Gauss Quadrature in numerical methods
$begingroup$
In the following code I have implemented gauss quadrature. It is working correctly for my first function but for my second function I am getting an error.
So,
Is it possible to do this code without sing p_roots? and if not how do I fix it so my second function works?
from scipy.special.orthogonal import p_roots
def gaussquad(f,a,b,n):
[x,w] = p_roots(n+1)
G = 0.5*(b-a)*sum(w*f(0.5*(b-a)*x+0.5*(b+a)))
return G
print(gaussquad(lambda x: x**2,5,10,100))
print(gaussquad(lambda x: sin(x),0,pi/2,100))
giving the output
291.6666666666665
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-22-b4248b816207> in <module>()
5 return G
6 print(gaussquad(lambda x: x**2,5,10,100))
----> 7 print(gaussquad(lambda x: sin(x),0,pi/2,100))
<ipython-input-22-b4248b816207> in gaussquad(f, a, b, n)
2 def gaussquad(f,a,b,n):
3 [x,w] = p_roots(n+1)
----> 4 G = 0.5*(b-a)*sum(w*f(0.5*(b-a)*x+0.5*(b+a)))
5 return G
6 print(gaussquad(lambda x: x**2,5,10,100))
<ipython-input-22-b4248b816207> in <lambda>(x)
5 return G
6 print(gaussquad(lambda x: x**2,5,10,100))
----> 7 print(gaussquad(lambda x: sin(x),0,pi/2,100))
TypeError: only size-1 arrays can be converted to Python scalars
numerical-methods
$endgroup$
add a comment |
$begingroup$
In the following code I have implemented gauss quadrature. It is working correctly for my first function but for my second function I am getting an error.
So,
Is it possible to do this code without sing p_roots? and if not how do I fix it so my second function works?
from scipy.special.orthogonal import p_roots
def gaussquad(f,a,b,n):
[x,w] = p_roots(n+1)
G = 0.5*(b-a)*sum(w*f(0.5*(b-a)*x+0.5*(b+a)))
return G
print(gaussquad(lambda x: x**2,5,10,100))
print(gaussquad(lambda x: sin(x),0,pi/2,100))
giving the output
291.6666666666665
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-22-b4248b816207> in <module>()
5 return G
6 print(gaussquad(lambda x: x**2,5,10,100))
----> 7 print(gaussquad(lambda x: sin(x),0,pi/2,100))
<ipython-input-22-b4248b816207> in gaussquad(f, a, b, n)
2 def gaussquad(f,a,b,n):
3 [x,w] = p_roots(n+1)
----> 4 G = 0.5*(b-a)*sum(w*f(0.5*(b-a)*x+0.5*(b+a)))
5 return G
6 print(gaussquad(lambda x: x**2,5,10,100))
<ipython-input-22-b4248b816207> in <lambda>(x)
5 return G
6 print(gaussquad(lambda x: x**2,5,10,100))
----> 7 print(gaussquad(lambda x: sin(x),0,pi/2,100))
TypeError: only size-1 arrays can be converted to Python scalars
numerical-methods
$endgroup$
add a comment |
$begingroup$
In the following code I have implemented gauss quadrature. It is working correctly for my first function but for my second function I am getting an error.
So,
Is it possible to do this code without sing p_roots? and if not how do I fix it so my second function works?
from scipy.special.orthogonal import p_roots
def gaussquad(f,a,b,n):
[x,w] = p_roots(n+1)
G = 0.5*(b-a)*sum(w*f(0.5*(b-a)*x+0.5*(b+a)))
return G
print(gaussquad(lambda x: x**2,5,10,100))
print(gaussquad(lambda x: sin(x),0,pi/2,100))
giving the output
291.6666666666665
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-22-b4248b816207> in <module>()
5 return G
6 print(gaussquad(lambda x: x**2,5,10,100))
----> 7 print(gaussquad(lambda x: sin(x),0,pi/2,100))
<ipython-input-22-b4248b816207> in gaussquad(f, a, b, n)
2 def gaussquad(f,a,b,n):
3 [x,w] = p_roots(n+1)
----> 4 G = 0.5*(b-a)*sum(w*f(0.5*(b-a)*x+0.5*(b+a)))
5 return G
6 print(gaussquad(lambda x: x**2,5,10,100))
<ipython-input-22-b4248b816207> in <lambda>(x)
5 return G
6 print(gaussquad(lambda x: x**2,5,10,100))
----> 7 print(gaussquad(lambda x: sin(x),0,pi/2,100))
TypeError: only size-1 arrays can be converted to Python scalars
numerical-methods
$endgroup$
In the following code I have implemented gauss quadrature. It is working correctly for my first function but for my second function I am getting an error.
