Surface integral for area calculation
Is my procedure correct?
Calculate paraboloid area portion of equations
$$P equiv (u cos v, u sin v, u^2) $$
with $0 leq v leq dfrac{pi}{4}$ and $0 leq u leq dfrac{1}{2}tan v$
This is my attempt:
$bullet$ vector first derivatives:
$$P'_u = (cos v, sin v, 2u)$$
$$P'_v = (-usin v, ucos v, 0)$$
$bullet$ cross product between $P'_u$ and $P'_v$
$$P'_u wedge P'_v = (-2u^2cos v, 2u^2sin v, u)$$
$bullet$ cross product module
$$N(u,v) = usqrt{4u^2 + 1} $$
$bullet$ double integral
$$displaystyle iint_P usqrt{4u^2 + 1} ; du ; dv = int^{beta(v)}_{alpha(v)} usqrt{4u^2 + 1} ; du$$
where $alpha(v) = 0$ and $beta(v) = dfrac{1}{2} tan dfrac{pi}{4} = dfrac{1}{2}$
$$displaystyle int^{beta(v)}_{alpha(v)} usqrt{4u^2 + 1} ; du = displaystyle dfrac{1}{12} (4u^2 + 1)^{3/2} Big|^{u=1/2}_{u=0} = dfrac{1}{12}(2sqrt{2} - 1)$$
Thank you in advance
surface-integrals
add a comment |
Is my procedure correct?
Calculate paraboloid area portion of equations
$$P equiv (u cos v, u sin v, u^2) $$
with $0 leq v leq dfrac{pi}{4}$ and $0 leq u leq dfrac{1}{2}tan v$
This is my attempt:
$bullet$ vector first derivatives:
$$P'_u = (cos v, sin v, 2u)$$
$$P'_v = (-usin v, ucos v, 0)$$
$bullet$ cross product between $P'_u$ and $P'_v$
$$P'_u wedge P'_v = (-2u^2cos v, 2u^2sin v, u)$$
$bullet$ cross product module
$$N(u,v) = usqrt{4u^2 + 1} $$
$bullet$ double integral
$$displaystyle iint_P usqrt{4u^2 + 1} ; du ; dv = int^{beta(v)}_{alpha(v)} usqrt{4u^2 + 1} ; du$$
where $alpha(v) = 0$ and $beta(v) = dfrac{1}{2} tan dfrac{pi}{4} = dfrac{1}{2}$
$$displaystyle int^{beta(v)}_{alpha(v)} usqrt{4u^2 + 1} ; du = displaystyle dfrac{1}{12} (4u^2 + 1)^{3/2} Big|^{u=1/2}_{u=0} = dfrac{1}{12}(2sqrt{2} - 1)$$
Thank you in advance
surface-integrals
add a comment |
Is my procedure correct?
Calculate paraboloid area portion of equations
$$P equiv (u cos v, u sin v, u^2) $$
with $0 leq v leq dfrac{pi}{4}$ and $0 leq u leq dfrac{1}{2}tan v$
This is my attempt:
$bullet$ vector first derivatives:
$$P'_u = (cos v, sin v, 2u)$$
$$P'_v = (-usin v, ucos v, 0)$$
$bullet$ cross product between $P'_u$ and $P'_v$
$$P'_u wedge P'_v = (-2u^2cos v, 2u^2sin v, u)$$
$bullet$ cross product module
$$N(u,v) = usqrt{4u^2 + 1} $$
$bullet$ double integral
$$displaystyle iint_P usqrt{4u^2 + 1} ; du ; dv = int^{beta(v)}_{alpha(v)} usqrt{4u^2 + 1} ; du$$
where $alpha(v) = 0$ and $beta(v) = dfrac{1}{2} tan dfrac{pi}{4} = dfrac{1}{2}$
$$displaystyle int^{beta(v)}_{alpha(v)} usqrt{4u^2 + 1} ; du = displaystyle dfrac{1}{12} (4u^2 + 1)^{3/2} Big|^{u=1/2}_{u=0} = dfrac{1}{12}(2sqrt{2} - 1)$$
Thank you in advance
surface-integrals
Is my procedure correct?
