Is right the inequality: $|a|+|b| leq 2|a+ib|$
$begingroup$
I want know if is right this inequality: $forall a,b in mathbb{R}$,
$$|a|+|b| leq 2|a+ib|$$
inequality
$endgroup$
add a comment |
$begingroup$
I want know if is right this inequality: $forall a,b in mathbb{R}$,
$$|a|+|b| leq 2|a+ib|$$
inequality
$endgroup$
add a comment |
$begingroup$
I want know if is right this inequality: $forall a,b in mathbb{R}$,
$$|a|+|b| leq 2|a+ib|$$
inequality
$endgroup$
I want know if is right this inequality: $forall a,b in mathbb{R}$,
$$|a|+|b| leq 2|a+ib|$$
inequality
inequality
edited Dec 10 '18 at 18:22
greedoid
43.3k1153106
43.3k1153106
asked Dec 10 '18 at 18:18
Deidson SantosDeidson Santos
111
111
add a comment |
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
For real numbers $a$ and $b$ we have
begin{align*}
&&a^2&le a^2+b^2\
&implies&sqrt{a^2}&lesqrt{a^2+b^2}\
&&|a|&lesqrt{a^2+b^2}
end{align*}
In the same way we can prove $|b|lesqrt{a^2+b^2}$. Since $sqrt{a^2+b^2}=|a+ib|$, the asked inequality follows.
$endgroup$
add a comment |
$begingroup$
If you square both sides (which you can, since both are nonegative) you get: $$a^2+2|ab|+b^2leq 4(a^2+b^2)$$
so $$0leq 3x^2-2xy+3y^2= (x-y)^2+2x^2+2y^2$$
which is true. ($x=|a|$ and $y=|b|$).
$endgroup$
add a comment |
$begingroup$
Hint: Use that $$|a+ib|=sqrt{a^2+b^2}$$ and then square it.
$endgroup$
add a comment |
$begingroup$
The numbers of both sides are non-negatives. Since $(|a|+|b|)^2 leq (2|a+ib|)^2$ (by a straightforward computation), we conclude that $$|a|+|b| leq 2|a+ib|.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034285%2fis-right-the-inequality-ab-leq-2aib%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For real numbers $a$ and $b$ we have
begin{align*}
&&a^2&le a^2+b^2\
&implies&sqrt{a^2}&lesqrt{a^2+b^2}\
&&|a|&lesqrt{a^2+b^2}
end{align*}
In the same way we can prove $|b|lesqrt{a^2+b^2}$. Since $sqrt{a^2+b^2}=|a+ib|$, the asked inequality follows.
$endgroup$
add a comment |
$begingroup$
For real numbers $a$ and $b$ we have
begin{align*}
&&a^2&le a^2+b^2\
&implies&sqrt{a^2}&lesqrt{a^2+b^2}\
&&|a|&lesqrt{a^2+b^2}
end{align*}
In the same way we can prove $|b|lesqrt{a^2+b^2}$. Since $sqrt{a^2+b^2}=|a+ib|$, the asked inequality follows.
$endgroup$
add a comment |
$begingroup$
For real numbers $a$ and $b$ we have
begin{align*}
&&a^2&le a^2+b^2\
&implies&sqrt{a^2}&lesqrt{a^2+b^2}\
&&|a|&lesqrt{a^2+b^2}
end{align*}
In the same way we can prove $|b|lesqrt{a^2+b^2}$. Since $sqrt{a^2+b^2}=|a+ib|$, the asked inequality follows.
$endgroup$
For real numbers $a$ and $b$ we have
begin{align*}
&&a^2&le a^2+b^2\
&implies&sqrt{a^2}&lesqrt{a^2+b^2}\
&&|a|&lesqrt{a^2+b^2}
end{align*}
In the same way we can prove $|b|lesqrt{a^2+b^2}$. Since $sqrt{a^2+b^2}=|a+ib|$, the asked inequality follows.
answered Dec 10 '18 at 18:24
Ángel Mario GallegosÁngel Mario Gallegos
18.5k11230
18.5k11230
add a comment |
add a comment |
$begingroup$
If you square both sides (which you can, since both are nonegative) you get: $$a^2+2|ab|+b^2leq 4(a^2+b^2)$$
so $$0leq 3x^2-2xy+3y^2= (x-y)^2+2x^2+2y^2$$
which is true. ($x=|a|$ and $y=|b|$).
$endgroup$
add a comment |
$begingroup$
If you square both sides (which you can, since both are nonegative) you get: $$a^2+2|ab|+b^2leq 4(a^2+b^2)$$
so $$0leq 3x^2-2xy+3y^2= (x-y)^2+2x^2+2y^2$$
which is true. ($x=|a|$ and $y=|b|$).
$endgroup$
add a comment |
$begingroup$
If you square both sides (which you can, since both are nonegative) you get: $$a^2+2|ab|+b^2leq 4(a^2+b^2)$$
so $$0leq 3x^2-2xy+3y^2= (x-y)^2+2x^2+2y^2$$
which is true. ($x=|a|$ and $y=|b|$).
$endgroup$
If you square both sides (which you can, since both are nonegative) you get: $$a^2+2|ab|+b^2leq 4(a^2+b^2)$$
so $$0leq 3x^2-2xy+3y^2= (x-y)^2+2x^2+2y^2$$
which is true. ($x=|a|$ and $y=|b|$).
answered Dec 10 '18 at 18:21
greedoidgreedoid
43.3k1153106
43.3k1153106
add a comment |
add a comment |
$begingroup$
Hint: Use that $$|a+ib|=sqrt{a^2+b^2}$$ and then square it.
$endgroup$
add a comment |
$begingroup$
Hint: Use that $$|a+ib|=sqrt{a^2+b^2}$$ and then square it.
$endgroup$
add a comment |
$begingroup$
Hint: Use that $$|a+ib|=sqrt{a^2+b^2}$$ and then square it.
$endgroup$
Hint: Use that $$|a+ib|=sqrt{a^2+b^2}$$ and then square it.
answered Dec 10 '18 at 18:22
Dr. Sonnhard GraubnerDr. Sonnhard Graubner
75.9k42866
75.9k42866
add a comment |
add a comment |
$begingroup$
The numbers of both sides are non-negatives. Since $(|a|+|b|)^2 leq (2|a+ib|)^2$ (by a straightforward computation), we conclude that $$|a|+|b| leq 2|a+ib|.$$
$endgroup$
add a comment |
$begingroup$
The numbers of both sides are non-negatives. Since $(|a|+|b|)^2 leq (2|a+ib|)^2$ (by a straightforward computation), we conclude that $$|a|+|b| leq 2|a+ib|.$$
$endgroup$
add a comment |
$begingroup$
The numbers of both sides are non-negatives. Since $(|a|+|b|)^2 leq (2|a+ib|)^2$ (by a straightforward computation), we conclude that $$|a|+|b| leq 2|a+ib|.$$
$endgroup$
The numbers of both sides are non-negatives. Since $(|a|+|b|)^2 leq (2|a+ib|)^2$ (by a straightforward computation), we conclude that $$|a|+|b| leq 2|a+ib|.$$
answered Dec 10 '18 at 18:27
user376343user376343
3,7883828
3,7883828
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034285%2fis-right-the-inequality-ab-leq-2aib%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown