Compute area of triangle












1












$begingroup$


Problem



Triangle can be formed in between three points. These three points are in $mathbb{R}^3$ and
in my case these points are: $p_1=(0,4,6),p_2=(-5,3,1),p_3=(2,1,2)$. Compute area of this triangle.



Attempt to solve



I take one point and draw two vectors $vec{u}$ and $vec{v}$ that define two sides of this triangle. Then i compute cross product of these two vectors which length gives me size of parallelogram. Dividing this parallelogram should give area of this triangle.



$$ vec{u}=begin{bmatrix} 0-5 \4+3 \ 6+1 end{bmatrix} = begin{bmatrix} -5 \ 7 \ 7 end{bmatrix}, vec{v}=begin{bmatrix} 0+2 \ 4+1 \ 6+2 end{bmatrix}= begin{bmatrix} 2\ 5 \ 8 end{bmatrix} $$



It shouldn't matter from which point i compute the other two vectors. Now length cross product vector should give us the area of parallelogram.



$$ vec{u} times vec{u} = begin{vmatrix} i & j & k \ -5 & 7 & 7 \ 2 & 5 & 8 end{vmatrix} = ibegin{vmatrix} 7 & 7 \ 5 & 8 end{vmatrix} - j begin{vmatrix} -5 & 7 \ 2 & 8 end{vmatrix} + kbegin{vmatrix} -5 & 7 \ 2 & 5 end{vmatrix} $$



$$ = i(7cdot 8(7cdot 5)- j(-5cdot 8-7cdot 2) + k(-5 cdot 5 - 7 cdot 2) $$



$$ i(56-35)-j(40-14)+k(-25-14) $$



$$ 21i+54j-39k $$



$$ text{Area} = frac{|vec{u} times vec{v}|}{2} = frac{sqrt{21^2+52^2+(-39)^2}}{2} approx 34.154 $$



However this solution seems to be incorrect. WolframAlpha gives solution to this. Did i compute something simply wrong or is there more fundamental probelm on how i understand the problem ?










share|cite|improve this question









$endgroup$












  • $begingroup$
    Notice that $|utimes v|^2=|u|^2|v|^2-(ucdot v)^2$, so there's no need to calculate the cross product explicitly.
    $endgroup$
    – Michael Hoppe
    Dec 10 '18 at 20:00
















1












$begingroup$


Problem



Triangle can be formed in between three points. These three points are in $mathbb{R}^3$ and
in my case these points are: $p_1=(0,4,6),p_2=(-5,3,1),p_3=(2,1,2)$. Compute area of this triangle.



Attempt to solve



I take one point and draw two vectors $vec{u}$ and $vec{v}$ that define two sides of this triangle. Then i compute cross product of these two vectors which length gives me size of parallelogram. Dividing this parallelogram should give area of this triangle.



$$ vec{u}=begin{bmatrix} 0-5 \4+3 \ 6+1 end{bmatrix} = begin{bmatrix} -5 \ 7 \ 7 end{bmatrix}, vec{v}=begin{bmatrix} 0+2 \ 4+1 \ 6+2 end{bmatrix}= begin{bmatrix} 2\ 5 \ 8 end{bmatrix} $$



It shouldn't matter from which point i compute the other two vectors. Now length cross product vector should give us the area of parallelogram.



$$ vec{u} times vec{u} = begin{vmatrix} i & j & k \ -5 & 7 & 7 \ 2 & 5 & 8 end{vmatrix} = ibegin{vmatrix} 7 & 7 \ 5 & 8 end{vmatrix} - j begin{vmatrix} -5 & 7 \ 2 & 8 end{vmatrix} + kbegin{vmatrix} -5 & 7 \ 2 & 5 end{vmatrix} $$



$$ = i(7cdot 8(7cdot 5)- j(-5cdot 8-7cdot 2) + k(-5 cdot 5 - 7 cdot 2) $$



$$ i(56-35)-j(40-14)+k(-25-14) $$



$$ 21i+54j-39k $$



$$ text{Area} = frac{|vec{u} times vec{v}|}{2} = frac{sqrt{21^2+52^2+(-39)^2}}{2} approx 34.154 $$



However this solution seems to be incorrect. WolframAlpha gives solution to this. Did i compute something simply wrong or is there more fundamental probelm on how i understand the problem ?










share|cite|improve this question









$endgroup$












  • $begingroup$
    Notice that $|utimes v|^2=|u|^2|v|^2-(ucdot v)^2$, so there's no need to calculate the cross product explicitly.
    $endgroup$
    – Michael Hoppe
    Dec 10 '18 at 20:00














1












1








1





$begingroup$


Problem



Triangle can be formed in between three points. These three points are in $mathbb{R}^3$ and
in my case these points are: $p_1=(0,4,6),p_2=(-5,3,1),p_3=(2,1,2)$. Compute area of this triangle.