So,
Is it possible to do this code without sing p_roots? and if not how do I fix it so my second function works?
from scipy.special.orthogonal import p_roots
def gaussquad(f,a,b,n):
[x,w] = p_roots(n+1)
G = 0.5*(b-a)*sum(w*f(0.5*(b-a)*x+0.5*(b+a)))
return G
print(gaussquad(lambda x: x**2,5,10,100))
print(gaussquad(lambda x: sin(x),0,pi/2,100))
giving the output
291.6666666666665
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-22-b4248b816207> in <module>()
5 return G
6 print(gaussquad(lambda x: x**2,5,10,100))
----> 7 print(gaussquad(lambda x: sin(x),0,pi/2,100))
<ipython-input-22-b4248b816207> in gaussquad(f, a, b, n)
2 def gaussquad(f,a,b,n):
3 [x,w] = p_roots(n+1)
----> 4 G = 0.5*(b-a)*sum(w*f(0.5*(b-a)*x+0.5*(b+a)))
5 return G
6 print(gaussquad(lambda x: x**2,5,10,100))
<ipython-input-22-b4248b816207> in <lambda>(x)
5 return G
6 print(gaussquad(lambda x: x**2,5,10,100))
----> 7 print(gaussquad(lambda x: sin(x),0,pi/2,100))
TypeError: only size-1 arrays can be converted to Python scalars
numerical-methods
numerical-methods
asked Dec 4 '18 at 1:42
fr14fr14
38318
38318
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Vectorization issues. Use numpy
instead
import numpy
from scipy.special.orthogonal import p_roots
def gaussquad(f,a,b,n):
[x,w] = p_roots(n+1)
G = 0.5*(b-a)*sum(w*f(0.5*(b-a)*x+0.5*(b+a)))
return G
print(gaussquad(lambda x: x**2,5,10,100))
print(gaussquad(lambda x: numpy.sin(x),0,numpy.pi/2,100))
Result is
1.000000000000001
$endgroup$
$begingroup$
thanks again!!!
$endgroup$
– fr14
Dec 4 '18 at 1:59
$begingroup$
I posted my final question, this one has to do with simpsons rule but I am running into an error again with my section function
$endgroup$
– fr14
Dec 4 '18 at 2:04
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025013%2fgauss-quadrature-in-numerical-methods%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Vectorization issues. Use numpy
instead
import numpy
from scipy.special.orthogonal import p_roots
def gaussquad(f,a,b,n):
[x,w] = p_roots(n+1)
G = 0.5*(b-a)*sum(w*f(0.5*(b-a)*x+0.5*(b+a)))
return G
print(gaussquad(lambda x: x**2,5,10,100))
print(gaussquad(lambda x: numpy.sin(x),0,numpy.pi/2,100))
Result is
1.000000000000001
$endgroup$
$begingroup$
thanks again!!!
$endgroup$
– fr14
Dec 4 '18 at 1:59
$begingroup$
I posted my final question, this one has to do with simpsons rule but I am running into an error again with my section function
$endgroup$
– fr14
Dec 4 '18 at 2:04
add a comment |
$begingroup$
Vectorization issues. Use numpy
instead
import numpy
from scipy.special.orthogonal import p_roots
def gaussquad(f,a,b,n):
[x,w] = p_roots(n+1)
G = 0.5*(b-a)*sum(w*f(0.5*(b-a)*x+0.5*(b+a)))
return G
print(gaussquad(lambda x: x**2,5,10,100))
print(gaussquad(lambda x: numpy.sin(x),0,numpy.pi/2,100))
Result is
1.000000000000001
$endgroup$
$begingroup$
thanks again!!!
$endgroup$
– fr14
Dec 4 '18 at 1:59
$begingroup$
I posted my final question, this one has to do with simpsons rule but I am running into an error again with my section function
$endgroup$
– fr14
Dec 4 '18 at 2:04
add a comment |
$begingroup$
Vectorization issues. Use numpy
instead
import numpy
from scipy.special.orthogonal import p_roots
def gaussquad(f,a,b,n):
[x,w] = p_roots(n+1)
G = 0.5*(b-a)*sum(w*f(0.5*(b-a)*x+0.5*(b+a)))
return G
print(gaussquad(lambda x: x**2,5,10,100))
print(gaussquad(lambda x: numpy.sin(x),0,numpy.pi/2,100))
Result is
1.000000000000001
$endgroup$
Vectorization issues. Use numpy
instead
import numpy
from scipy.special.orthogonal import p_roots
def gaussquad(f,a,b,n):
[x,w] = p_roots(n+1)
G = 0.5*(b-a)*sum(w*f(0.5*(b-a)*x+0.5*(b+a)))
return G
print(gaussquad(lambda x: x**2,5,10,100))
print(gaussquad(lambda x: numpy.sin(x),0,numpy.pi/2,100))
Result is
1.000000000000001
answered Dec 4 '18 at 1:51
caveraccaverac
14.5k31130
14.5k31130
$begingroup$
thanks again!!!
$endgroup$
– fr14
Dec 4 '18 at 1:59
$begingroup$
I posted my final question, this one has to do with simpsons rule but I am running into an error again with my section function
$endgroup$
– fr14
Dec 4 '18 at 2:04
add a comment |
$begingroup$
thanks again!!!
$endgroup$
– fr14
Dec 4 '18 at 1:59
$begingroup$
I posted my final question, this one has to do with simpsons rule but I am running into an error again with my section function
$endgroup$
– fr14
Dec 4 '18 at 2:04
$begingroup$
thanks again!!!
$endgroup$
– fr14
Dec 4 '18 at 1:59
$begingroup$
thanks again!!!
$endgroup$
– fr14
Dec 4 '18 at 1:59
$begingroup$
I posted my final question, this one has to do with simpsons rule but I am running into an error again with my section function
$endgroup$
– fr14
Dec 4 '18 at 2:04
$begingroup$
I posted my final question, this one has to do with simpsons rule but I am running into an error again with my section function
$endgroup$
– fr14
Dec 4 '18 at 2:04
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025013%2fgauss-quadrature-in-numerical-methods%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown