Proving that $(abc)^2geqleft(frac{4Delta}{sqrt{3}}right)^3$, where $a$, $b$, $c$ are the sides, and $Delta$...












1












$begingroup$


Let $a$, $b$, $c$ be the sides of $triangle ABC$.




Prove $$(abc)^2geqfrac{4Delta}{sqrt{3}}$$
where $Delta$ is the area of the triangle.



(Editor's note: As observed in the answers, the target relation is in error. It should be $$(abc)^2geqleft(frac{4Delta}{sqrt{3}}right)^3$$ I incorporated the correction into the title. —@Blue)





  • Clearly, $a$, $b$, $c$ are the sides opposite to the angles $A$, $B$, $C$

  • I considered the point $F$ inside the triangle as the Fermat point of the triangle and named $FA=x$, $FB=y$, and $FC=z$.

  • Then $angle AFB = angle AFC = angle BFC=120^circ$, so we have $$a^2=y^2+z^2+yz$$ and similarly for $b^2$ and $c^2$.

  • Observe that
    $$xy+yz+zx=frac{4Delta}{sqrt{3}}$$

  • So, we have a big inequality to prove:
    $$left(x^2+xy+y^2right)left(y^2+yz+z^2right)left(z^2+zx+x^2right)geq xy+yz+zx$$ but I can't prove it.


Thanks for help










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    Let $a$, $b$, $c$ be the sides of $triangle ABC$.




    Prove $$(abc)^2geqfrac{4Delta}{sqrt{3}}$$
    where $Delta$ is the area of the triangle.



    (Editor's note: As observed in the answers, the target relation is in error. It should be $$(abc)^2geqleft(frac{4Delta}{sqrt{3}}right)^3$$ I incorporated the correction into the title. —@Blue)





    • Clearly, $a$, $b$, $c$ are the sides opposite to the angles $A$, $B$, $C$

    • I considered the point $F$ inside the triangle as the Fermat point of the triangle and named $FA=x$, $FB=y$, and $FC=z$.

    • Then $angle AFB = angle AFC = angle BFC=120^circ$, so we have $$a^2=y^2+z^2+yz$$ and similarly for $b^2$ and $c^2$.

    • Observe that
      $$xy+yz+zx=frac{4Delta}{sqrt{3}}$$

    • So, we have a big inequality to prove:
      $$left(x^2+xy+y^2right)left(y^2+yz+z^2right)left(z^2+zx+x^2right)geq xy+yz+zx$$ but I can't prove it.


    Thanks for help










    share|cite|improve this question











    $endgroup$















      1












      1








      1


      2



      $begingroup$


      Let $a$, $b$, $c$ be the sides of $triangle ABC$.




      Prove $$(abc)^2geqfrac{4Delta}{sqrt{3}}$$
      where $Delta$ is the area of the triangle.



      (Editor's note: As observed in the answers, the target relation is in error. It should be $$(abc)^2geqleft(frac{4Delta}{sqrt{3}}right)^3$$ I incorporated the correction into the title. —@Blue)





      • Clearly, $a$, $b$, $c$ are the sides opposite to the angles $A$, $B$, $C$

      • I considered the point $F$ inside the triangle as the Fermat point of the triangle and named $FA=x$, $FB=y$, and $FC=z$.

      • Then $angle AFB = angle AFC = angle BFC=120^circ$, so we have $$a^2=y^2+z^2+yz$$ and similarly for $b^2$ and $c^2$.

      • Observe that
        $$xy+yz+zx=frac{4Delta}{sqrt{3}}$$

      • So, we have a big inequality to prove:
        $$left(x^2+xy+y^2right)left(y^2+yz+z^2right)left(z^2+zx+x^2right)geq xy+yz+zx$$ but I can't prove it.


      Thanks for help










      share|cite|improve this question











      $endgroup$




      Let $a$, $b$, $c$ be the sides of $triangle ABC$.




      Prove $$(abc)^2geqfrac{4Delta}{sqrt{3}}$$
      where $Delta$ is the area of the triangle.



