prove $sum_{n=0}^{infty}frac{Gamma^2(n+1)}{Gamma(2n+2)}=frac{2pi}{3^{3/2}}$
$begingroup$
I am seeking alternate proofs for
$$sum_{ngeq0}frac{Gamma^2(n+1)}{Gamma(2n+2)}=frac{2pi}{3^{3/2}}$$
Here's mine:
Recall that, for $xin(0,2)$,
$$frac1x=sum_{ngeq0}(1-x)^n$$
Hence we have that, for $frac{1-sqrt5}2<x<frac{1+sqrt5}2$,
$$frac1{x^2-x+1}=sum_{ngeq0}x^n(1-x)^n$$
Which gives
$$
begin{align}
int_0^1frac{mathrm dx}{x^2-x+1}=&int_0^1sum_{ngeq0}x^n(1-x)^nmathrm dx\
=&sum_{ngeq0}int_0^1x^n(1-x)^nmathrm dx\
=&sum_{ngeq0}frac{Gamma^2(n+1)}{Gamma(2n+2)}
end{align}
$$
That last step was from the definition of the Beta function:
$$B(a,b)=int_0^1t^{a-1}(1-t)^{b-1}mathrm dt=frac{Gamma(a)Gamma(b)}{Gamma(a+b)}$$
Setting $I=int_0^1frac{mathrm dx}{x^2-x+1}$, we complete the square:
$$I=int_0^1frac{mathrm dx}{(x-frac12)^2+frac34}$$
Preforming the substitution $x=frac{1+3^{1/2}tan u}2$, we have
$$I=frac{3^{1/2}}2int_{-pi/6}^{pi/6}frac{sec^2u mathrm du}{frac34+frac34tan^2u}$$
And with a little simplification, we arrive at
$$sum_{ngeq0}frac{Gamma^2(n+1)}{Gamma(2n+2)}=frac{2pi}{3^{3/2}}$$
Which brings me to my questions. How else can we prove this? What other series can be evaluated using similar tricks? Have fun!
sequences-and-series soft-question special-functions alternative-proof big-list
$endgroup$
add a comment |
$begingroup$
I am seeking alternate proofs for
$$sum_{ngeq0}frac{Gamma^2(n+1)}{Gamma(2n+2)}=frac{2pi}{3^{3/2}}$$
Here's mine:
Recall that, for $xin(0,2)$,
$$frac1x=sum_{ngeq0}(1-x)^n$$
Hence we have that, for $frac{1-sqrt5}2<x<frac{1+sqrt5}2$,
$$frac1{x^2-x+1}=sum_{ngeq0}x^n(1-x)^n$$
Which gives
$$
begin{align}
int_0^1frac{mathrm dx}{x^2-x+1}=&int_0^1sum_{ngeq0}x^n(1-x)^nmathrm dx\
=&sum_{ngeq0}int_0^1x^n(1-x)^nmathrm dx\
=&sum_{ngeq0}frac{Gamma^2(n+1)}{Gamma(2n+2)}
end{align}
$$
That last step was from the definition of the Beta function:
$$B(a,b)=int_0^1t^{a-1}(1-t)^{b-1}mathrm dt=frac{Gamma(a)Gamma(b)}{Gamma(a+b)}$$
Setting $I=int_0^1frac{mathrm dx}{x^2-x+1}$, we complete the square:
$$I=int_0^1frac{mathrm dx}{(x-frac12)^2+frac34}$$
Preforming the substitution $x=frac{1+3^{1/2}tan u}2$, we have
$$I=frac{3^{1/2}}2int_{-pi/6}^{pi/6}frac{sec^2u mathrm du}{frac34+frac34tan^2u}$$
And with a little simplification, we arrive at
$$sum_{ngeq0}frac{Gamma^2(n+1)}{Gamma(2n+2)}=frac{2pi}{3^{3/2}}$$
Which brings me to my questions. How else can we prove this? What other series can be evaluated using similar tricks? Have fun!
sequences-and-series soft-question special-functions alternative-proof big-list
$endgroup$
add a comment |
$begingroup$
I am seeking alternate proofs for
$$sum_{ngeq0}frac{Gamma^2(n+1)}{Gamma(2n+2)}=frac{2pi}{3^{3/2}}$$
Here's mine:
Recall that, for $xin(0,2)$,
$$frac1x=sum_{ngeq0}(1-x)^n$$
Hence we have that, for $frac{1-sqrt5}2<x<frac{1+sqrt5}2$,
$$frac1{x^2-x+1}=sum_{ngeq0}x^n(1-x)^n$$
Which gives
$$
begin{align}
int_0^1frac{mathrm dx}{x^2-x+1}=&int_0^1sum_{ngeq0}x^n(1-x)^nmathrm dx\
=&sum_{ngeq0}int_0^1x^n(1-x)^nmathrm dx\
=&sum_{ngeq0}frac{Gamma^2(n+1)}{Gamma(2n+2)}
end{align}
$$
That last step was from the definition of the Beta function:
$$B(a,b)=int_0^1t^{a-1}(1-t)^{b-1}mathrm dt=frac{Gamma(a)Gamma(b)}{Gamma(a+b)}$$
Setting $I=int_0^1frac{mathrm dx}{x^2-x+1}$, we complete the square:
$$I=int_0^1frac{mathrm dx}{(x-frac12)^2+frac34}$$
Preforming the substitution $x=frac{1+3^{1/2}tan u}2$, we have
$$I=frac{3^{1/2}}2int_{-pi/6}^{pi/6}frac{sec^2u mathrm du}{frac34+frac34tan^2u}$$
And with a little simplification, we arrive at
$$sum_{ngeq0}frac{Gamma^2(n+1)}{Gamma(2n+2)}=frac{2pi}{3^{3/2}}$$
Which brings me to my questions. How else can we prove this? What other series can be evaluated using similar tricks? Have fun!
sequences-and-series soft-question special-functions alternative-proof big-list
$endgroup$
I am seeking alternate proofs for
$$sum_{ngeq0}frac{Gamma^2(n+1)}{Gamma(2n+2)}=frac{2pi}{3^{3/2}}$$
Here's mine:
Recall that, for $xin(0,2)$,
$$frac1x=sum_{ngeq0}(1-x)^n$$
Hence we have that, for $frac{1-sqrt5}2<x<frac{1+sqrt5}2$,
$$frac1{x^2-x+1}=sum_{ngeq0}x^n(1-x)^n$$
Which gives
$$
begin{align}
int_0^1frac{mathrm dx}{x^2-x+1}=&int_0^1sum_{ngeq0}x^n(1-x)^nmathrm dx\
=&sum_{ngeq0}int_0^1x^n(1-x)^nmathrm dx\
=&sum_{ngeq0}frac{Gamma^2(n+1)}{Gamma(2n+2)}
end{align}
$$
That last step was from the definition of the Beta function:
$$B(a,b)=int_0^1t^{a-1}(1-t)^{b-1}mathrm dt=frac{Gamma(a)Gamma(b)}{Gamma(a+b)}$$
Setting $I=int_0^1frac{mathrm dx}{x^2-x+1}$, we complete the square:
$$I=int_0^1frac{mathrm dx}{(x-frac12)^2+frac34}$$
Preforming the substitution $x=frac{1+3^{1/2}tan u}2$, we have
$$I=frac{3^{1/2}}2int_{-pi/6}^{pi/6}frac{sec^2u mathrm du}{frac34+frac34tan^2u}$$
And with a little simplification, we arrive at
$$sum_{ngeq0}frac{Gamma^2(n+1)}{Gamma(2n+2)}=frac{2pi}{3^{3/2}}$$
Which brings me to my questions. How else can we prove this? What other series can be evaluated using similar tricks? Have fun!
sequences-and-series soft-question special-functions alternative-proof big-list
sequences-and-series soft-question special-functions alternative-proof big-list
edited Dec 3 '18 at 3:47
clathratus
asked Dec 2 '18 at 21:29
clathratusclathratus
3,862333
3,862333
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
A not-really-alternative approach:
$$ sum_{ngeq 0}frac{Gamma(n+1)^2}{Gamma(2n+2)}=sum_{ngeq 0}frac{1}{(2n+1)binom{2n}{n}}=sum_{ngeq 1}frac{2}{nbinom{2n}{n}} $$
and since $sum_{ngeq 1}frac{z^{2n}}{n^2binom{2n}{n}}$ equals $2arcsin^2tfrac{z}{2}$ (by the Lagrange inversion theorem or equivalent approaches), we simply have
$$ sum_{ngeq 0}frac{Gamma(n+1)^2}{Gamma(2n+2)}=frac{d}{dz}left.2arcsin^2tfrac{z}{2}right|_{z=1}=left.frac{4arcsin(z/2)}{sqrt{4-z^2}}right|_{z=1}=frac{2pi}{3sqrt{3}}.$$
$endgroup$
$begingroup$
different enough for me! Thanks Jack (+1)
$endgroup$
– clathratus
Dec 2 '18 at 21:42
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
Hereafter, $ds{Psi}$ is the
Digamma Function: $ds{Psipars{z} equiv totald{lnpars{Gammapars{z}}}{z}}$ where $ds{Gamma}$ is the
Gamma Function.
begin{align}
&bbox[10px,#ffd]{int_{0}^{1}{dd x over x^{2} - x + 1}} =
int_{0}^{1}{1 + x over 1 + x^{3}},dd x
\[5mm] = &
int_{0}^{1}{1 + x - x^{3} - x^{4}over 1 - x^{6}},dd x
\[5mm] = &
{1 over 6}int_{0}^{1}{x^{-5/6} + x^{-2/3} - x^{-1/3} - x^{-1/6} over 1 - x},dd x
\[5mm] = &
{1 over 6}left{bracks{%
int_{0}^{1}{1 - x^{-1/3} over 1 - x},dd x -
int_{0}^{1}{1 - x^{-2/3} over 1 - x},dd x}
right.
\[2mm] & +
left.phantom{left{,right.}
bracks{int_{0}^{1}{1 - x^{-1/6} over 1 - x},dd x -
int_{0}^{1}{1 - x^{-5/6} over 1 - x},dd x}
label{1}tag{1}
right}
\[5mm] = &
{1 over 6}braces{!%
bracks{Psipars{2 over 3} -
Psipars{1 over 3}} +
bracks{Psipars{5 over 6} -
Psipars{1 over 6}}!}label{2}tag{2}
\[5mm] = &
{1 over 6}bracks{picotpars{pi over 3} +
picotpars{pi over 6}} =
{1 over 6}pars{{root{3} over 3} + root{3}}pi
label{3}tag{3}
\[5mm] = &
bbx{{2root{3} over 9},pi} approx 1.2092
end{align}
eqref{1} is evaluated with
$ds{mathbf{color{black}{6.3.22}}}$ A & S Identity. In eqref{2} and eqref{3}, I used the
Euler Reflection Formula.
$endgroup$
$begingroup$
Nice! Thanks for another one of your high quality answers, Felix. Just for clarification, $$Psi(z)=frac{Gamma'(z)}{Gamma(z)}?$$
$endgroup$
– clathratus
Dec 4 '18 at 17:41
1
$begingroup$
@clathratus Yes. I just added some comments to my answers which clarifies it. Thanks.
$endgroup$
– Felix Marin
Dec 4 '18 at 19:52
$begingroup$
I'd like to award a bounty to this answer, as it provides the most alternative, integration-related proof. Excellent work Felix.
$endgroup$
– clathratus
Dec 8 '18 at 21:26
$begingroup$
Thanks @clathratus
$endgroup$
– Felix Marin
Dec 8 '18 at 23:55
add a comment |
$begingroup$
Still another way is through the Hypergeometric function.
Since the term of the sum is
$$
t_{,n} = {{Gamma left( {n + 1} right)^{,2} } over {Gamma left( {2n + 2} right)}}
$$
and
$$
eqalign{
& t_{,0} = {{Gamma left( 1 right)^{,2} } over {Gamma left( 2 right)}} = 1 cr
& {{t_{,n + 1} } over {t_{,n} }} = {{Gamma left( {n + 2} right)^{,2} } over {Gamma left( {2n + 4} right)}}{{Gamma left( {2n + 2} right)}
over {Gamma left( {n + 1} right)^{,2} }} = {{left( {n + 1} right)^{,2} } over {left( {2n + 3} right)left( {2n + 2} right)}} cr
& = {{left( {n + 1} right)left( {n + 1} right)} over {left( {n + 3/2} right)}}{{1/4} over {left( {n + 1} right)}} cr}
$$
then
$$
eqalign{
& sumlimits_{n = 0}^infty {{{Gamma left( {n + 1} right)^{,2} } over {Gamma left( {2left( {n + 1} right)} right)}}}
= {}_2F_{,1} left( {left. {matrix{ {1,;1} cr {3/2} cr } ;} right|;1/4} right) = cr
& = {{arcsin left( {sqrt {1/4} } right)} over {sqrt {1 - 1/4} sqrt {1/4} }} = {{4pi } over {6sqrt 3 }} = {{2pi } over {3sqrt 3 }} cr}
$$
$endgroup$
$begingroup$
Cool! I really like any approach that involves hypergeometric functions.
$endgroup$
– clathratus
Dec 5 '18 at 0:33
$begingroup$
@clathratus: glad of the appreciation, but I am aware of the drawback that the HG does not have a straight translation into the final result.
