Compute area of triangle
$begingroup$
Problem
Triangle can be formed in between three points. These three points are in $mathbb{R}^3$ and
in my case these points are: $p_1=(0,4,6),p_2=(-5,3,1),p_3=(2,1,2)$. Compute area of this triangle.
Attempt to solve
I take one point and draw two vectors $vec{u}$ and $vec{v}$ that define two sides of this triangle. Then i compute cross product of these two vectors which length gives me size of parallelogram. Dividing this parallelogram should give area of this triangle.
$$ vec{u}=begin{bmatrix} 0-5 \4+3 \ 6+1 end{bmatrix} = begin{bmatrix} -5 \ 7 \ 7 end{bmatrix}, vec{v}=begin{bmatrix} 0+2 \ 4+1 \ 6+2 end{bmatrix}= begin{bmatrix} 2\ 5 \ 8 end{bmatrix} $$
It shouldn't matter from which point i compute the other two vectors. Now length cross product vector should give us the area of parallelogram.
$$ vec{u} times vec{u} = begin{vmatrix} i & j & k \ -5 & 7 & 7 \ 2 & 5 & 8 end{vmatrix} = ibegin{vmatrix} 7 & 7 \ 5 & 8 end{vmatrix} - j begin{vmatrix} -5 & 7 \ 2 & 8 end{vmatrix} + kbegin{vmatrix} -5 & 7 \ 2 & 5 end{vmatrix} $$
$$ = i(7cdot 8(7cdot 5)- j(-5cdot 8-7cdot 2) + k(-5 cdot 5 - 7 cdot 2) $$
$$ i(56-35)-j(40-14)+k(-25-14) $$
$$ 21i+54j-39k $$
$$ text{Area} = frac{|vec{u} times vec{v}|}{2} = frac{sqrt{21^2+52^2+(-39)^2}}{2} approx 34.154 $$
However this solution seems to be incorrect. WolframAlpha gives solution to this. Did i compute something simply wrong or is there more fundamental probelm on how i understand the problem ?
vectors area
$endgroup$
add a comment |
$begingroup$
Problem
Triangle can be formed in between three points. These three points are in $mathbb{R}^3$ and
in my case these points are: $p_1=(0,4,6),p_2=(-5,3,1),p_3=(2,1,2)$. Compute area of this triangle.
Attempt to solve
I take one point and draw two vectors $vec{u}$ and $vec{v}$ that define two sides of this triangle. Then i compute cross product of these two vectors which length gives me size of parallelogram. Dividing this parallelogram should give area of this triangle.
$$ vec{u}=begin{bmatrix} 0-5 \4+3 \ 6+1 end{bmatrix} = begin{bmatrix} -5 \ 7 \ 7 end{bmatrix}, vec{v}=begin{bmatrix} 0+2 \ 4+1 \ 6+2 end{bmatrix}= begin{bmatrix} 2\ 5 \ 8 end{bmatrix} $$
It shouldn't matter from which point i compute the other two vectors. Now length cross product vector should give us the area of parallelogram.
$$ vec{u} times vec{u} = begin{vmatrix} i & j & k \ -5 & 7 & 7 \ 2 & 5 & 8 end{vmatrix} = ibegin{vmatrix} 7 & 7 \ 5 & 8 end{vmatrix} - j begin{vmatrix} -5 & 7 \ 2 & 8 end{vmatrix} + kbegin{vmatrix} -5 & 7 \ 2 & 5 end{vmatrix} $$
$$ = i(7cdot 8(7cdot 5)- j(-5cdot 8-7cdot 2) + k(-5 cdot 5 - 7 cdot 2) $$
$$ i(56-35)-j(40-14)+k(-25-14) $$
$$ 21i+54j-39k $$
$$ text{Area} = frac{|vec{u} times vec{v}|}{2} = frac{sqrt{21^2+52^2+(-39)^2}}{2} approx 34.154 $$
However this solution seems to be incorrect. WolframAlpha gives solution to this. Did i compute something simply wrong or is there more fundamental probelm on how i understand the problem ?
vectors area
$endgroup$
$begingroup$
Notice that $|utimes v|^2=|u|^2|v|^2-(ucdot v)^2$, so there's no need to calculate the cross product explicitly.
