Prove that $m^*(E+x)=m^*(E)$












0












$begingroup$


Let $Esubsetmathbb{R}$ and $xin mathbb{R}$.



$E+x={e+x: ein E}$



Define $displaystyle m^*(E)=infleft{sum_{n=1}^inftyell(I_n):Esubsetbigcup
_{n=1}^infty I_nright}$



Prove that $m^*(E+x)=m^*(E)$.



I think my proof is correct but I'd like someone to take a look.





Let ${I_n}$ be a sequence of intervals that covers $E$ such that $m^*(E)=sum_{n=1}^inftyell(I_n)$.



$Esubsetbigcup_{n=1}^infty I_n$



We claim that ${I_n+x}$ covers $E+x$. To prove this, let $yin E+ximplies y=e+x$ where $ein E$. Since $Esubsetbigcup_{n=1}^infty I_n$, $ein Eimplies einbigcup_{n=1}^infty I_nimplies ein I_n$ for some $n$. So, $y=e+xin I_n+x$ for some $n$. Thus, $yinbigcup_{n=1}^infty(I_n+x)$. Hence $E+xsubsetbigcup_{n=1}^infty(I_n+x)$.



So, $m^*(E+x)lesum_{n=1}^inftyell(I_n+x)$



Since $I_n+x$ is merely the interval $I_n$ translated by $x$, $ell(I_n+x)=ell(I_n)$.



Thus, $m^*(E+x)lesum_{n=1}^inftyell(I_n)=m^*(E)$ ------------ (1)



$E$ can be written as $(E+x)+(-x)$



Using (2) with $E+x$ as $E$ and $-x$ as $x$,



$m^*(E+x+(-x))le m^*(E+x)$



$implies m^*(E)le m^*(E+x)$ ---------------- (2)



From (1) and (2),



$m^*(E+x)=m^*(E)$



QED










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    Let $Esubsetmathbb{R}$ and $xin mathbb{R}$.



    $E+x={e+x: ein E}$



    Define $displaystyle m^*(E)=infleft{sum_{n=1}^inftyell(I_n):Esubsetbigcup
    _{n=1}^infty I_nright}$



    Prove that $m^*(E+x)=m^*(E)$.



    I think my proof is correct but I'd like someone to take a look.





    Let ${I_n}$ be a sequence of intervals that covers $E$ such that $m^*(E)=sum_{n=1}^inftyell(I_n)$.



    $Esubsetbigcup_{n=1}^infty I_n$



    We claim that ${I_n+x}$ covers $E+x$. To prove this, let $yin E+ximplies y=e+x$ where $ein E$. Since $Esubsetbigcup_{n=1}^infty I_n$, $ein Eimplies einbigcup_{n=1}^infty I_nimplies ein I_n$ for some $n$. So, $y=e+xin I_n+x$ for some $n$. Thus, $yinbigcup_{n=1}^infty(I_n+x)$. Hence $E+xsubsetbigcup_{n=1}^infty(I_n+x)$.



    So, $m^*(E+x)lesum_{n=1}^inftyell(I_n+x)$



    Since $I_n+x$ is merely the interval $I_n$ translated by $x$, $ell(I_n+x)=ell(I_n)$.



    Thus, $m^*(E+x)lesum_{n=1}^inftyell(I_n)=m^*(E)$ ------------ (1)



    $E$ can be written as $(E+x)+(-x)$



    Using (2) with $E+x$ as $E$ and $-x$ as $x$,



    $m^*(E+x+(-x))le m^*(E+x)$



    $implies m^*(E)le m^*(E+x)$ ---------------- (2)



    From (1) and (2),



    $m^*(E+x)=m^*(E)$



    QED










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      Let $Esubsetmathbb{R}$ and $xin mathbb{R}$.



      $E+x={e+x: ein E}$



      Define $displaystyle m^*(E)=infleft{sum_{n=1}^inftyell(I_n):Esubsetbigcup
      _{n=1}^infty I_nright}$



      Prove that $m^*(E+x)=m^*(E)$.



      I think my proof is correct but I'd like someone to take a look.





      Let ${I_n}$ be a sequence of intervals that covers $E$ such that $m^*(E)=sum_{n=1}^inftyell(I_n)$.



      $Esubsetbigcup_{n=1}^infty I_n$



      We claim that ${I_n+x}$ covers $E+x$. To prove this, let $yin E+ximplies y=e+x$ where $ein E$. Since $Esubsetbigcup_{n=1}^infty I_n$, $ein Eimplies einbigcup_{n=1}^infty I_nimplies ein I_n$ for some $n$. So, $y=e+xin I_n+x$ for some $n$. Thus, $yinbigcup_{n=1}^infty(I_n+x)$. Hence $E+xsubsetbigcup_{n=1}^infty(I_n+x)$.



      So, $m^*(E+x)lesum_{n=1}^inftyell(I_n+x)$



      Since $I_n+x$ is merely the interval $I_n$ translated by $x$, $ell(I_n+x)=ell(I_n)$.



      Thus, $m^*(E+x)lesum_{n=1}^inftyell(I_n)=m^*(E)$ ------------ (1)



      $E$ can be written as $(E+x)+(-x)$



      Using (2) with $E+x$ as $E$ and $-x$ as $x$,



      $m^*(E+x+(-x))le m^*(E+x)$



      $implies m^*(E)le m^*(E+x)$ ---------------- (2)



      From (1) and (2),



      $m^*(E+x)=m^*(E)$



      QED










      share|cite|improve this question











      $endgroup$




      Let $Esubsetmathbb{R}$ and $xin mathbb{R}$.



      $E+x={e+x: ein E}$



      Define $displaystyle m^*(E)=infleft{sum_{n=1}^inftyell(I_n):Esubsetbigcup
      _{n=1}^infty I_nright}$



      Prove that $m^*(E+x)=m^*(E)$.



      I think my proof is correct but I'd like someone to take a look.





      Let ${I_n}$ be a sequence of intervals that covers $E$ such that $m^*(E)=sum_{n=1}^inftyell(I_n)$.



      $Esubsetbigcup_{n=1}^infty I_n$



      We claim that ${I_n+x}$ covers $E+x$. To prove this, let $yin E+ximplies y=e+x$ where $ein E$. Since $Esubsetbigcup_{n=1}^infty I_n$, $ein Eimplies einbigcup_{n=1}^infty I_nimplies ein I_n$ for some $n$. So, $y=e+xin I_n+x$ for some $n$. Thus, $yinbigcup_{n=1}^infty(I_n+x)$. Hence $E+xsubsetbigcup_{n=1}^infty(I_n+x)$.



      So, $m^*(E+x)lesum_{n=1}^inftyell(I_n+x)$



      Since $I_n+x$ is merely the interval $I_n$ translated by $x$, $ell(I_n+x)=ell(I_n)$.



      Thus, $m^*(E+x)lesum_{n=1}^inftyell(I_n)=m^*(E)$ ------------ (1)



      $E$ can be written as $(E+x)+(-x)$



      Using (2) with $E+x$ as $E$ and $-x$ as $x$,



      $m^*(E+x+(-x))le m^*(E+x)$



      $implies m^*(E)le m^*(E+x)$ ---------------- (2)



      From (1) and (2),



      $m^*(E+x)=m^*(E)$



      QED







      real-analysis proof-verification






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 2 '18 at 22:18









      Winther

      20.6k33156




      20.6k33156










      asked Dec 2 '18 at 22:02









      ThomasThomas

      730416




      730416






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023272%2fprove-that-mex-me%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023272%2fprove-that-mex-me%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Plaza Victoria

          In PowerPoint, is there a keyboard shortcut for bulleted / numbered list?

          How to put 3 figures in Latex with 2 figures side by side and 1 below these side by side images but in...