$endgroup$
– G Cab
Dec 5 '18 at 1:13
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023224%2fprove-sum-n-0-infty-frac-gamma2n1-gamma2n2-frac2-pi33-2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
A not-really-alternative approach:
$$ sum_{ngeq 0}frac{Gamma(n+1)^2}{Gamma(2n+2)}=sum_{ngeq 0}frac{1}{(2n+1)binom{2n}{n}}=sum_{ngeq 1}frac{2}{nbinom{2n}{n}} $$
and since $sum_{ngeq 1}frac{z^{2n}}{n^2binom{2n}{n}}$ equals $2arcsin^2tfrac{z}{2}$ (by the Lagrange inversion theorem or equivalent approaches), we simply have
$$ sum_{ngeq 0}frac{Gamma(n+1)^2}{Gamma(2n+2)}=frac{d}{dz}left.2arcsin^2tfrac{z}{2}right|_{z=1}=left.frac{4arcsin(z/2)}{sqrt{4-z^2}}right|_{z=1}=frac{2pi}{3sqrt{3}}.$$
$endgroup$
$begingroup$
different enough for me! Thanks Jack (+1)
$endgroup$
– clathratus
Dec 2 '18 at 21:42
add a comment |
$begingroup$
A not-really-alternative approach:
$$ sum_{ngeq 0}frac{Gamma(n+1)^2}{Gamma(2n+2)}=sum_{ngeq 0}frac{1}{(2n+1)binom{2n}{n}}=sum_{ngeq 1}frac{2}{nbinom{2n}{n}} $$
and since $sum_{ngeq 1}frac{z^{2n}}{n^2binom{2n}{n}}$ equals $2arcsin^2tfrac{z}{2}$ (by the Lagrange inversion theorem or equivalent approaches), we simply have
$$ sum_{ngeq 0}frac{Gamma(n+1)^2}{Gamma(2n+2)}=frac{d}{dz}left.2arcsin^2tfrac{z}{2}right|_{z=1}=left.frac{4arcsin(z/2)}{sqrt{4-z^2}}right|_{z=1}=frac{2pi}{3sqrt{3}}.$$
$endgroup$
$begingroup$
different enough for me! Thanks Jack (+1)
$endgroup$
– clathratus
Dec 2 '18 at 21:42
add a comment |
$begingroup$
A not-really-alternative approach:
$$ sum_{ngeq 0}frac{Gamma(n+1)^2}{Gamma(2n+2)}=sum_{ngeq 0}frac{1}{(2n+1)binom{2n}{n}}=sum_{ngeq 1}frac{2}{nbinom{2n}{n}} $$
and since $sum_{ngeq 1}frac{z^{2n}}{n^2binom{2n}{n}}$ equals $2arcsin^2tfrac{z}{2}$ (by the Lagrange inversion theorem or equivalent approaches), we simply have
$$ sum_{ngeq 0}frac{Gamma(n+1)^2}{Gamma(2n+2)}=frac{d}{dz}left.2arcsin^2tfrac{z}{2}right|_{z=1}=left.frac{4arcsin(z/2)}{sqrt{4-z^2}}right|_{z=1}=frac{2pi}{3sqrt{3}}.$$
$endgroup$
A not-really-alternative approach:
$$ sum_{ngeq 0}frac{Gamma(n+1)^2}{Gamma(2n+2)}=sum_{ngeq 0}frac{1}{(2n+1)binom{2n}{n}}=sum_{ngeq 1}frac{2}{nbinom{2n}{n}} $$
and since $sum_{ngeq 1}frac{z^{2n}}{n^2binom{2n}{n}}$ equals $2arcsin^2tfrac{z}{2}$ (by the Lagrange inversion theorem or equivalent approaches), we simply have
$$ sum_{ngeq 0}frac{Gamma(n+1)^2}{Gamma(2n+2)}=frac{d}{dz}left.2arcsin^2tfrac{z}{2}right|_{z=1}=left.frac{4arcsin(z/2)}{sqrt{4-z^2}}right|_{z=1}=frac{2pi}{3sqrt{3}}.$$
answered Dec 2 '18 at 21:41
Jack D'AurizioJack D'Aurizio
289k33281660
289k33281660
$begingroup$
different enough for me! Thanks Jack (+1)
$endgroup$
– clathratus
Dec 2 '18 at 21:42
add a comment |
$begingroup$
different enough for me! Thanks Jack (+1)
$endgroup$
– clathratus
Dec 2 '18 at 21:42
$begingroup$
different enough for me! Thanks Jack (+1)
$endgroup$
– clathratus
Dec 2 '18 at 21:42
$begingroup$
different enough for me! Thanks Jack (+1)
$endgroup$
– clathratus
Dec 2 '18 at 21:42
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
Hereafter, $ds{Psi}$ is the
Digamma Function: $ds{Psipars{z} equiv totald{lnpars{Gammapars{z}}}{z}}$ where $ds{Gamma}$ is the
Gamma Function.
begin{align}
&bbox[10px,#ffd]{int_{0}^{1}{dd x over x^{2} - x + 1}} =
int_{0}^{1}{1 + x over 1 + x^{3}},dd x
\[5mm] = &
int_{0}^{1}{1 + x - x^{3} - x^{4}over 1 - x^{6}},dd x
\[5mm] = &
{1 over 6}int_{0}^{1}{x^{-5/6} + x^{-2/3} - x^{-1/3} - x^{-1/6} over 1 - x},dd x
\[5mm] = &
{1 over 6}left{bracks{%
int_{0}^{1}{1 - x^{-1/3} over 1 - x},dd x -
int_{0}^{1}{1 - x^{-2/3} over 1 - x},dd x}
right.
\[2mm] & +
left.phantom{left{,right.}
bracks{int_{0}^{1}{1 - x^{-1/6} over 1 - x},dd x -
int_{0}^{1}{1 - x^{-5/6} over 1 - x},dd x}
label{1}tag{1}
right}
\[5mm] = &
{1 over 6}braces{!%
bracks{Psipars{2 over 3} -
Psipars{1 over 3}} +
bracks{Psipars{5 over 6} -
Psipars{1 over 6}}!}label{2}tag{2}
\[5mm] = &
{1 over 6}bracks{picotpars{pi over 3} +
picotpars{pi over 6}} =
{1 over 6}pars{{root{3} over 3} + root{3}}pi
label{3}tag{3}
\[5mm] = &
bbx{{2root{3} over 9},pi} approx 1.2092
end{align}
eqref{1} is evaluated with
$ds{mathbf{color{black}{6.3.22}}}$ A & S Identity. In eqref{2} and eqref{3}, I used the
Euler Reflection Formula.