$endgroup$
– Michael Hoppe
Dec 10 '18 at 20:00
add a comment |
$begingroup$
Problem
Triangle can be formed in between three points. These three points are in $mathbb{R}^3$ and
in my case these points are: $p_1=(0,4,6),p_2=(-5,3,1),p_3=(2,1,2)$. Compute area of this triangle.
Attempt to solve
I take one point and draw two vectors $vec{u}$ and $vec{v}$ that define two sides of this triangle. Then i compute cross product of these two vectors which length gives me size of parallelogram. Dividing this parallelogram should give area of this triangle.
$$ vec{u}=begin{bmatrix} 0-5 \4+3 \ 6+1 end{bmatrix} = begin{bmatrix} -5 \ 7 \ 7 end{bmatrix}, vec{v}=begin{bmatrix} 0+2 \ 4+1 \ 6+2 end{bmatrix}= begin{bmatrix} 2\ 5 \ 8 end{bmatrix} $$
It shouldn't matter from which point i compute the other two vectors. Now length cross product vector should give us the area of parallelogram.
$$ vec{u} times vec{u} = begin{vmatrix} i & j & k \ -5 & 7 & 7 \ 2 & 5 & 8 end{vmatrix} = ibegin{vmatrix} 7 & 7 \ 5 & 8 end{vmatrix} - j begin{vmatrix} -5 & 7 \ 2 & 8 end{vmatrix} + kbegin{vmatrix} -5 & 7 \ 2 & 5 end{vmatrix} $$
$$ = i(7cdot 8(7cdot 5)- j(-5cdot 8-7cdot 2) + k(-5 cdot 5 - 7 cdot 2) $$
$$ i(56-35)-j(40-14)+k(-25-14) $$
$$ 21i+54j-39k $$
$$ text{Area} = frac{|vec{u} times vec{v}|}{2} = frac{sqrt{21^2+52^2+(-39)^2}}{2} approx 34.154 $$
However this solution seems to be incorrect. WolframAlpha gives solution to this. Did i compute something simply wrong or is there more fundamental probelm on how i understand the problem ?
vectors area
$endgroup$
Problem
Triangle can be formed in between three points. These three points are in $mathbb{R}^3$ and
in my case these points are: $p_1=(0,4,6),p_2=(-5,3,1),p_3=(2,1,2)$. Compute area of this triangle.
Attempt to solve
I take one point and draw two vectors $vec{u}$ and $vec{v}$ that define two sides of this triangle. Then i compute cross product of these two vectors which length gives me size of parallelogram. Dividing this parallelogram should give area of this triangle.
$$ vec{u}=begin{bmatrix} 0-5 \4+3 \ 6+1 end{bmatrix} = begin{bmatrix} -5 \ 7 \ 7 end{bmatrix}, vec{v}=begin{bmatrix} 0+2 \ 4+1 \ 6+2 end{bmatrix}= begin{bmatrix} 2\ 5 \ 8 end{bmatrix} $$
It shouldn't matter from which point i compute the other two vectors. Now length cross product vector should give us the area of parallelogram.
$$ vec{u} times vec{u} = begin{vmatrix} i & j & k \ -5 & 7 & 7 \ 2 & 5 & 8 end{vmatrix} = ibegin{vmatrix} 7 & 7 \ 5 & 8 end{vmatrix} - j begin{vmatrix} -5 & 7 \ 2 & 8 end{vmatrix} + kbegin{vmatrix} -5 & 7 \ 2 & 5 end{vmatrix} $$
$$ = i(7cdot 8(7cdot 5)- j(-5cdot 8-7cdot 2) + k(-5 cdot 5 - 7 cdot 2) $$
$$ i(56-35)-j(40-14)+k(-25-14) $$
$$ 21i+54j-39k $$
$$ text{Area} = frac{|vec{u} times vec{v}|}{2} = frac{sqrt{21^2+52^2+(-39)^2}}{2} approx 34.154 $$
However this solution seems to be incorrect. WolframAlpha gives solution to this. Did i compute something simply wrong or is there more fundamental probelm on how i understand the problem ?
vectors area
vectors area
asked Dec 10 '18 at 19:03
TukiTuki
1,019416
1,019416
$begingroup$
Notice that $|utimes v|^2=|u|^2|v|^2-(ucdot v)^2$, so there's no need to calculate the cross product explicitly.
$endgroup$
– Michael Hoppe
Dec 10 '18 at 20:00
add a comment |
$begingroup$
Notice that $|utimes v|^2=|u|^2|v|^2-(ucdot v)^2$, so there's no need to calculate the cross product explicitly.