      (Editor's note: As observed in the answers, the target relation is in error. It should be $$(abc)^2geqleft(frac{4Delta}{sqrt{3}}right)^3$$ I incorporated the correction into the title. —@Blue)





      • Clearly, $a$, $b$, $c$ are the sides opposite to the angles $A$, $B$, $C$

      • I considered the point $F$ inside the triangle as the Fermat point of the triangle and named $FA=x$, $FB=y$, and $FC=z$.

      • Then $angle AFB = angle AFC = angle BFC=120^circ$, so we have $$a^2=y^2+z^2+yz$$ and similarly for $b^2$ and $c^2$.

      • Observe that
        $$xy+yz+zx=frac{4Delta}{sqrt{3}}$$

      • So, we have a big inequality to prove:
        $$left(x^2+xy+y^2right)left(y^2+yz+z^2right)left(z^2+zx+x^2right)geq xy+yz+zx$$ but I can't prove it.


      Thanks for help







      geometry inequality






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 28 '18 at 13:30









      Blue

      47.7k870151




      47.7k870151










      asked Nov 24 '13 at 4:34









      krishan actonkrishan acton

      420214




      420214






















          3 Answers
          3






          active

          oldest

          votes


















          2












          $begingroup$

          The actual inequality is $(abc)^2ge left(dfrac{4Delta}{sqrt{3}}right)^3$.I will show this one.





          • Lemma:



            $displaystyle sin{alpha}+sin{beta}+sin{gamma} le frac{3sqrt{3}}{2}$
            when $alpha$,$beta$,$gamma$ are angles of a triangle.Now we see
            that $sin x$ is concave in $(0,pi)$ so applying Jensen's inequality
            we get $dfrac{sin{alpha}+sin{beta}+sin{gamma}}{3}le
            sinleft({dfrac{alpha+beta+gamma}{3}}right)=dfrac{sqrt{3}}{2}$
            So our lemma is proved.




          Now to the actual problem.$a+b+c=2R(sin{alpha}+sin{beta}+sin{gamma})le 3sqrt{3}R$ (from the lemma).
          Now $$dfrac{4Delta}{sqrt{3}}=dfrac{abc}{Rsqrt{3}}le dfrac{3abc}{a+b+c}le (abc)^{2/3}$$ where in the last step we have used AM-GM.Now cubing both sides we get the desired inequality.






          share|cite|improve this answer











          $endgroup$





















            3












            $begingroup$

            Your inequality $(abc)^2 ge frac{4}{sqrt 3}triangle$ cannot be true in general, as a matter of simple dimensional analysis:



            If you shrink the triangle by a linear factor of $2$, the left-hand side $(abc)^2$ becomes $64$ times smaller, whereas the right-hand side only becomes $4$ times smaller. Since both sides of the inequality are nonzero, even if it happens to be true to begin with, you can make it false by considering a small enough triangle similar to the original one.






            share|cite|improve this answer









            $endgroup$





















              0












              $begingroup$

              I think you mean to the following:
              $$(abc)^{frac{2}{3}}geqfrac{4Delta}{sqrt3},$$ which is
              $$16Delta^2leq3sqrt[3]{a^4b^4c^4}$$ or
              $$sum_{cyc}(2a^2b^2-a^4)leqsqrt[3]{a^4b^4c^4}$$ or
              $$sum_{cyc}left(a^4-2a^2b^2+sqrt[3]{a^4b^4c^4}right)geq0,$$ which is true by Schur and AM-GM:
              $$sum_{cyc}left(a^4-2a^2b^2+sqrt[3]{a^4b^4c^4}right)=sum_{cyc}left(sqrt[3]{a^{12}}+sqrt[3]{a^4b^4c^4}-2a^2b^2right)geq$$
              $$geqsum_{cyc}left(sqrt[3]{a^9b^3}+sqrt[3]{a^9c^3}-2a^2b^2right)=sum_{cyc}(a^3b+ab^3-2a^2b^2)geq0.$$






              share|cite|improve this answer









              $endgroup$













                Your Answer





                StackExchange.ifUsing("editor", function () {
                return StackExchange.using("mathjaxEditing", function () {
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                });
                });
                }, "mathjax-editing");

                StackExchange.ready(function() {
                var channelOptions = {
                tags: "".split(" "),
                id: "69"
                };
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function() {
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled) {
                StackExchange.using("snippets", function() {
                createEditor();
                });
                }
                else {
                createEditor();
                }
                });

                function createEditor() {
                StackExchange.prepareEditor({
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader: {
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                },
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                });