$endgroup$
$begingroup$
Nice! Thanks for another one of your high quality answers, Felix. Just for clarification, $$Psi(z)=frac{Gamma'(z)}{Gamma(z)}?$$
$endgroup$
– clathratus
Dec 4 '18 at 17:41
1
$begingroup$
@clathratus Yes. I just added some comments to my answers which clarifies it. Thanks.
$endgroup$
– Felix Marin
Dec 4 '18 at 19:52
$begingroup$
I'd like to award a bounty to this answer, as it provides the most alternative, integration-related proof. Excellent work Felix.
$endgroup$
– clathratus
Dec 8 '18 at 21:26
$begingroup$
Thanks @clathratus
$endgroup$
– Felix Marin
Dec 8 '18 at 23:55
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
Hereafter, $ds{Psi}$ is the
Digamma Function: $ds{Psipars{z} equiv totald{lnpars{Gammapars{z}}}{z}}$ where $ds{Gamma}$ is the
Gamma Function.
begin{align}
&bbox[10px,#ffd]{int_{0}^{1}{dd x over x^{2} - x + 1}} =
int_{0}^{1}{1 + x over 1 + x^{3}},dd x
\[5mm] = &
int_{0}^{1}{1 + x - x^{3} - x^{4}over 1 - x^{6}},dd x
\[5mm] = &
{1 over 6}int_{0}^{1}{x^{-5/6} + x^{-2/3} - x^{-1/3} - x^{-1/6} over 1 - x},dd x
\[5mm] = &
{1 over 6}left{bracks{%
int_{0}^{1}{1 - x^{-1/3} over 1 - x},dd x -
int_{0}^{1}{1 - x^{-2/3} over 1 - x},dd x}
right.
\[2mm] & +
left.phantom{left{,right.}
bracks{int_{0}^{1}{1 - x^{-1/6} over 1 - x},dd x -
int_{0}^{1}{1 - x^{-5/6} over 1 - x},dd x}
label{1}tag{1}
right}
\[5mm] = &
{1 over 6}braces{!%
bracks{Psipars{2 over 3} -
Psipars{1 over 3}} +
bracks{Psipars{5 over 6} -
Psipars{1 over 6}}!}label{2}tag{2}
\[5mm] = &
{1 over 6}bracks{picotpars{pi over 3} +
picotpars{pi over 6}} =
{1 over 6}pars{{root{3} over 3} + root{3}}pi
label{3}tag{3}
\[5mm] = &
bbx{{2root{3} over 9},pi} approx 1.2092
end{align}
eqref{1} is evaluated with
$ds{mathbf{color{black}{6.3.22}}}$ A & S Identity. In eqref{2} and eqref{3}, I used the
Euler Reflection Formula.
$endgroup$
$begingroup$
Nice! Thanks for another one of your high quality answers, Felix. Just for clarification, $$Psi(z)=frac{Gamma'(z)}{Gamma(z)}?$$
$endgroup$
– clathratus
Dec 4 '18 at 17:41
1
$begingroup$
@clathratus Yes. I just added some comments to my answers which clarifies it. Thanks.
$endgroup$
– Felix Marin
Dec 4 '18 at 19:52
$begingroup$
I'd like to award a bounty to this answer, as it provides the most alternative, integration-related proof. Excellent work Felix.
$endgroup$
– clathratus
Dec 8 '18 at 21:26
$begingroup$
Thanks @clathratus
$endgroup$
– Felix Marin
Dec 8 '18 at 23:55
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
Hereafter, $ds{Psi}$ is the
Digamma Function: $ds{Psipars{z} equiv totald{lnpars{Gammapars{z}}}{z}}$ where $ds{Gamma}$ is the
Gamma Function.
begin{align}
&bbox[10px,#ffd]{int_{0}^{1}{dd x over x^{2} - x + 1}} =
int_{0}^{1}{1 + x over 1 + x^{3}},dd x
\[5mm] = &
int_{0}^{1}{1 + x - x^{3} - x^{4}over 1 - x^{6}},dd x
\[5mm] = &
{1 over 6}int_{0}^{1}{x^{-5/6} + x^{-2/3} - x^{-1/3} - x^{-1/6} over 1 - x},dd x
\[5mm] = &
{1 over 6}left{bracks{%
int_{0}^{1}{1 - x^{-1/3} over 1 - x},dd x -
int_{0}^{1}{1 - x^{-2/3} over 1 - x},dd x}
right.
\[2mm] & +
left.phantom{left{,right.}
bracks{int_{0}^{1}{1 - x^{-1/6} over 1 - x},dd x -
int_{0}^{1}{1 - x^{-5/6} over 1 - x},dd x}
label{1}tag{1}
right}
\[5mm] = &
{1 over 6}braces{!%
bracks{Psipars{2 over 3} -
Psipars{1 over 3}} +
bracks{Psipars{5 over 6} -
Psipars{1 over 6}}!}label{2}tag{2}
\[5mm] = &
{1 over 6}bracks{picotpars{pi over 3} +
picotpars{pi over 6}} =
{1 over 6}pars{{root{3} over 3} + root{3}}pi
label{3}tag{3}
\[5mm] = &
bbx{{2root{3} over 9},pi} approx 1.2092
end{align}
eqref{1} is evaluated with
$ds{mathbf{color{black}{6.3.22}}}$ A & S Identity. In eqref{2} and eqref{3}, I used the
Euler Reflection Formula.
$endgroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
Hereafter, $ds{Psi}$ is the
Digamma Function: $ds{Psipars{z} equiv totald{lnpars{Gammapars{z}}}{z}}$ where $ds{Gamma}$ is the
Gamma Function.
begin{align}
&bbox[10px,#ffd]{int_{0}^{1}{dd x over x^{2} - x + 1}} =
int_{0}^{1}{1 + x over 1 + x^{3}},dd x
\[5mm] = &
int_{0}^{1}{1 + x - x^{3} - x^{4}over 1 - x^{6}},dd x
\[5mm] = &
{1 over 6}int_{0}^{1}{x^{-5/6} + x^{-2/3} - x^{-1/3} - x^{-1/6} over 1 - x},dd x
\[5mm] = &
{1 over 6}left{bracks{%
int_{0}^{1}{1 - x^{-1/3} over 1 - x},dd x -
int_{0}^{1}{1 - x^{-2/3} over 1 - x},dd x}
right.
\[2mm] & +
left.phantom{left{,right.}
bracks{int_{0}^{1}{1 - x^{-1/6} over 1 - x},dd x -
int_{0}^{1}{1 - x^{-5/6} over 1 - x},dd x}
label{1}tag{1}
right}
\[5mm] = &
{1 over 6}braces{!%
bracks{Psipars{2 over 3} -
Psipars{1 over 3}} +
bracks{Psipars{5 over 6} -
Psipars{1 over 6}}!}label{2}tag{2}
\[5mm] = &
{1 over 6}bracks{picotpars{pi over 3} +
picotpars{pi over 6}} =
{1 over 6}pars{{root{3} over 3} + root{3}}pi
label{3}tag{3}
\[5mm] = &
bbx{{2root{3} over 9},pi} approx 1.2092
end{align}
eqref{1} is evaluated with
$ds{mathbf{color{black}{6.3.22}}}$ A & S Identity. In eqref{2} and eqref{3}, I used the
Euler Reflection Formula.
edited Dec 4 '18 at 19:56
answered Dec 4 '18 at 5:57
Felix MarinFelix Marin
67.5k7107141
67.5k7107141
$begingroup$
Nice! Thanks for another one of your high quality answers, Felix. Just for clarification, $$Psi(z)=frac{Gamma'(z)}{Gamma(z)}?$$
$endgroup$
– clathratus
Dec 4 '18 at 17:41
1
$begingroup$
@clathratus Yes. I just added some comments to my answers which clarifies it. Thanks.
$endgroup$
– Felix Marin
Dec 4 '18 at 19:52
$begingroup$
I'd like to award a bounty to this answer, as it provides the most alternative, integration-related proof. Excellent work Felix.
$endgroup$
– clathratus
Dec 8 '18 at 21:26
$begingroup$
Thanks @clathratus
$endgroup$
– Felix Marin
Dec 8 '18 at 23:55
add a comment |
$begingroup$
Nice! Thanks for another one of your high quality answers, Felix. Just for clarification, $$Psi(z)=frac{Gamma'(z)}{Gamma(z)}?$$
$endgroup$
– clathratus
Dec 4 '18 at 17:41
1
$begingroup$
@clathratus Yes. I just added some comments to my answers which clarifies it. Thanks.
$endgroup$
– Felix Marin
Dec 4 '18 at 19:52
$begingroup$
I'd like to award a bounty to this answer, as it provides the most alternative, integration-related proof. Excellent work Felix.