$endgroup$
– Michael Hoppe
Dec 10 '18 at 20:00
$begingroup$
Notice that $|utimes v|^2=|u|^2|v|^2-(ucdot v)^2$, so there's no need to calculate the cross product explicitly.
$endgroup$
– Michael Hoppe
Dec 10 '18 at 20:00
$begingroup$
Notice that $|utimes v|^2=|u|^2|v|^2-(ucdot v)^2$, so there's no need to calculate the cross product explicitly.
$endgroup$
– Michael Hoppe
Dec 10 '18 at 20:00
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You've defined $vec{u}=vec{p}_1+vec{p}_2,,vec{v}=vec{p}_1+vec{p}_3$. You should have used $-$ instead of $+$ in each definition. For example, $vec{p}_1-vec{p}_2$ is the path from $vec{p}_2$ to $vec{p}_1$, forming a side.
$endgroup$
$begingroup$
Could you explain why ?
$endgroup$
– Tuki
Dec 10 '18 at 19:08
$begingroup$
@Tuki See my edit.
$endgroup$
– J.G.
Dec 10 '18 at 19:09
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034342%2fcompute-area-of-triangle%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You've defined $vec{u}=vec{p}_1+vec{p}_2,,vec{v}=vec{p}_1+vec{p}_3$. You should have used $-$ instead of $+$ in each definition. For example, $vec{p}_1-vec{p}_2$ is the path from $vec{p}_2$ to $vec{p}_1$, forming a side.
$endgroup$
$begingroup$
Could you explain why ?
$endgroup$
– Tuki
Dec 10 '18 at 19:08
$begingroup$
@Tuki See my edit.
$endgroup$
– J.G.
Dec 10 '18 at 19:09
add a comment |
$begingroup$
You've defined $vec{u}=vec{p}_1+vec{p}_2,,vec{v}=vec{p}_1+vec{p}_3$. You should have used $-$ instead of $+$ in each definition. For example, $vec{p}_1-vec{p}_2$ is the path from $vec{p}_2$ to $vec{p}_1$, forming a side.
$endgroup$
$begingroup$
Could you explain why ?
$endgroup$
– Tuki
Dec 10 '18 at 19:08
$begingroup$
@Tuki See my edit.
$endgroup$
– J.G.
Dec 10 '18 at 19:09
add a comment |
$begingroup$
You've defined $vec{u}=vec{p}_1+vec{p}_2,,vec{v}=vec{p}_1+vec{p}_3$. You should have used $-$ instead of $+$ in each definition. For example, $vec{p}_1-vec{p}_2$ is the path from $vec{p}_2$ to $vec{p}_1$, forming a side.
$endgroup$
You've defined $vec{u}=vec{p}_1+vec{p}_2,,vec{v}=vec{p}_1+vec{p}_3$. You should have used $-$ instead of $+$ in each definition. For example, $vec{p}_1-vec{p}_2$ is the path from $vec{p}_2$ to $vec{p}_1$, forming a side.
edited Dec 10 '18 at 19:35
answered Dec 10 '18 at 19:07
J.G.J.G.
27.6k22843
27.6k22843
$begingroup$
Could you explain why ?
$endgroup$
– Tuki
Dec 10 '18 at 19:08
$begingroup$
@Tuki See my edit.
$endgroup$
– J.G.
Dec 10 '18 at 19:09
add a comment |
$begingroup$
Could you explain why ?
$endgroup$
– Tuki
Dec 10 '18 at 19:08
$begingroup$
@Tuki See my edit.
$endgroup$
– J.G.
Dec 10 '18 at 19:09
$begingroup$
Could you explain why ?
$endgroup$
– Tuki
Dec 10 '18 at 19:08
$begingroup$
Could you explain why ?
$endgroup$
– Tuki
Dec 10 '18 at 19:08
$begingroup$
@Tuki See my edit.
$endgroup$
– J.G.
Dec 10 '18 at 19:09
$begingroup$
@Tuki See my edit.
$endgroup$
– J.G.
Dec 10 '18 at 19:09
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034342%2fcompute-area-of-triangle%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Notice that $|utimes v|^2=|u|^2|v|^2-(ucdot v)^2$, so there's no need to calculate the cross product explicitly.
$endgroup$
– Michael Hoppe
Dec 10 '18 at 20:00