                }
                });














                draft saved

                draft discarded


















                StackExchange.ready(
                function () {
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f578876%2fproving-that-abc2-geq-left-frac4-delta-sqrt3-right3-where-a-b%23new-answer', 'question_page');
                }
                );

                Post as a guest















                Required, but never shown

























                3 Answers
                3






                active

                oldest

                votes








                3 Answers
                3






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                2












                $begingroup$

                The actual inequality is $(abc)^2ge left(dfrac{4Delta}{sqrt{3}}right)^3$.I will show this one.





                • Lemma:



                  $displaystyle sin{alpha}+sin{beta}+sin{gamma} le frac{3sqrt{3}}{2}$
                  when $alpha$,$beta$,$gamma$ are angles of a triangle.Now we see
                  that $sin x$ is concave in $(0,pi)$ so applying Jensen's inequality
                  we get $dfrac{sin{alpha}+sin{beta}+sin{gamma}}{3}le
                  sinleft({dfrac{alpha+beta+gamma}{3}}right)=dfrac{sqrt{3}}{2}$
                  So our lemma is proved.




                Now to the actual problem.$a+b+c=2R(sin{alpha}+sin{beta}+sin{gamma})le 3sqrt{3}R$ (from the lemma).
                Now $$dfrac{4Delta}{sqrt{3}}=dfrac{abc}{Rsqrt{3}}le dfrac{3abc}{a+b+c}le (abc)^{2/3}$$ where in the last step we have used AM-GM.Now cubing both sides we get the desired inequality.






                share|cite|improve this answer











                $endgroup$


















                  2












                  $begingroup$

                  The actual inequality is $(abc)^2ge left(dfrac{4Delta}{sqrt{3}}right)^3$.I will show this one.





                  • Lemma:



                    $displaystyle sin{alpha}+sin{beta}+sin{gamma} le frac{3sqrt{3}}{2}$
                    when $alpha$,$beta$,$gamma$ are angles of a triangle.Now we see
                    that $sin x$ is concave in $(0,pi)$ so applying Jensen's inequality
                    we get $dfrac{sin{alpha}+sin{beta}+sin{gamma}}{3}le
                    sinleft({dfrac{alpha+beta+gamma}{3}}right)=dfrac{sqrt{3}}{2}$
                    So our lemma is proved.




                  Now to the actual problem.$a+b+c=2R(sin{alpha}+sin{beta}+sin{gamma})le 3sqrt{3}R$ (from the lemma).
                  Now $$dfrac{4Delta}{sqrt{3}}=dfrac{abc}{Rsqrt{3}}le dfrac{3abc}{a+b+c}le (abc)^{2/3}$$ where in the last step we have used AM-GM.Now cubing both sides we get the desired inequality.






                  share|cite|improve this answer











                  $endgroup$
















                    2












                    2








                    2





                    $begingroup$

                    The actual inequality is $(abc)^2ge left(dfrac{4Delta}{sqrt{3}}right)^3$.I will show this one.





                    • Lemma:



                      $displaystyle sin{alpha}+sin{beta}+sin{gamma} le frac{3sqrt{3}}{2}$
                      when $alpha$,$beta$,$gamma$ are angles of a triangle.Now we see
                      that $sin x$ is concave in $(0,pi)$ so applying Jensen's inequality
                      we get $dfrac{sin{alpha}+sin{beta}+sin{gamma}}{3}le
                      sinleft({dfrac{alpha+beta+gamma}{3}}right)=dfrac{sqrt{3}}{2}$
                      So our lemma is proved.




                    Now to the actual problem.$a+b+c=2R(sin{alpha}+sin{beta}+sin{gamma})le 3sqrt{3}R$ (from the lemma).
                    Now $$dfrac{4Delta}{sqrt{3}}=dfrac{abc}{Rsqrt{3}}le dfrac{3abc}{a+b+c}le (abc)^{2/3}$$ where in the last step we have used AM-GM.Now cubing both sides we get the desired inequality.






                    share|cite|improve this answer











                    $endgroup$



                    The actual inequality is $(abc)^2ge left(dfrac{4Delta}{sqrt{3}}right)^3$.I will show this one.