Attempt to solve



I take one point and draw two vectors $vec{u}$ and $vec{v}$ that define two sides of this triangle. Then i compute cross product of these two vectors which length gives me size of parallelogram. Dividing this parallelogram should give area of this triangle.



$$ vec{u}=begin{bmatrix} 0-5 \4+3 \ 6+1 end{bmatrix} = begin{bmatrix} -5 \ 7 \ 7 end{bmatrix}, vec{v}=begin{bmatrix} 0+2 \ 4+1 \ 6+2 end{bmatrix}= begin{bmatrix} 2\ 5 \ 8 end{bmatrix} $$



It shouldn't matter from which point i compute the other two vectors. Now length cross product vector should give us the area of parallelogram.



$$ vec{u} times vec{u} = begin{vmatrix} i & j & k \ -5 & 7 & 7 \ 2 & 5 & 8 end{vmatrix} = ibegin{vmatrix} 7 & 7 \ 5 & 8 end{vmatrix} - j begin{vmatrix} -5 & 7 \ 2 & 8 end{vmatrix} + kbegin{vmatrix} -5 & 7 \ 2 & 5 end{vmatrix} $$



$$ = i(7cdot 8(7cdot 5)- j(-5cdot 8-7cdot 2) + k(-5 cdot 5 - 7 cdot 2) $$



$$ i(56-35)-j(40-14)+k(-25-14) $$



$$ 21i+54j-39k $$



$$ text{Area} = frac{|vec{u} times vec{v}|}{2} = frac{sqrt{21^2+52^2+(-39)^2}}{2} approx 34.154 $$



However this solution seems to be incorrect. WolframAlpha gives solution to this. Did i compute something simply wrong or is there more fundamental probelm on how i understand the problem ?










share|cite|improve this question









$endgroup$




Problem



Triangle can be formed in between three points. These three points are in $mathbb{R}^3$ and
in my case these points are: $p_1=(0,4,6),p_2=(-5,3,1),p_3=(2,1,2)$. Compute area of this triangle.



Attempt to solve



I take one point and draw two vectors $vec{u}$ and $vec{v}$ that define two sides of this triangle. Then i compute cross product of these two vectors which length gives me size of parallelogram. Dividing this parallelogram should give area of this triangle.



$$ vec{u}=begin{bmatrix} 0-5 \4+3 \ 6+1 end{bmatrix} = begin{bmatrix} -5 \ 7 \ 7 end{bmatrix}, vec{v}=begin{bmatrix} 0+2 \ 4+1 \ 6+2 end{bmatrix}= begin{bmatrix} 2\ 5 \ 8 end{bmatrix} $$



It shouldn't matter from which point i compute the other two vectors. Now length cross product vector should give us the area of parallelogram.



$$ vec{u} times vec{u} = begin{vmatrix} i & j & k \ -5 & 7 & 7 \ 2 & 5 & 8 end{vmatrix} = ibegin{vmatrix} 7 & 7 \ 5 & 8 end{vmatrix} - j begin{vmatrix} -5 & 7 \ 2 & 8 end{vmatrix} + kbegin{vmatrix} -5 & 7 \ 2 & 5 end{vmatrix} $$



$$ = i(7cdot 8(7cdot 5)- j(-5cdot 8-7cdot 2) + k(-5 cdot 5 - 7 cdot 2) $$



$$ i(56-35)-j(40-14)+k(-25-14) $$



$$ 21i+54j-39k $$



$$ text{Area} = frac{|vec{u} times vec{v}|}{2} = frac{sqrt{21^2+52^2+(-39)^2}}{2} approx 34.154 $$



However this solution seems to be incorrect. WolframAlpha gives solution to this. Did i compute something simply wrong or is there more fundamental probelm on how i understand the problem ?







vectors area






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 10 '18 at 19:03









TukiTuki

1,019416




1,019416












  • $begingroup$
    Notice that $|utimes v|^2=|u|^2|v|^2-(ucdot v)^2$, so there's no need to calculate the cross product explicitly.
    $endgroup$
    – Michael Hoppe
    Dec 10 '18 at 20:00


















  • $begingroup$
    Notice that $|utimes v|^2=|u|^2|v|^2-(ucdot v)^2$, so there's no need to calculate the cross product explicitly.
    $endgroup$
    – Michael Hoppe
    Dec 10 '18 at 20:00
















$begingroup$
Notice that $|utimes v|^2=|u|^2|v|^2-(ucdot v)^2$, so there's no need to calculate the cross product explicitly.
$endgroup$
– Michael Hoppe
Dec 10 '18 at 20:00




$begingroup$
Notice that $|utimes v|^2=|u|^2|v|^2-(ucdot v)^2$, so there's no need to calculate the cross product explicitly.
$endgroup$
– Michael Hoppe
Dec 10 '18 at 20:00










1 Answer
1






active

oldest

votes


















2












$begingroup$

You've defined $vec{u}=vec{p}_1+vec{p}_2,,vec{v}=vec{p}_1+vec{p}_3$. You should have used $-$ instead of $+$ in each definition. For example, $vec{p}_1-vec{p}_2$ is the path from $vec{p}_2$ to $vec{p}_1$, forming a side.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Could you explain why ?
    $endgroup$
    – Tuki
    Dec 10 '18 at 19:08










  • $begingroup$
    @Tuki See my edit.
    $endgroup$
    – J.G.
    Dec 10 '18 at 19:09











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034342%2fcompute-area-of-triangle%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

You've defined $vec{u}=vec{p}_1+vec{p}_2,,vec{v}=vec{p}_1+vec{p}_3$. You should have used $-$ instead of $+$ in each definition. For example, $vec{p}_1-vec{p}_2$ is the path from $vec{p}_2$ to $vec{p}_1$, forming a side.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Could you explain why ?
    $endgroup$
    – Tuki
    Dec 10 '18 at 19:08










  • $begingroup$
    @Tuki See my edit.
    $endgroup$
    – J.G.
    Dec 10 '18 at 19:09
















2












$begingroup$

You've defined $vec{u}=vec{p}_1+vec{p}_2,,vec{v}=vec{p}_1+vec{p}_3$. You should have used $-$ instead of $+$ in each definition. For example, $vec{p}_1-vec{p}_2$ is the path from $vec{p}_2$ to $vec{p}_1$, forming a side.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Could you explain why ?
    $endgroup$
    – Tuki
    Dec 10 '18 at 19:08










  • $begingroup$
    @Tuki See my edit.
    $endgroup$
    – J.G.
    Dec 10 '18 at 19:09














2












2








2





$begingroup$

You've defined $vec{u}=vec{p}_1+vec{p}_2,,vec{v}=vec{p}_1+vec{p}_3$. You should have used $-$ instead of $+$ in each definition. For example, $vec{p}_1-vec{p}_2$ is the path from $vec{p}_2$ to $vec{p}_1$, forming a side.






share|cite|improve this answer











$endgroup$



You've defined $vec{u}=vec{p}_1+vec{p}_2,,vec{v}=vec{p}_1+vec{p}_3$. You should have used $-$ instead of $+$ in each definition. For example, $vec{p}_1-vec{p}_2$ is the path from $vec{p}_2$ to $vec{p}_1$, forming a side.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Dec 10 '18 at 19:35

























answered Dec 10 '18 at 19:07









J.G.J.G.

27.6k22843




27.6k22843












  • $begingroup$
    Could you explain why ?
    $endgroup$
    – Tuki
    Dec 10 '18 at 19:08










  • $begingroup$
    @Tuki See my edit.
    $endgroup$
    – J.G.
    Dec 10 '18 at 19:09


















  • $begingroup$
    Could you explain why ?
    $endgroup$
    – Tuki
    Dec 10 '18 at 19:08










  • $begingroup$
    @Tuki See my edit.
    $endgroup$
    – J.G.
    Dec 10 '18 at 19:09
















$begingroup$
Could you explain why ?
$endgroup$
– Tuki
Dec 10 '18 at 19:08




$begingroup$
Could you explain why ?
$endgroup$
– Tuki
Dec 10 '18 at 19:08












$begingroup$
@Tuki See my edit.
$endgroup$
– J.G.
Dec 10 '18 at 19:09




$begingroup$
@Tuki See my edit.
$endgroup$
– J.G.
Dec 10 '18 at 19:09


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034342%2fcompute-area-of-triangle%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Plaza Victoria

Puebla de Zaragoza

Change location of user folders through cmd or PowerShell?