Calculate paraboloid area portion of equations
$$P equiv (u cos v, u sin v, u^2) $$
with $0 leq v leq dfrac{pi}{4}$ and $0 leq u leq dfrac{1}{2}tan v$
This is my attempt:
$bullet$ vector first derivatives:
$$P'_u = (cos v, sin v, 2u)$$
$$P'_v = (-usin v, ucos v, 0)$$
$bullet$ cross product between $P'_u$ and $P'_v$
$$P'_u wedge P'_v = (-2u^2cos v, 2u^2sin v, u)$$
$bullet$ cross product module
$$N(u,v) = usqrt{4u^2 + 1} $$
$bullet$ double integral
$$displaystyle iint_P usqrt{4u^2 + 1} ; du ; dv = int^{beta(v)}_{alpha(v)} usqrt{4u^2 + 1} ; du$$
where $alpha(v) = 0$ and $beta(v) = dfrac{1}{2} tan dfrac{pi}{4} = dfrac{1}{2}$
$$displaystyle int^{beta(v)}_{alpha(v)} usqrt{4u^2 + 1} ; du = displaystyle dfrac{1}{12} (4u^2 + 1)^{3/2} Big|^{u=1/2}_{u=0} = dfrac{1}{12}(2sqrt{2} - 1)$$
Thank you in advance
surface-integrals
surface-integrals
edited Nov 25 '18 at 18:41
asked Nov 25 '18 at 17:21
user3204810
1877
1877
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
The partial derivative $P_u'$ shouldn't have a minus sign in the second component. Otherwise, everything was fine until you inserted everything into the integral. Notice that your bound for $u$ depends on $v$, so you should have
begin{align}
int_P , mathrm dA &= int_{v=0}^{pi/4} int_{u=0}^{(tan v)/2} usqrt{4u^2+1} ,mathrm du , mathrm dv\
&= frac{1}{12}int_{v=0}^{pi/4}left((tan^2v+1)^{3/2}- 1right) , mathrm dv \
&= frac{1}{12}int_{v=0}^{pi/4} sec^3 v , mathrm dv - frac{pi}{48},
end{align}
etc.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3013113%2fsurface-integral-for-area-calculation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
The partial derivative $P_u'$ shouldn't have a minus sign in the second component. Otherwise, everything was fine until you inserted everything into the integral. Notice that your bound for $u$ depends on $v$, so you should have
begin{align}
int_P , mathrm dA &= int_{v=0}^{pi/4} int_{u=0}^{(tan v)/2} usqrt{4u^2+1} ,mathrm du , mathrm dv\
&= frac{1}{12}int_{v=0}^{pi/4}left((tan^2v+1)^{3/2}- 1right) , mathrm dv \
&= frac{1}{12}int_{v=0}^{pi/4} sec^3 v , mathrm dv - frac{pi}{48},
end{align}
etc.
add a comment |
The partial derivative $P_u'$ shouldn't have a minus sign in the second component. Otherwise, everything was fine until you inserted everything into the integral. Notice that your bound for $u$ depends on $v$, so you should have
begin{align}
int_P , mathrm dA &= int_{v=0}^{pi/4} int_{u=0}^{(tan v)/2} usqrt{4u^2+1} ,mathrm du , mathrm dv\
&= frac{1}{12}int_{v=0}^{pi/4}left((tan^2v+1)^{3/2}- 1right) , mathrm dv \
&= frac{1}{12}int_{v=0}^{pi/4} sec^3 v , mathrm dv - frac{pi}{48},
end{align}
etc.
add a comment |
The partial derivative $P_u'$ shouldn't have a minus sign in the second component. Otherwise, everything was fine until you inserted everything into the integral. Notice that your bound for $u$ depends on $v$, so you should have
begin{align}
int_P , mathrm dA &= int_{v=0}^{pi/4} int_{u=0}^{(tan v)/2} usqrt{4u^2+1} ,mathrm du , mathrm dv\
&= frac{1}{12}int_{v=0}^{pi/4}left((tan^2v+1)^{3/2}- 1right) , mathrm dv \
&= frac{1}{12}int_{v=0}^{pi/4} sec^3 v , mathrm dv - frac{pi}{48},
end{align}
etc.
The partial derivative $P_u'$ shouldn't have a minus sign in the second component. Otherwise, everything was fine until you inserted everything into the integral. Notice that your bound for $u$ depends on $v$, so you should have
begin{align}
int_P , mathrm dA &= int_{v=0}^{pi/4} int_{u=0}^{(tan v)/2} usqrt{4u^2+1} ,mathrm du , mathrm dv\
&= frac{1}{12}int_{v=0}^{pi/4}left((tan^2v+1)^{3/2}- 1right) , mathrm dv \
&= frac{1}{12}int_{v=0}^{pi/4} sec^3 v , mathrm dv - frac{pi}{48},
end{align}
etc.
edited Nov 25 '18 at 17:40
answered Nov 25 '18 at 17:30
MisterRiemann
5,7791624
5,7791624
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3013113%2fsurface-integral-for-area-calculation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown