Limit of $left{ int_{0}^{1} [bx + a(1 - x) ]^{frac1n} dx right}^n$ as $n to infty$












5












$begingroup$



Evaluate the limit for $0 < a < b$,
$$lim_{n to infty} left{ int_{0}^{1} [bx + a(1 - x) ]^{frac1n} dx right}^n$$




Just to be clear, the exponent $~1/n~$ is inside the integration on the entire integrand $~a + (b-a)x,~$ and the exponent $n$ is outside on the definite integral.



I actually have been able to solve it as I happen to know a particular way of viewing the logarithm function as a limit
$$log x = lim_{h to 0} frac{x^h - 1}h quad text{, or equivalently} quadlog x = lim_{n to infty} n(x^{frac1n} - 1)$$



That is, my solution is a process that involves terms like $~e^{blog b},~$ where I have to obtain $~log b~$ first as a limit, and I can say that it is $~b^b~$ at the very last step only after another limit.




My question is this: how do I evaluate the limit more directly without this seemingly redundant path of log on the exponent?




In short, I have a solution which I don't like, and I believe there are better ones.



Any ideas? Thank you.





As a reference, below is the detailed steps of my circuitous solution:



The definite integral evaluates to
$$frac1{b - a} frac1{ 1 + frac1n } left[ a + (b-a)x right]^{ 1 + frac1n } Bigg|_{0}^{1} = frac{ b^{1 + frac1n} - a^{1 + frac1n} }{b - a} frac1{ 1 + frac1n }$$
Thus the whole expression becomes
$$
begin{align}
&lim_{n to infty} left{ frac{ b^{1 + frac1n} - a^{1 + frac1n} }{b - a} frac1{ 1 + frac1n } right}^{n} \
&= frac1e lim_{n to infty} left{ 1 + frac{ b^{1 + frac1n} - a^{1 + frac1n} - (b - a) }{b - a} right}^{n} \
&= frac1e lim_{n to infty} left{ 1 + frac{ n left( b^{1 + frac1n} - b right) - n left(
a^{1 + frac1n} - a right) }{ n (b - a) } right}^{n}
end{align}
$$
all the limits exist so I'm just gonna keep writing in this non-rigorous way
$$
begin{align}
&= frac1e lim_{n to infty} left{ 1 + frac1n frac{ b log b - a log a }{ b - a } right}^{n} \
&= frac1e cdot e^{ frac1{b-a} left( b log b - a log a right)} \
&= frac1e left( frac{ b^b }{ a^a } right)^{ frac1{b-a}}
end{align}$$










share|cite|improve this question











$endgroup$

















    5












    $begingroup$



    Evaluate the limit for $0 < a < b$,
    $$lim_{n to infty} left{ int_{0}^{1} [bx + a(1 - x) ]^{frac1n} dx right}^n$$




    Just to be clear, the exponent $~1/n~$ is inside the integration on the entire integrand $~a + (b-a)x,~$ and the exponent $n$ is outside on the definite integral.



    I actually have been able to solve it as I happen to know a particular way of viewing the logarithm function as a limit
    $$log x = lim_{h to 0} frac{x^h - 1}h quad text{, or equivalently} quadlog x = lim_{n to infty} n(x^{frac1n} - 1)$$



    That is, my solution is a process that involves terms like $~e^{blog b},~$ where I have to obtain $~log b~$ first as a limit, and I can say that it is $~b^b~$ at the very last step only after another limit.




    My question is this: how do I evaluate the limit more directly without this seemingly redundant path of log on the exponent?




    In short, I have a solution which I don't like, and I believe there are better ones.



    Any ideas? Thank you.





    As a reference, below is the detailed steps of my circuitous solution:



    The definite integral evaluates to
    $$frac1{b - a} frac1{ 1 + frac1n } left[ a + (b-a)x right]^{ 1 + frac1n } Bigg|_{0}^{1} = frac{ b^{1 + frac1n} - a^{1 + frac1n} }{b - a} frac1{ 1 + frac1n }$$
    Thus the whole expression becomes
    $$
    begin{align}
    &lim_{n to infty} left{ frac{ b^{1 + frac1n} - a^{1 + frac1n} }{b - a} frac1{ 1 + frac1n } right}^{n} \
    &= frac1e lim_{n to infty} left{ 1 + frac{ b^{1 + frac1n} - a^{1 + frac1n} - (b - a) }{b - a} right}^{n} \
    &= frac1e lim_{n to infty} left{ 1 + frac{ n left( b^{1 + frac1n} - b right) - n left(
    a^{1 + frac1n} - a right) }{ n (b - a) } right}^{n}
    end{align}
    $$
    all the limits exist so I'm just gonna keep writing in this non-rigorous way
    $$
    begin{align}
    &= frac1e lim_{n to infty} left{ 1 + frac1n frac{ b log b - a log a }{ b - a } right}^{n} \
    &= frac1e cdot e^{ frac1{b-a} left( b log b - a log a right)} \
    &= frac1e left( frac{ b^b }{ a^a } right)^{ frac1{b-a}}
    end{align}$$










    share|cite|improve this question











    $endgroup$















      5












      5








      5


      2



      $begingroup$



      Evaluate the limit for $0 < a < b$,
      $$lim_{n to infty} left{ int_{0}^{1} [bx + a(1 - x) ]^{frac1n} dx right}^n$$




      Just to be clear, the exponent $~1/n~$ is inside the integration on the entire integrand $~a + (b-a)x,~$ and the exponent $n$ is outside on the definite integral.



      I actually have been able to solve it as I happen to know a particular way of viewing the logarithm function as a limit
      $$log x = lim_{h to 0} frac{x^h - 1}h quad text{, or equivalently} quadlog x = lim_{n to infty} n(x^{frac1n} - 1)$$



      That is, my solution is a process that involves terms like $~e^{blog b},~$ where I have to obtain $~log b~$ first as a limit, and I can say that it is $~b^b~$ at the very last step only after another limit.




      My question is this: how do I evaluate the limit more directly without this seemingly redundant path of log on the exponent?




      In short, I have a solution which I don't like, and I believe there are better ones.



      Any ideas? Thank you.





      As a reference, below is the detailed steps of my circuitous solution:



      The definite integral evaluates to
      $$frac1{b - a} frac1{ 1 + frac1n } left[ a + (b-a)x right]^{ 1 + frac1n } Bigg|_{0}^{1} = frac{ b^{1 + frac1n} - a^{1 + frac1n} }{b - a} frac1{ 1 + frac1n }$$
      Thus the whole expression becomes
      $$
      begin{align}
      &lim_{n to infty} left{ frac{ b^{1 + frac1n} - a^{1 + frac1n} }{b - a} frac1{ 1 + frac1n } right}^{n} \
      &= frac1e lim_{n to infty} left{ 1 + frac{ b^{1 + frac1n} - a^{1 + frac1n} - (b - a) }{b - a} right}^{n} \
      &= frac1e lim_{n to infty} left{ 1 + frac{ n left( b^{1 + frac1n} - b right) - n left(
      a^{1 + frac1n} - a right) }{ n (b - a) } right}^{n}
      end{align}
      $$
      all the limits exist so I'm just gonna keep writing in this non-rigorous way
      $$
      begin{align}
      &= frac1e lim_{n to infty} left{ 1 + frac1n frac{ b log b - a log a }{ b - a } right}^{n} \
      &= frac1e cdot e^{ frac1{b-a} left( b log b - a log a right)} \
      &= frac1e left( frac{ b^b }{ a^a } right)^{ frac1{b-a}}
      end{align}$$










      share|cite|improve this question











      $endgroup$





      Evaluate the limit for $0 < a < b$,
      $$lim_{n to infty} left{ int_{0}^{1} [bx + a(1 - x) ]^{frac1n} dx right}^n$$




      Just to be clear, the exponent $~1/n~$ is inside the integration on the entire integrand $~a + (b-a)x,~$ and the exponent $n$ is outside on the definite integral.



      I actually have been able to solve it as I happen to know a particular way of viewing the logarithm function as a limit
      $$log x = lim_{h to 0} frac{x^h - 1}h quad text{, or equivalently} quadlog x = lim_{n to infty} n(x^{frac1n} - 1)$$



      That is, my solution is a process that involves terms like $~e^{blog b},~$ where I have to obtain $~log b~$ first as a limit, and I can say that it is $~b^b~$ at the very last step only after another limit.




      My question is this: how do I evaluate the limit more directly without this seemingly redundant path of log on the exponent?




      In short, I have a solution which I don't like, and I believe there are better ones.



      Any ideas? Thank you.





      As a reference, below is the detailed steps of my circuitous solution:



      The definite integral evaluates to
      $$frac1{b - a} frac1{ 1 + frac1n } left[ a + (b-a)x right]^{ 1 + frac1n } Bigg|_{0}^{1} = frac{ b^{1 + frac1n} - a^{1 + frac1n} }{b - a} frac1{ 1 + frac1n }$$
      Thus the whole expression becomes
      $$
      begin{align}
      &lim_{n to infty} left{ frac{ b^{1 + frac1n} - a^{1 + frac1n} }{b - a} frac1{ 1 + frac1n } right}^{n} \
      &= frac1e lim_{n to infty} left{ 1 + frac{ b^{1 + frac1n} - a^{1 + frac1n} - (b - a) }{b - a} right}^{n} \
      &= frac1e lim_{n to infty} left{ 1 + frac{ n left( b^{1 + frac1n} - b right) - n left(
      a^{1 + frac1n} - a right) }{ n (b - a) } right}^{n}
      end{align}
      $$
      all the limits exist so I'm just gonna keep writing in this non-rigorous way
      $$
      begin{align}
      &= frac1e lim_{n to infty} left{ 1 + frac1n frac{ b log b - a log a }{ b - a } right}^{n} \
      &= frac1e cdot e^{ frac1{b-a} left( b log b - a log a right)} \
      &= frac1e left( frac{ b^b }{ a^a } right)^{ frac1{b-a}}
      end{align}$$







      calculus limits alternative-proof






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 10 '18 at 17:34







      Lee David Chung Lin

















      asked Oct 19 '16 at 15:01









      Lee David Chung LinLee David Chung Lin

      4,33531241




      4,33531241






















          2 Answers
          2






          active

          oldest

          votes


















          5












          $begingroup$

          This is just the continuous analogue of a well-known fact:




          If $a_1,a_2,ldots,a_m$ are non-negative numbers and the mean of order $p>0$ is defined as
          $$ M_p(a_1,ldots,a_m) = left(frac{1}{m}sum_{k=1}^{m}a_k^pright)^{frac{1}{p}},$$
          then $M_p$ is an increasing function of $p$ and
          $$ lim_{pto 0^+} M_p(a_1,ldots,a_m)= GM(a_1,ldots,a_m) = left(prod_{k=1}^{m}a_kright)^{frac{1}{m}}$$
          by the continuity and concavity of the logarithm function.




          In particular, if $f(x)$ is a non-negative and continuous function over the interval $(0,1)$,




          $$ lim_{pto 0^+}left(int_{0}^{1}f(x)^p,dxright)^{frac{1}{p}}=expint_{0}^{1}log f(x),dx.$$




          The last identity gives that for any $a,b>0$,



          $$ begin{eqnarray*}lim_{nto +infty}left(int_{0}^{1}(bx+a(1-x))^{frac{1}{n}},dxright)^n &=& expint_{0}^{1}log(bx+a(1-x)),dx\&=&expleft[frac{1}{b-a}int_{a}^{b}log(x),dxright]\&=&expleft[-1+frac{blog b-alog a}{b-a}right]\&=&color{red}{frac{1}{e}left(frac{b^b}{a^a}right)^{frac{1}{b-a}}} end{eqnarray*}$$
          as claimed.






          share|cite|improve this answer









          $endgroup$









          • 2




            $begingroup$
            Putting it in this bigger framework is really great!
            $endgroup$
            – Lee David Chung Lin
            Oct 19 '16 at 16:17






          • 1




            $begingroup$
            This is honestly one of the coolest things I've ever seen on Math.SE. What a wonderful theorem to know exists, and what a fascinating application. Thank you for sharing!
            $endgroup$
            – Brevan Ellefsen
            Oct 20 '16 at 2:47



















          5












          $begingroup$

          $newcommand{bbx}[1]{,bbox[8px,border:1px groove navy]{{#1}},}
          newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
          newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
          newcommand{dd}{mathrm{d}}
          newcommand{ds}[1]{displaystyle{#1}}
          newcommand{expo}[1]{,mathrm{e}^{#1},}
          newcommand{ic}{mathrm{i}}
          newcommand{mc}[1]{mathcal{#1}}
          newcommand{mrm}[1]{mathrm{#1}}
          newcommand{pars}[1]{left(,{#1},right)}
          newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
          newcommand{root}[2]{,sqrt[#1]{,{#2},},}
          newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
          newcommand{verts}[1]{leftvert,{#1},rightvert}$
          begin{align}
          &lim_{n to infty}braces{int_{0}^{1}bracks{bx + apars{1 - x}}^{1/n}
          ,dd x}^{n} =
          lim_{n to infty}bracks{{1 over b - a}int_{a}^{b}x^{1/n}
          ,dd x}^{n}
          \[5mm] &=
          lim_{epsilon to 0^{+}}exppars{-lnpars{b - a} + lnpars{int_{a}^{b}x^{epsilon},dd x} over epsilon}
          \[5mm] & =
          lim_{epsilon to 0^{+}}exppars{-lnpars{b - a} +
          lnpars{b^{epsilon + 1} - a^{epsilon + 1}} - lnpars{epsilon + 1} over epsilon}
          \[5mm] & =
          lim_{epsilon to 0^{+}}exppars{
          {b^{epsilon + 1}lnpars{b} - a^{epsilon + 1}lnpars{a} over b^{epsilon + 1} - a^{epsilon + 1}} - {1 over epsilon + 1}}qquadqquad
          pars{~L'Hhat{o}pital Rule~}
          \[5mm] & =
          exppars{{blnpars{b} - alnpars{a} over b - a} - 1} =
          bbx{ds{{1 over expo{}},pars{b^{b} over a^{a}}^{1/pars{b - a}}}}
          end{align}






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1975789%2flimit-of-left-int-01-bx-a1-x-frac1n-dx-right-n-as-n%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            5












            $begingroup$

            This is just the continuous analogue of a well-known fact:




            If $a_1,a_2,ldots,a_m$ are non-negative numbers and the mean of order $p>0$ is defined as
            $$ M_p(a_1,ldots,a_m) = left(frac{1}{m}sum_{k=1}^{m}a_k^pright)^{frac{1}{p}},$$
            then $M_p$ is an increasing function of $p$ and
            $$ lim_{pto 0^+} M_p(a_1,ldots,a_m)= GM(a_1,ldots,a_m) = left(prod_{k=1}^{m}a_kright)^{frac{1}{m}}$$
            by the continuity and concavity of the logarithm function.




            In particular, if $f(x)$ is a non-negative and continuous function over the interval $(0,1)$,




            $$ lim_{pto 0^+}left(int_{0}^{1}f(x)^p,dxright)^{frac{1}{p}}=expint_{0}^{1}log f(x),dx.$$




            The last identity gives that for any $a,b>0$,



            $$ begin{eqnarray*}lim_{nto +infty}left(int_{0}^{1}(bx+a(1-x))^{frac{1}{n}},dxright)^n &=& expint_{0}^{1}log(bx+a(1-x)),dx\&=&expleft[frac{1}{b-a}int_{a}^{b}log(x),dxright]\&=&expleft[-1+frac{blog b-alog a}{b-a}right]\&=&color{red}{frac{1}{e}left(frac{b^b}{a^a}right)^{frac{1}{b-a}}} end{eqnarray*}$$
            as claimed.






            share|cite|improve this answer









            $endgroup$









            • 2




              $begingroup$
              Putting it in this bigger framework is really great!
              $endgroup$
              – Lee David Chung Lin
              Oct 19 '16 at 16:17






            • 1




              $begingroup$
              This is honestly one of the coolest things I've ever seen on Math.SE. What a wonderful theorem to know exists, and what a fascinating application. Thank you for sharing!
              $endgroup$
              – Brevan Ellefsen
              Oct 20 '16 at 2:47
















            5












            $begingroup$

            This is just the continuous analogue of a well-known fact:




            If $a_1,a_2,ldots,a_m$ are non-negative numbers and the mean of order $p>0$ is defined as
            $$ M_p(a_1,ldots,a_m) = left(frac{1}{m}sum_{k=1}^{m}a_k^pright)^{frac{1}{p}},$$
            then $M_p$ is an increasing function of $p$ and
            $$ lim_{pto 0^+} M_p(a_1,ldots,a_m)= GM(a_1,ldots,a_m) = left(prod_{k=1}^{m}a_kright)^{frac{1}{m}}$$
            by the continuity and concavity of the logarithm function.




            In particular, if $f(x)$ is a non-negative and continuous function over the interval $(0,1)$,




            $$ lim_{pto 0^+}left(int_{0}^{1}f(x)^p,dxright)^{frac{1}{p}}=expint_{0}^{1}log f(x),dx.$$




            The last identity gives that for any $a,b>0$,



            $$ begin{eqnarray*}lim_{nto +infty}left(int_{0}^{1}(bx+a(1-x))^{frac{1}{n}},dxright)^n &=& expint_{0}^{1}log(bx+a(1-x)),dx\&=&expleft[frac{1}{b-a}int_{a}^{b}log(x),dxright]\&=&expleft[-1+frac{blog b-alog a}{b-a}right]\&=&color{red}{frac{1}{e}left(frac{b^b}{a^a}right)^{frac{1}{b-a}}} end{eqnarray*}$$
            as claimed.






            share|cite|improve this answer









            $endgroup$









            • 2




              $begingroup$
              Putting it in this bigger framework is really great!
              $endgroup$
              – Lee David Chung Lin
              Oct 19 '16 at 16:17






            • 1




              $begingroup$
              This is honestly one of the coolest things I've ever seen on Math.SE. What a wonderful theorem to know exists, and what a fascinating application. Thank you for sharing!
              $endgroup$
              – Brevan Ellefsen
              Oct 20 '16 at 2:47














            5












            5








            5





            $begingroup$

            This is just the continuous analogue of a well-known fact:




            If $a_1,a_2,ldots,a_m$ are non-negative numbers and the mean of order $p>0$ is defined as
            $$ M_p(a_1,ldots,a_m) = left(frac{1}{m}sum_{k=1}^{m}a_k^pright)^{frac{1}{p}},$$
            then $M_p$ is an increasing function of $p$ and
            $$ lim_{pto 0^+} M_p(a_1,ldots,a_m)= GM(a_1,ldots,a_m) = left(prod_{k=1}^{m}a_kright)^{frac{1}{m}}$$
            by the continuity and concavity of the logarithm function.




            In particular, if $f(x)$ is a non-negative and continuous function over the interval $(0,1)$,




            $$ lim_{pto 0^+}left(int_{0}^{1}f(x)^p,dxright)^{frac{1}{p}}=expint_{0}^{1}log f(x),dx.$$




            The last identity gives that for any $a,b>0$,



            $$ begin{eqnarray*}lim_{nto +infty}left(int_{0}^{1}(bx+a(1-x))^{frac{1}{n}},dxright)^n &=& expint_{0}^{1}log(bx+a(1-x)),dx\&=&expleft[frac{1}{b-a}int_{a}^{b}log(x),dxright]\&=&expleft[-1+frac{blog b-alog a}{b-a}right]\&=&color{red}{frac{1}{e}left(frac{b^b}{a^a}right)^{frac{1}{b-a}}} end{eqnarray*}$$
            as claimed.






            share|cite|improve this answer









            $endgroup$



            This is just the continuous analogue of a well-known fact:




            If $a_1,a_2,ldots,a_m$ are non-negative numbers and the mean of order $p>0$ is defined as
            $$ M_p(a_1,ldots,a_m) = left(frac{1}{m}sum_{k=1}^{m}a_k^pright)^{frac{1}{p}},$$
            then $M_p$ is an increasing function of $p$ and
            $$ lim_{pto 0^+} M_p(a_1,ldots,a_m)= GM(a_1,ldots,a_m) = left(prod_{k=1}^{m}a_kright)^{frac{1}{m}}$$
            by the continuity and concavity of the logarithm function.




            In particular, if $f(x)$ is a non-negative and continuous function over the interval $(0,1)$,




            $$ lim_{pto 0^+}left(int_{0}^{1}f(x)^p,dxright)^{frac{1}{p}}=expint_{0}^{1}log f(x),dx.$$




            The last identity gives that for any $a,b>0$,



            $$ begin{eqnarray*}lim_{nto +infty}left(int_{0}^{1}(bx+a(1-x))^{frac{1}{n}},dxright)^n &=& expint_{0}^{1}log(bx+a(1-x)),dx\&=&expleft[frac{1}{b-a}int_{a}^{b}log(x),dxright]\&=&expleft[-1+frac{blog b-alog a}{b-a}right]\&=&color{red}{frac{1}{e}left(frac{b^b}{a^a}right)^{frac{1}{b-a}}} end{eqnarray*}$$
            as claimed.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Oct 19 '16 at 16:08









            Jack D'AurizioJack D'Aurizio

            290k33282662




            290k33282662








            • 2




              $begingroup$
              Putting it in this bigger framework is really great!
              $endgroup$
              – Lee David Chung Lin
              Oct 19 '16 at 16:17






            • 1




              $begingroup$
              This is honestly one of the coolest things I've ever seen on Math.SE. What a wonderful theorem to know exists, and what a fascinating application. Thank you for sharing!
              $endgroup$
              – Brevan Ellefsen
              Oct 20 '16 at 2:47














            • 2




              $begingroup$
              Putting it in this bigger framework is really great!
              $endgroup$
              – Lee David Chung Lin
              Oct 19 '16 at 16:17






            • 1




              $begingroup$
              This is honestly one of the coolest things I've ever seen on Math.SE. What a wonderful theorem to know exists, and what a fascinating application. Thank you for sharing!
              $endgroup$
              – Brevan Ellefsen
              Oct 20 '16 at 2:47








            2




            2




            $begingroup$
            Putting it in this bigger framework is really great!
            $endgroup$
            – Lee David Chung Lin
            Oct 19 '16 at 16:17




            $begingroup$
            Putting it in this bigger framework is really great!
            $endgroup$
            – Lee David Chung Lin
            Oct 19 '16 at 16:17




            1




            1




            $begingroup$
            This is honestly one of the coolest things I've ever seen on Math.SE. What a wonderful theorem to know exists, and what a fascinating application. Thank you for sharing!
            $endgroup$
            – Brevan Ellefsen
            Oct 20 '16 at 2:47




            $begingroup$
            This is honestly one of the coolest things I've ever seen on Math.SE. What a wonderful theorem to know exists, and what a fascinating application. Thank you for sharing!
            $endgroup$
            – Brevan Ellefsen
            Oct 20 '16 at 2:47











            5












            $begingroup$

            $newcommand{bbx}[1]{,bbox[8px,border:1px groove navy]{{#1}},}
            newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
            newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
            newcommand{dd}{mathrm{d}}
            newcommand{ds}[1]{displaystyle{#1}}
            newcommand{expo}[1]{,mathrm{e}^{#1},}
            newcommand{ic}{mathrm{i}}
            newcommand{mc}[1]{mathcal{#1}}
            newcommand{mrm}[1]{mathrm{#1}}
            newcommand{pars}[1]{left(,{#1},right)}
            newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
            newcommand{root}[2]{,sqrt[#1]{,{#2},},}
            newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
            newcommand{verts}[1]{leftvert,{#1},rightvert}$
            begin{align}
            &lim_{n to infty}braces{int_{0}^{1}bracks{bx + apars{1 - x}}^{1/n}
            ,dd x}^{n} =
            lim_{n to infty}bracks{{1 over b - a}int_{a}^{b}x^{1/n}
            ,dd x}^{n}
            \[5mm] &=
            lim_{epsilon to 0^{+}}exppars{-lnpars{b - a} + lnpars{int_{a}^{b}x^{epsilon},dd x} over epsilon}
            \[5mm] & =
            lim_{epsilon to 0^{+}}exppars{-lnpars{b - a} +
            lnpars{b^{epsilon + 1} - a^{epsilon + 1}} - lnpars{epsilon + 1} over epsilon}
            \[5mm] & =
            lim_{epsilon to 0^{+}}exppars{
            {b^{epsilon + 1}lnpars{b} - a^{epsilon + 1}lnpars{a} over b^{epsilon + 1} - a^{epsilon + 1}} - {1 over epsilon + 1}}qquadqquad
            pars{~L'Hhat{o}pital Rule~}
            \[5mm] & =
            exppars{{blnpars{b} - alnpars{a} over b - a} - 1} =
            bbx{ds{{1 over expo{}},pars{b^{b} over a^{a}}^{1/pars{b - a}}}}
            end{align}






            share|cite|improve this answer









            $endgroup$


















              5












              $begingroup$

              $newcommand{bbx}[1]{,bbox[8px,border:1px groove navy]{{#1}},}
              newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
              newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
              newcommand{dd}{mathrm{d}}
              newcommand{ds}[1]{displaystyle{#1}}
              newcommand{expo}[1]{,mathrm{e}^{#1},}
              newcommand{ic}{mathrm{i}}
              newcommand{mc}[1]{mathcal{#1}}
              newcommand{mrm}[1]{mathrm{#1}}
              newcommand{pars}[1]{left(,{#1},right)}
              newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
              newcommand{root}[2]{,sqrt[#1]{,{#2},},}
              newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
              newcommand{verts}[1]{leftvert,{#1},rightvert}$
              begin{align}
              &lim_{n to infty}braces{int_{0}^{1}bracks{bx + apars{1 - x}}^{1/n}
              ,dd x}^{n} =
              lim_{n to infty}bracks{{1 over b - a}int_{a}^{b}x^{1/n}
              ,dd x}^{n}
              \[5mm] &=
              lim_{epsilon to 0^{+}}exppars{-lnpars{b - a} + lnpars{int_{a}^{b}x^{epsilon},dd x} over epsilon}
              \[5mm] & =
              lim_{epsilon to 0^{+}}exppars{-lnpars{b - a} +
              lnpars{b^{epsilon + 1} - a^{epsilon + 1}} - lnpars{epsilon + 1} over epsilon}
              \[5mm] & =
              lim_{epsilon to 0^{+}}exppars{
              {b^{epsilon + 1}lnpars{b} - a^{epsilon + 1}lnpars{a} over b^{epsilon + 1} - a^{epsilon + 1}} - {1 over epsilon + 1}}qquadqquad
              pars{~L'Hhat{o}pital Rule~}
              \[5mm] & =
              exppars{{blnpars{b} - alnpars{a} over b - a} - 1} =
              bbx{ds{{1 over expo{}},pars{b^{b} over a^{a}}^{1/pars{b - a}}}}
              end{align}






              share|cite|improve this answer









              $endgroup$
















                5












                5








                5





                $begingroup$

                $newcommand{bbx}[1]{,bbox[8px,border:1px groove navy]{{#1}},}
                newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                newcommand{dd}{mathrm{d}}
                newcommand{ds}[1]{displaystyle{#1}}
                newcommand{expo}[1]{,mathrm{e}^{#1},}
                newcommand{ic}{mathrm{i}}
                newcommand{mc}[1]{mathcal{#1}}
                newcommand{mrm}[1]{mathrm{#1}}
                newcommand{pars}[1]{left(,{#1},right)}
                newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                newcommand{verts}[1]{leftvert,{#1},rightvert}$
                begin{align}
                &lim_{n to infty}braces{int_{0}^{1}bracks{bx + apars{1 - x}}^{1/n}
                ,dd x}^{n} =
                lim_{n to infty}bracks{{1 over b - a}int_{a}^{b}x^{1/n}
                ,dd x}^{n}
                \[5mm] &=
                lim_{epsilon to 0^{+}}exppars{-lnpars{b - a} + lnpars{int_{a}^{b}x^{epsilon},dd x} over epsilon}
                \[5mm] & =
                lim_{epsilon to 0^{+}}exppars{-lnpars{b - a} +
                lnpars{b^{epsilon + 1} - a^{epsilon + 1}} - lnpars{epsilon + 1} over epsilon}
                \[5mm] & =
                lim_{epsilon to 0^{+}}exppars{
                {b^{epsilon + 1}lnpars{b} - a^{epsilon + 1}lnpars{a} over b^{epsilon + 1} - a^{epsilon + 1}} - {1 over epsilon + 1}}qquadqquad
                pars{~L'Hhat{o}pital Rule~}
                \[5mm] & =
                exppars{{blnpars{b} - alnpars{a} over b - a} - 1} =
                bbx{ds{{1 over expo{}},pars{b^{b} over a^{a}}^{1/pars{b - a}}}}
                end{align}






                share|cite|improve this answer









                $endgroup$



                $newcommand{bbx}[1]{,bbox[8px,border:1px groove navy]{{#1}},}
                newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                newcommand{dd}{mathrm{d}}
                newcommand{ds}[1]{displaystyle{#1}}
                newcommand{expo}[1]{,mathrm{e}^{#1},}
                newcommand{ic}{mathrm{i}}
                newcommand{mc}[1]{mathcal{#1}}
                newcommand{mrm}[1]{mathrm{#1}}
                newcommand{pars}[1]{left(,{#1},right)}
                newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                newcommand{verts}[1]{leftvert,{#1},rightvert}$
                begin{align}
                &lim_{n to infty}braces{int_{0}^{1}bracks{bx + apars{1 - x}}^{1/n}
                ,dd x}^{n} =
                lim_{n to infty}bracks{{1 over b - a}int_{a}^{b}x^{1/n}
                ,dd x}^{n}
                \[5mm] &=
                lim_{epsilon to 0^{+}}exppars{-lnpars{b - a} + lnpars{int_{a}^{b}x^{epsilon},dd x} over epsilon}
                \[5mm] & =
                lim_{epsilon to 0^{+}}exppars{-lnpars{b - a} +
                lnpars{b^{epsilon + 1} - a^{epsilon + 1}} - lnpars{epsilon + 1} over epsilon}
                \[5mm] & =
                lim_{epsilon to 0^{+}}exppars{
                {b^{epsilon + 1}lnpars{b} - a^{epsilon + 1}lnpars{a} over b^{epsilon + 1} - a^{epsilon + 1}} - {1 over epsilon + 1}}qquadqquad
                pars{~L'Hhat{o}pital Rule~}
                \[5mm] & =
                exppars{{blnpars{b} - alnpars{a} over b - a} - 1} =
                bbx{ds{{1 over expo{}},pars{b^{b} over a^{a}}^{1/pars{b - a}}}}
                end{align}







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Oct 19 '16 at 22:58









                Felix MarinFelix Marin

                68.1k7109143




                68.1k7109143






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1975789%2flimit-of-left-int-01-bx-a1-x-frac1n-dx-right-n-as-n%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Plaza Victoria

                    In PowerPoint, is there a keyboard shortcut for bulleted / numbered list?

                    How to put 3 figures in Latex with 2 figures side by side and 1 below these side by side images but in...