza Victoria

                    Puebla de Zaragoza

                    Musa