$endgroup$
– clathratus
Dec 8 '18 at 21:26
$begingroup$
Thanks @clathratus
$endgroup$
– Felix Marin
Dec 8 '18 at 23:55
$begingroup$
Nice! Thanks for another one of your high quality answers, Felix. Just for clarification, $$Psi(z)=frac{Gamma'(z)}{Gamma(z)}?$$
$endgroup$
– clathratus
Dec 4 '18 at 17:41
$begingroup$
Nice! Thanks for another one of your high quality answers, Felix. Just for clarification, $$Psi(z)=frac{Gamma'(z)}{Gamma(z)}?$$
$endgroup$
– clathratus
Dec 4 '18 at 17:41
1
1
$begingroup$
@clathratus Yes. I just added some comments to my answers which clarifies it. Thanks.
$endgroup$
– Felix Marin
Dec 4 '18 at 19:52
$begingroup$
@clathratus Yes. I just added some comments to my answers which clarifies it. Thanks.
$endgroup$
– Felix Marin
Dec 4 '18 at 19:52
$begingroup$
I'd like to award a bounty to this answer, as it provides the most alternative, integration-related proof. Excellent work Felix.
$endgroup$
– clathratus
Dec 8 '18 at 21:26
$begingroup$
I'd like to award a bounty to this answer, as it provides the most alternative, integration-related proof. Excellent work Felix.
$endgroup$
– clathratus
Dec 8 '18 at 21:26
$begingroup$
Thanks @clathratus
$endgroup$
– Felix Marin
Dec 8 '18 at 23:55
$begingroup$
Thanks @clathratus
$endgroup$
– Felix Marin
Dec 8 '18 at 23:55
add a comment |
$begingroup$
Still another way is through the Hypergeometric function.
Since the term of the sum is
$$
t_{,n} = {{Gamma left( {n + 1} right)^{,2} } over {Gamma left( {2n + 2} right)}}
$$
and
$$
eqalign{
& t_{,0} = {{Gamma left( 1 right)^{,2} } over {Gamma left( 2 right)}} = 1 cr
& {{t_{,n + 1} } over {t_{,n} }} = {{Gamma left( {n + 2} right)^{,2} } over {Gamma left( {2n + 4} right)}}{{Gamma left( {2n + 2} right)}
over {Gamma left( {n + 1} right)^{,2} }} = {{left( {n + 1} right)^{,2} } over {left( {2n + 3} right)left( {2n + 2} right)}} cr
& = {{left( {n + 1} right)left( {n + 1} right)} over {left( {n + 3/2} right)}}{{1/4} over {left( {n + 1} right)}} cr}
$$
then
$$
eqalign{
& sumlimits_{n = 0}^infty {{{Gamma left( {n + 1} right)^{,2} } over {Gamma left( {2left( {n + 1} right)} right)}}}
= {}_2F_{,1} left( {left. {matrix{ {1,;1} cr {3/2} cr } ;} right|;1/4} right) = cr
& = {{arcsin left( {sqrt {1/4} } right)} over {sqrt {1 - 1/4} sqrt {1/4} }} = {{4pi } over {6sqrt 3 }} = {{2pi } over {3sqrt 3 }} cr}
$$
$endgroup$
$begingroup$
Cool! I really like any approach that involves hypergeometric functions.
$endgroup$
– clathratus
Dec 5 '18 at 0:33
$begingroup$
@clathratus: glad of the appreciation, but I am aware of the drawback that the HG does not have a straight translation into the final result.
$endgroup$
– G Cab
Dec 5 '18 at 1:13
add a comment |
$begingroup$
Still another way is through the Hypergeometric function.
Since the term of the sum is
$$
t_{,n} = {{Gamma left( {n + 1} right)^{,2} } over {Gamma left( {2n + 2} right)}}
$$
and
$$
eqalign{
& t_{,0} = {{Gamma left( 1 right)^{,2} } over {Gamma left( 2 right)}} = 1 cr
& {{t_{,n + 1} } over {t_{,n} }} = {{Gamma left( {n + 2} right)^{,2} } over {Gamma left( {2n + 4} right)}}{{Gamma left( {2n + 2} right)}
over {Gamma left( {n + 1} right)^{,2} }} = {{left( {n + 1} right)^{,2} } over {left( {2n + 3} right)left( {2n + 2} right)}} cr
& = {{left( {n + 1} right)left( {n + 1} right)} over {left( {n + 3/2} right)}}{{1/4} over {left( {n + 1} right)}} cr}
$$
then
$$
eqalign{
& sumlimits_{n = 0}^infty {{{Gamma left( {n + 1} right)^{,2} } over {Gamma left( {2left( {n + 1} right)} right)}}}
= {}_2F_{,1} left( {left. {matrix{ {1,;1} cr {3/2} cr } ;} right|;1/4} right) = cr
& = {{arcsin left( {sqrt {1/4} } right)} over {sqrt {1 - 1/4} sqrt {1/4} }} = {{4pi } over {6sqrt 3 }} = {{2pi } over {3sqrt 3 }} cr}
$$
$endgroup$
$begingroup$
Cool! I really like any approach that involves hypergeometric functions.