                    • Lemma:



                      $displaystyle sin{alpha}+sin{beta}+sin{gamma} le frac{3sqrt{3}}{2}$
                      when $alpha$,$beta$,$gamma$ are angles of a triangle.Now we see
                      that $sin x$ is concave in $(0,pi)$ so applying Jensen's inequality
                      we get $dfrac{sin{alpha}+sin{beta}+sin{gamma}}{3}le
                      sinleft({dfrac{alpha+beta+gamma}{3}}right)=dfrac{sqrt{3}}{2}$
                      So our lemma is proved.




                    Now to the actual problem.$a+b+c=2R(sin{alpha}+sin{beta}+sin{gamma})le 3sqrt{3}R$ (from the lemma).
                    Now $$dfrac{4Delta}{sqrt{3}}=dfrac{abc}{Rsqrt{3}}le dfrac{3abc}{a+b+c}le (abc)^{2/3}$$ where in the last step we have used AM-GM.Now cubing both sides we get the desired inequality.







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited Jul 3 '14 at 11:29

























                    answered Nov 24 '13 at 5:44









                    shadow10shadow10

                    2,855931




                    2,855931























                        3












                        $begingroup$

                        Your inequality $(abc)^2 ge frac{4}{sqrt 3}triangle$ cannot be true in general, as a matter of simple dimensional analysis:



                        If you shrink the triangle by a linear factor of $2$, the left-hand side $(abc)^2$ becomes $64$ times smaller, whereas the right-hand side only becomes $4$ times smaller. Since both sides of the inequality are nonzero, even if it happens to be true to begin with, you can make it false by considering a small enough triangle similar to the original one.






                        share|cite|improve this answer









                        $endgroup$


















                          3












                          $begingroup$

                          Your inequality $(abc)^2 ge frac{4}{sqrt 3}triangle$ cannot be true in general, as a matter of simple dimensional analysis:



                          If you shrink the triangle by a linear factor of $2$, the left-hand side $(abc)^2$ becomes $64$ times smaller, whereas the right-hand side only becomes $4$ times smaller. Since both sides of the inequality are nonzero, even if it happens to be true to begin with, you can make it false by considering a small enough triangle similar to the original one.






                          share|cite|improve this answer









                          $endgroup$
















                            3












                            3








                            3





                            $begingroup$

                            Your inequality $(abc)^2 ge frac{4}{sqrt 3}triangle$ cannot be true in general, as a matter of simple dimensional analysis:



                            If you shrink the triangle by a linear factor of $2$, the left-hand side $(abc)^2$ becomes $64$ times smaller, whereas the right-hand side only becomes $4$ times smaller. Since both sides of the inequality are nonzero, even if it happens to be true to begin with, you can make it false by considering a small enough triangle similar to the original one.






                            share|cite|improve this answer









                            $endgroup$



                            Your inequality $(abc)^2 ge frac{4}{sqrt 3}triangle$ cannot be true in general, as a matter of simple dimensional analysis:



                            If you shrink the triangle by a linear factor of $2$, the left-hand side $(abc)^2$ becomes $64$ times smaller, whereas the right-hand side only becomes $4$ times smaller. Since both sides of the inequality are nonzero, even if it happens to be true to begin with, you can make it false by considering a small enough triangle similar to the original one.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Nov 24 '13 at 4:40









                            Henning MakholmHenning Makholm

                            239k16303540




                            239k16303540























                                0












                                $begingroup$

                                I think you mean to the following:
                                $$(abc)^{frac{2}{3}}geqfrac{4Delta}{sqrt3},$$ which is
                                $$16Delta^2leq3sqrt[3]{a^4b^4c^4}$$ or
                                $$sum_{cyc}(2a^2b^2-a^4)leqsqrt[3]{a^4b^4c^4}$$ or
                                $$sum_{cyc}left(a^4-2a^2b^2+sqrt[3]{a^4b^4c^4}right)geq0,$$ which is true by Schur and AM-GM:
                                $$sum_{cyc}left(a^4-2a^2b^2+sqrt[3]{a^4b^4c^4}right)=sum_{cyc}left(sqrt[3]{a^{12}}+sqrt[3]{a^4b^4c^4}-2a^2b^2right)geq$$
                                $$geqsum_{cyc}left(sqrt[3]{a^9b^3}+sqrt[3]{a^9c^3}-2a^2b^2right)=sum_{cyc}(a^3b+ab^3-2a^2b^2)geq0.$$






                                share|cite|improve this answer









                                $endgroup$


















                                  0












                                  $begingroup$

                                  I think you mean to the following:
                                  $$(abc)^{frac{2}{3}}geqfrac{4Delta}{sqrt3},$$ which is
                                  $$16Delta^2leq3sqrt[3]{a^4b^4c^4}$$ or
                                  $$sum_{cyc}(2a^2b^2-a^4)leqsqrt[3]{a^4b^4c^4}$$ or
                                  $$sum_{cyc}left(a^4-2a^2b^2+sqrt[3]{a^4b^4c^4}right)geq0,$$ which is true by Schur and AM-GM:
                                  $$sum_{cyc}left(a^4-2a^2b^2+sqrt[3]{a^4b^4c^4}right)=sum_{cyc}left(sqrt[3]{a^{12}}+sqrt[3]{a^4b^4c^4}-2a^2b^2right)geq$$
                                  $$geqsum_{cyc}left(sqrt[3]{a^9b^3}+sqrt[3]{a^9c^3}-2a^2b^2right)=sum_{cyc}(a^3b+ab^3-2a^2b^2)geq0.$$






                                  share|cite|improve this answer









                                  $endgroup$
















                                    0












                                    0








                                    0





                                    $begingroup$

                                    I think you mean to the following:
                                    $$(abc)^{frac{2}{3}}geqfrac{4Delta}{sqrt3},$$ which is
                                    $$16Delta^2leq3sqrt[3]{a^4b^4c^4}$$ or
                                    $$sum_{cyc}(2a^2b^2-a^4)leqsqrt[3]{a^4b^4c^4}$$ or
                                    $$sum_{cyc}left(a^4-2a^2b^2+sqrt[3]{a^4b^4c^4}right)geq0,$$ which is true by Schur and AM-GM:
                                    $$sum_{cyc}left(a^4-2a^2b^2+sqrt[3]{a^4b^4c^4}right)=sum_{cyc}left(sqrt[3]{a^{12}}+sqrt[3]{a^4b^4c^4}-2a^2b^2right)geq$$
                                    $$geqsum_{cyc}left(sqrt[3]{a^9b^3}+sqrt[3]{a^9c^3}-2a^2b^2right)=sum_{cyc}(a^3b+ab^3-2a^2b^2)geq0.$$






                                    share|cite|improve this answer









                                    $endgroup$



                                    I think you mean to the following:
                                    $$(abc)^{frac{2}{3}}geqfrac{4Delta}{sqrt3},$$ which is
                                    $$16Delta^2leq3sqrt[3]{a^4b^4c^4}$$ or
                                    $$sum_{cyc}(2a^2b^2-a^4)leqsqrt[3]{a^4b^4c^4}$$ or
                                    $$sum_{cyc}left(a^4-2a^2b^2+sqrt[3]{a^4b^4c^4}right)geq0,$$ which is true by Schur and AM-GM:
                                    $$sum_{cyc}left(a^4-2a^2b^2+sqrt[3]{a^4b^4c^4}right)=sum_{cyc}left(sqrt[3]{a^{12}}+sqrt[3]{a^4b^4c^4}-2a^2b^2right)geq$$
                                    $$geqsum_{cyc}left(sqrt[3]{a^9b^3}+sqrt[3]{a^9c^3}-2a^2b^2right)=sum_{cyc}(a^3b+ab^3-2a^2b^2)geq0.$$







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered Nov 28 '18 at 13:02









                                    Michael RozenbergMichael Rozenberg

                                    97.6k1589188




                                    97.6k1589188






























                                        draft saved

                                        draft discarded




















































                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid



                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.


                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function () {
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f578876%2fproving-that-abc2-geq-left-frac4-delta-sqrt3-right3-where-a-b%23new-answer', 'question_page');
                                        }
                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        Plaza Victoria

                                        Puebla de Zaragoza

                                        Musa