$endgroup$
– clathratus
Dec 5 '18 at 0:33
$begingroup$
@clathratus: glad of the appreciation, but I am aware of the drawback that the HG does not have a straight translation into the final result.
$endgroup$
– G Cab
Dec 5 '18 at 1:13
add a comment |
$begingroup$
Still another way is through the Hypergeometric function.
Since the term of the sum is
$$
t_{,n} = {{Gamma left( {n + 1} right)^{,2} } over {Gamma left( {2n + 2} right)}}
$$
and
$$
eqalign{
& t_{,0} = {{Gamma left( 1 right)^{,2} } over {Gamma left( 2 right)}} = 1 cr
& {{t_{,n + 1} } over {t_{,n} }} = {{Gamma left( {n + 2} right)^{,2} } over {Gamma left( {2n + 4} right)}}{{Gamma left( {2n + 2} right)}
over {Gamma left( {n + 1} right)^{,2} }} = {{left( {n + 1} right)^{,2} } over {left( {2n + 3} right)left( {2n + 2} right)}} cr
& = {{left( {n + 1} right)left( {n + 1} right)} over {left( {n + 3/2} right)}}{{1/4} over {left( {n + 1} right)}} cr}
$$
then
$$
eqalign{
& sumlimits_{n = 0}^infty {{{Gamma left( {n + 1} right)^{,2} } over {Gamma left( {2left( {n + 1} right)} right)}}}
= {}_2F_{,1} left( {left. {matrix{ {1,;1} cr {3/2} cr } ;} right|;1/4} right) = cr
& = {{arcsin left( {sqrt {1/4} } right)} over {sqrt {1 - 1/4} sqrt {1/4} }} = {{4pi } over {6sqrt 3 }} = {{2pi } over {3sqrt 3 }} cr}
$$
$endgroup$
Still another way is through the Hypergeometric function.
Since the term of the sum is
$$
t_{,n} = {{Gamma left( {n + 1} right)^{,2} } over {Gamma left( {2n + 2} right)}}
$$
and
$$
eqalign{
& t_{,0} = {{Gamma left( 1 right)^{,2} } over {Gamma left( 2 right)}} = 1 cr
& {{t_{,n + 1} } over {t_{,n} }} = {{Gamma left( {n + 2} right)^{,2} } over {Gamma left( {2n + 4} right)}}{{Gamma left( {2n + 2} right)}
over {Gamma left( {n + 1} right)^{,2} }} = {{left( {n + 1} right)^{,2} } over {left( {2n + 3} right)left( {2n + 2} right)}} cr
& = {{left( {n + 1} right)left( {n + 1} right)} over {left( {n + 3/2} right)}}{{1/4} over {left( {n + 1} right)}} cr}
$$
then
$$
eqalign{
& sumlimits_{n = 0}^infty {{{Gamma left( {n + 1} right)^{,2} } over {Gamma left( {2left( {n + 1} right)} right)}}}
= {}_2F_{,1} left( {left. {matrix{ {1,;1} cr {3/2} cr } ;} right|;1/4} right) = cr
& = {{arcsin left( {sqrt {1/4} } right)} over {sqrt {1 - 1/4} sqrt {1/4} }} = {{4pi } over {6sqrt 3 }} = {{2pi } over {3sqrt 3 }} cr}
$$
answered Dec 4 '18 at 23:19
G CabG Cab
18.6k31238
18.6k31238
$begingroup$
Cool! I really like any approach that involves hypergeometric functions.
$endgroup$
– clathratus
Dec 5 '18 at 0:33
$begingroup$
@clathratus: glad of the appreciation, but I am aware of the drawback that the HG does not have a straight translation into the final result.
$endgroup$
– G Cab
Dec 5 '18 at 1:13
add a comment |
$begingroup$
Cool! I really like any approach that involves hypergeometric functions.
$endgroup$
– clathratus
Dec 5 '18 at 0:33
$begingroup$
@clathratus: glad of the appreciation, but I am aware of the drawback that the HG does not have a straight translation into the final result.
$endgroup$
– G Cab
Dec 5 '18 at 1:13
$begingroup$
Cool! I really like any approach that involves hypergeometric functions.
$endgroup$
– clathratus
Dec 5 '18 at 0:33
$begingroup$
Cool! I really like any approach that involves hypergeometric functions.
$endgroup$
– clathratus
Dec 5 '18 at 0:33
$begingroup$
@clathratus: glad of the appreciation, but I am aware of the drawback that the HG does not have a straight translation into the final result.
$endgroup$
– G Cab
Dec 5 '18 at 1:13
$begingroup$
@clathratus: glad of the appreciation, but I am aware of the drawback that the HG does not have a straight translation into the final result.
$endgroup$
– G Cab
Dec 5 '18 at 1:13
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023224%2fprove-sum-n-0-infty-frac-gamma2n1-gamma2n2-frac2-pi33-2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown