Find domain, $f(x) =log(log_{|sin x|}(x^2-8x+23)-largefrac{3}{log_{2}|sin x|})$
$begingroup$
So as the question says finding domain of-
$f(x) = log(log_{|sin x|}(x^2-8x+23)-largefrac{3}{log_{2}|sin x|})$
$large f(x)=log(log_{|sin x|}(x^2-8x+23)-largefrac{3}{log_{2}|sin x|})$
What I did-
$largeimplies log_{|sin x|} (x^2 - 8x + 23) - frac{3}{ (log_{2} |sin x|)} > 0$
$large implies log_{|sin x|} (x^2 - 8x + 23) - 3 log_{|sin x|} 2 > 0$
How to proceed further?
functions
$endgroup$
|
show 1 more comment
$begingroup$
So as the question says finding domain of-
$f(x) = log(log_{|sin x|}(x^2-8x+23)-largefrac{3}{log_{2}|sin x|})$
$large f(x)=log(log_{|sin x|}(x^2-8x+23)-largefrac{3}{log_{2}|sin x|})$
What I did-
$largeimplies log_{|sin x|} (x^2 - 8x + 23) - frac{3}{ (log_{2} |sin x|)} > 0$
$large implies log_{|sin x|} (x^2 - 8x + 23) - 3 log_{|sin x|} 2 > 0$
How to proceed further?
functions
$endgroup$
$begingroup$
is the edit correct?
$endgroup$
– Vikram
Jun 7 '14 at 14:30
$begingroup$
@Vikram I am little poor with the MathJax format, so couldn't do much.
$endgroup$
– Swetank
Jun 7 '14 at 14:33
$begingroup$
I am asking if what I have done is correct according to your question?
$endgroup$
– Vikram
Jun 7 '14 at 14:35
$begingroup$
@Vikram no! let me post a pic of my question.
$endgroup$
– Swetank
Jun 7 '14 at 14:38
$begingroup$
@Vikram here is the snapshot of my question -goo.gl/UX9vwV
$endgroup$
– Swetank
Jun 7 '14 at 14:44
|
show 1 more comment
$begingroup$
So as the question says finding domain of-
$f(x) = log(log_{|sin x|}(x^2-8x+23)-largefrac{3}{log_{2}|sin x|})$
$large f(x)=log(log_{|sin x|}(x^2-8x+23)-largefrac{3}{log_{2}|sin x|})$
What I did-
$largeimplies log_{|sin x|} (x^2 - 8x + 23) - frac{3}{ (log_{2} |sin x|)} > 0$
$large implies log_{|sin x|} (x^2 - 8x + 23) - 3 log_{|sin x|} 2 > 0$
How to proceed further?
functions
$endgroup$
So as the question says finding domain of-
$f(x) = log(log_{|sin x|}(x^2-8x+23)-largefrac{3}{log_{2}|sin x|})$
$large f(x)=log(log_{|sin x|}(x^2-8x+23)-largefrac{3}{log_{2}|sin x|})$
What I did-
$largeimplies log_{|sin x|} (x^2 - 8x + 23) - frac{3}{ (log_{2} |sin x|)} > 0$
$large implies log_{|sin x|} (x^2 - 8x + 23) - 3 log_{|sin x|} 2 > 0$
How to proceed further?
functions
functions
edited Jun 7 '14 at 14:59
RE60K
14k22155
14k22155
asked Jun 7 '14 at 14:15
SwetankSwetank
6510
6510
$begingroup$
is the edit correct?
$endgroup$
– Vikram
Jun 7 '14 at 14:30
$begingroup$
@Vikram I am little poor with the MathJax format, so couldn't do much.
$endgroup$
– Swetank
Jun 7 '14 at 14:33
$begingroup$
I am asking if what I have done is correct according to your question?
$endgroup$
– Vikram
Jun 7 '14 at 14:35
$begingroup$
@Vikram no! let me post a pic of my question.
$endgroup$
– Swetank
Jun 7 '14 at 14:38
$begingroup$
@Vikram here is the snapshot of my question -goo.gl/UX9vwV
$endgroup$
– Swetank
Jun 7 '14 at 14:44
|
show 1 more comment
$begingroup$
is the edit correct?
$endgroup$
– Vikram
Jun 7 '14 at 14:30
$begingroup$
@Vikram I am little poor with the MathJax format, so couldn't do much.
$endgroup$
– Swetank
Jun 7 '14 at 14:33
$begingroup$
I am asking if what I have done is correct according to your question?
$endgroup$
– Vikram
Jun 7 '14 at 14:35
$begingroup$
@Vikram no! let me post a pic of my question.
$endgroup$
– Swetank
Jun 7 '14 at 14:38
$begingroup$
@Vikram here is the snapshot of my question -goo.gl/UX9vwV
$endgroup$
– Swetank
Jun 7 '14 at 14:44
$begingroup$
is the edit correct?
$endgroup$
– Vikram
Jun 7 '14 at 14:30
$begingroup$
is the edit correct?
$endgroup$
– Vikram
Jun 7 '14 at 14:30
$begingroup$
@Vikram I am little poor with the MathJax format, so couldn't do much.
$endgroup$
– Swetank
Jun 7 '14 at 14:33
$begingroup$
@Vikram I am little poor with the MathJax format, so couldn't do much.
$endgroup$
– Swetank
Jun 7 '14 at 14:33
$begingroup$
I am asking if what I have done is correct according to your question?
$endgroup$
– Vikram
Jun 7 '14 at 14:35
$begingroup$
I am asking if what I have done is correct according to your question?
$endgroup$
– Vikram
Jun 7 '14 at 14:35
$begingroup$
@Vikram no! let me post a pic of my question.
$endgroup$
– Swetank
Jun 7 '14 at 14:38
$begingroup$
@Vikram no! let me post a pic of my question.
$endgroup$
– Swetank
Jun 7 '14 at 14:38
$begingroup$
@Vikram here is the snapshot of my question -goo.gl/UX9vwV
$endgroup$
– Swetank
Jun 7 '14 at 14:44
$begingroup$
@Vikram here is the snapshot of my question -goo.gl/UX9vwV
$endgroup$
– Swetank
Jun 7 '14 at 14:44
|
show 1 more comment
3 Answers
3
active
oldest
votes
$begingroup$
To determine the domain of $log_a(b)$, you need to apply the constraints:
$$b > 0\a>0 land a neq 1$$.
So let's apply them to the bases first:
$$
left{begin{matrix}
|sin x| > 0\
|sin x| neq 1\
end{matrix}right. iff left{begin{matrix}
sin x neq 0\
sin x neq pm 1\
end{matrix}right. implies x neq kfrac{pi}{2}, k in mathbb{Z}$$
Passing to the arguments:
$$left{begin{matrix}
x^2 - 8x + 23 > 0\
|sin x| > 0
end{matrix}right. iff left{begin{matrix}
forall x in mathbb{R}\
x neq kpi, k in mathbb{Z}
end{matrix}right. implies x neq kpi, k in mathbb{Z}$$
This is clearly a subset of the previous solution, so until now we have
$$x neq kfrac{pi}{2}, k in mathbb{Z} tag{1}$$
It remains to apply the constraint to the first $ln$:
$$log_{|sin x|} (x^2 - 8x + 23) - frac{3}{log_{2} |sin x|} > 0\
frac{ln(x^2-8 x+23)-3ln2}{ln|sin x|}>0$$
Since $ln|sin x|$ is always negative (except when $|sin x| = 1$, which we already excluded before) we can write:
$$ln(x^2-8 x+23)-3ln2<0\
ln(x^2-8 x+23)<ln8\
x^2-8 x+15<0\
3 < x < 5$$
Putting this last result together with $(1)$ we get:
$$3 < x < 5 land x notin left{pi, frac{3pi}{2}right}$$
I plotted it with Desmos and got this:
https://www.desmos.com/calculator/ld5vmseh9y
$endgroup$
$begingroup$
@Swetank: Did you understand all the details? Is it enough to accept the answer?
$endgroup$
– rubik
Jun 8 '14 at 7:31
add a comment |
$begingroup$
$$
begin{align}
log{log_{|sin x|}(x^2−8x+23)−frac{3}{log_2|sin x|}} &=
log{log_{|sin x|}(x^2−8x+23)+log_{|sin x|}frac{1}{8}} \
&= log{log_{|sin x|}frac{(x^2−8x+23)}{8}} \
&=log{frac{logfrac{(x^2−8x+23)}{8}}{log|sin x|}}
end{align}
$$
$$
=>frac{logfrac{(x^2−8x+23)}{8}}{log|sin x|} > 0\
text{In the above equation the denominator, } log{|sin x|} text{, is always negative.}\ text{ So the numerator must also be negative, }
logfrac{(x^2−8x+23)}{8} < 0 \
begin{align}
&=> frac{x^2−8x+23}{8} < 1 \
&=> {x^2−8x+23} < 8 \
&=> {x^2−8x+15} < 0 \
&=> (x-3)(x-5)<0 \
end{align} \
x in(3,5) \
text{Also we have a constraint on x from the initial equation : } |sin x|>0,ne 1
\ => x in (0,2pi) - {frac{pi}{2},pi,frac{3pi}{2}}
\ x in(3,5) - {pi,frac{3pi}{2}}
$$
$endgroup$
add a comment |
$begingroup$
$|sin x|>0\implies xne npi$ where $ninmathbb{I}$
$log_2|sin x|ne0\ implies |sin x|ne1\implies xne (2n+1)large{fracpi2}$
where $ninmathbb{I}$
$x^2-8x+23>0\implies xinmathbb{R}$
$log_{|sin x|}(x^2-8x+23)-largefrac{3}{log_{2}|sin x|}>0 \implies
log_{|sin x|}(x^2-8x+23)-largelog_{|sin x|}8>0\implies
large{log_{|sin x|}(frac{x^2-8x+23}8)>0}\implies
frac{x^2-8x+23}8<1\implies
x^2-8x+23<8\implies
x^2-8x+15<0\implies
xin(3,5)$
Combining all $$LARGE xin(3,5)-{pi,frac32pi}$$
$endgroup$
$begingroup$
sorry but need more help..
$endgroup$
– Swetank
Jun 7 '14 at 15:05
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f823933%2ffind-domain-fx-log-log-sin-xx2-8x23-large-frac3-log-2-sin%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
To determine the domain of $log_a(b)$, you need to apply the constraints:
$$b > 0\a>0 land a neq 1$$.
So let's apply them to the bases first:
$$
left{begin{matrix}
|sin x| > 0\
|sin x| neq 1\
end{matrix}right. iff left{begin{matrix}
sin x neq 0\
sin x neq pm 1\
end{matrix}right. implies x neq kfrac{pi}{2}, k in mathbb{Z}$$
Passing to the arguments:
$$left{begin{matrix}
x^2 - 8x + 23 > 0\
|sin x| > 0
end{matrix}right. iff left{begin{matrix}
forall x in mathbb{R}\
x neq kpi, k in mathbb{Z}
end{matrix}right. implies x neq kpi, k in mathbb{Z}$$
This is clearly a subset of the previous solution, so until now we have
$$x neq kfrac{pi}{2}, k in mathbb{Z} tag{1}$$
It remains to apply the constraint to the first $ln$:
$$log_{|sin x|} (x^2 - 8x + 23) - frac{3}{log_{2} |sin x|} > 0\
frac{ln(x^2-8 x+23)-3ln2}{ln|sin x|}>0$$
Since $ln|sin x|$ is always negative (except when $|sin x| = 1$, which we already excluded before) we can write:
$$ln(x^2-8 x+23)-3ln2<0\
ln(x^2-8 x+23)<ln8\
x^2-8 x+15<0\
3 < x < 5$$
Putting this last result together with $(1)$ we get:
$$3 < x < 5 land x notin left{pi, frac{3pi}{2}right}$$
I plotted it with Desmos and got this:
https://www.desmos.com/calculator/ld5vmseh9y
$endgroup$
$begingroup$
@Swetank: Did you understand all the details? Is it enough to accept the answer?
$endgroup$
– rubik
Jun 8 '14 at 7:31
add a comment |
$begingroup$
To determine the domain of $log_a(b)$, you need to apply the constraints:
$$b > 0\a>0 land a neq 1$$.
So let's apply them to the bases first:
$$
left{begin{matrix}
|sin x| > 0\
|sin x| neq 1\
end{matrix}right. iff left{begin{matrix}
sin x neq 0\
sin x neq pm 1\
end{matrix}right. implies x neq kfrac{pi}{2}, k in mathbb{Z}$$
Passing to the arguments:
$$left{begin{matrix}
x^2 - 8x + 23 > 0\
|sin x| > 0
end{matrix}right. iff left{begin{matrix}
forall x in mathbb{R}\
x neq kpi, k in mathbb{Z}
end{matrix}right. implies x neq kpi, k in mathbb{Z}$$
This is clearly a subset of the previous solution, so until now we have
$$x neq kfrac{pi}{2}, k in mathbb{Z} tag{1}$$
It remains to apply the constraint to the first $ln$:
$$log_{|sin x|} (x^2 - 8x + 23) - frac{3}{log_{2} |sin x|} > 0\
frac{ln(x^2-8 x+23)-3ln2}{ln|sin x|}>0$$
Since $ln|sin x|$ is always negative (except when $|sin x| = 1$, which we already excluded before) we can write:
$$ln(x^2-8 x+23)-3ln2<0\
ln(x^2-8 x+23)<ln8\
x^2-8 x+15<0\
3 < x < 5$$
Putting this last result together with $(1)$ we get:
$$3 < x < 5 land x notin left{pi, frac{3pi}{2}right}$$
I plotted it with Desmos and got this:
https://www.desmos.com/calculator/ld5vmseh9y
$endgroup$
$begingroup$
@Swetank: Did you understand all the details? Is it enough to accept the answer?
$endgroup$
– rubik
Jun 8 '14 at 7:31
add a comment |
$begingroup$
To determine the domain of $log_a(b)$, you need to apply the constraints:
$$b > 0\a>0 land a neq 1$$.
So let's apply them to the bases first:
$$
left{begin{matrix}
|sin x| > 0\
|sin x| neq 1\
end{matrix}right. iff left{begin{matrix}
sin x neq 0\
sin x neq pm 1\
end{matrix}right. implies x neq kfrac{pi}{2}, k in mathbb{Z}$$
Passing to the arguments:
$$left{begin{matrix}
x^2 - 8x + 23 > 0\
|sin x| > 0
end{matrix}right. iff left{begin{matrix}
forall x in mathbb{R}\
x neq kpi, k in mathbb{Z}
end{matrix}right. implies x neq kpi, k in mathbb{Z}$$
This is clearly a subset of the previous solution, so until now we have
$$x neq kfrac{pi}{2}, k in mathbb{Z} tag{1}$$
It remains to apply the constraint to the first $ln$:
$$log_{|sin x|} (x^2 - 8x + 23) - frac{3}{log_{2} |sin x|} > 0\
frac{ln(x^2-8 x+23)-3ln2}{ln|sin x|}>0$$
Since $ln|sin x|$ is always negative (except when $|sin x| = 1$, which we already excluded before) we can write:
$$ln(x^2-8 x+23)-3ln2<0\
ln(x^2-8 x+23)<ln8\
x^2-8 x+15<0\
3 < x < 5$$
Putting this last result together with $(1)$ we get:
$$3 < x < 5 land x notin left{pi, frac{3pi}{2}right}$$
I plotted it with Desmos and got this:
https://www.desmos.com/calculator/ld5vmseh9y
$endgroup$
To determine the domain of $log_a(b)$, you need to apply the constraints:
$$b > 0\a>0 land a neq 1$$.
So let's apply them to the bases first:
$$
left{begin{matrix}
|sin x| > 0\
|sin x| neq 1\
end{matrix}right. iff left{begin{matrix}
sin x neq 0\
sin x neq pm 1\
end{matrix}right. implies x neq kfrac{pi}{2}, k in mathbb{Z}$$
Passing to the arguments:
$$left{begin{matrix}
x^2 - 8x + 23 > 0\
|sin x| > 0
end{matrix}right. iff left{begin{matrix}
forall x in mathbb{R}\
x neq kpi, k in mathbb{Z}
end{matrix}right. implies x neq kpi, k in mathbb{Z}$$
This is clearly a subset of the previous solution, so until now we have
$$x neq kfrac{pi}{2}, k in mathbb{Z} tag{1}$$
It remains to apply the constraint to the first $ln$:
$$log_{|sin x|} (x^2 - 8x + 23) - frac{3}{log_{2} |sin x|} > 0\
frac{ln(x^2-8 x+23)-3ln2}{ln|sin x|}>0$$
Since $ln|sin x|$ is always negative (except when $|sin x| = 1$, which we already excluded before) we can write:
$$ln(x^2-8 x+23)-3ln2<0\
ln(x^2-8 x+23)<ln8\
x^2-8 x+15<0\
3 < x < 5$$
Putting this last result together with $(1)$ we get:
$$3 < x < 5 land x notin left{pi, frac{3pi}{2}right}$$
I plotted it with Desmos and got this:
https://www.desmos.com/calculator/ld5vmseh9y
edited Jun 7 '14 at 17:59
answered Jun 7 '14 at 15:57
rubikrubik
6,76132661
6,76132661
$begingroup$
@Swetank: Did you understand all the details? Is it enough to accept the answer?
$endgroup$
– rubik
Jun 8 '14 at 7:31
add a comment |
$begingroup$
@Swetank: Did you understand all the details? Is it enough to accept the answer?
$endgroup$
– rubik
Jun 8 '14 at 7:31
$begingroup$
@Swetank: Did you understand all the details? Is it enough to accept the answer?
$endgroup$
– rubik
Jun 8 '14 at 7:31
$begingroup$
@Swetank: Did you understand all the details? Is it enough to accept the answer?
$endgroup$
– rubik
Jun 8 '14 at 7:31
add a comment |
$begingroup$
$$
begin{align}
log{log_{|sin x|}(x^2−8x+23)−frac{3}{log_2|sin x|}} &=
log{log_{|sin x|}(x^2−8x+23)+log_{|sin x|}frac{1}{8}} \
&= log{log_{|sin x|}frac{(x^2−8x+23)}{8}} \
&=log{frac{logfrac{(x^2−8x+23)}{8}}{log|sin x|}}
end{align}
$$
$$
=>frac{logfrac{(x^2−8x+23)}{8}}{log|sin x|} > 0\
text{In the above equation the denominator, } log{|sin x|} text{, is always negative.}\ text{ So the numerator must also be negative, }
logfrac{(x^2−8x+23)}{8} < 0 \
begin{align}
&=> frac{x^2−8x+23}{8} < 1 \
&=> {x^2−8x+23} < 8 \
&=> {x^2−8x+15} < 0 \
&=> (x-3)(x-5)<0 \
end{align} \
x in(3,5) \
text{Also we have a constraint on x from the initial equation : } |sin x|>0,ne 1
\ => x in (0,2pi) - {frac{pi}{2},pi,frac{3pi}{2}}
\ x in(3,5) - {pi,frac{3pi}{2}}
$$
$endgroup$
add a comment |
$begingroup$
$$
begin{align}
log{log_{|sin x|}(x^2−8x+23)−frac{3}{log_2|sin x|}} &=
log{log_{|sin x|}(x^2−8x+23)+log_{|sin x|}frac{1}{8}} \
&= log{log_{|sin x|}frac{(x^2−8x+23)}{8}} \
&=log{frac{logfrac{(x^2−8x+23)}{8}}{log|sin x|}}
end{align}
$$
$$
=>frac{logfrac{(x^2−8x+23)}{8}}{log|sin x|} > 0\
text{In the above equation the denominator, } log{|sin x|} text{, is always negative.}\ text{ So the numerator must also be negative, }
logfrac{(x^2−8x+23)}{8} < 0 \
begin{align}
&=> frac{x^2−8x+23}{8} < 1 \
&=> {x^2−8x+23} < 8 \
&=> {x^2−8x+15} < 0 \
&=> (x-3)(x-5)<0 \
end{align} \
x in(3,5) \
text{Also we have a constraint on x from the initial equation : } |sin x|>0,ne 1
\ => x in (0,2pi) - {frac{pi}{2},pi,frac{3pi}{2}}
\ x in(3,5) - {pi,frac{3pi}{2}}
$$
$endgroup$
add a comment |
$begingroup$
$$
begin{align}
log{log_{|sin x|}(x^2−8x+23)−frac{3}{log_2|sin x|}} &=
log{log_{|sin x|}(x^2−8x+23)+log_{|sin x|}frac{1}{8}} \
&= log{log_{|sin x|}frac{(x^2−8x+23)}{8}} \
&=log{frac{logfrac{(x^2−8x+23)}{8}}{log|sin x|}}
end{align}
$$
$$
=>frac{logfrac{(x^2−8x+23)}{8}}{log|sin x|} > 0\
text{In the above equation the denominator, } log{|sin x|} text{, is always negative.}\ text{ So the numerator must also be negative, }
logfrac{(x^2−8x+23)}{8} < 0 \
begin{align}
&=> frac{x^2−8x+23}{8} < 1 \
&=> {x^2−8x+23} < 8 \
&=> {x^2−8x+15} < 0 \
&=> (x-3)(x-5)<0 \
end{align} \
x in(3,5) \
text{Also we have a constraint on x from the initial equation : } |sin x|>0,ne 1
\ => x in (0,2pi) - {frac{pi}{2},pi,frac{3pi}{2}}
\ x in(3,5) - {pi,frac{3pi}{2}}
$$
$endgroup$
$$
begin{align}
log{log_{|sin x|}(x^2−8x+23)−frac{3}{log_2|sin x|}} &=
log{log_{|sin x|}(x^2−8x+23)+log_{|sin x|}frac{1}{8}} \
&= log{log_{|sin x|}frac{(x^2−8x+23)}{8}} \
&=log{frac{logfrac{(x^2−8x+23)}{8}}{log|sin x|}}
end{align}
$$
$$
=>frac{logfrac{(x^2−8x+23)}{8}}{log|sin x|} > 0\
text{In the above equation the denominator, } log{|sin x|} text{, is always negative.}\ text{ So the numerator must also be negative, }
logfrac{(x^2−8x+23)}{8} < 0 \
begin{align}
&=> frac{x^2−8x+23}{8} < 1 \
&=> {x^2−8x+23} < 8 \
&=> {x^2−8x+15} < 0 \
&=> (x-3)(x-5)<0 \
end{align} \
x in(3,5) \
text{Also we have a constraint on x from the initial equation : } |sin x|>0,ne 1
\ => x in (0,2pi) - {frac{pi}{2},pi,frac{3pi}{2}}
\ x in(3,5) - {pi,frac{3pi}{2}}
$$
edited Dec 10 '18 at 18:30
Martin Sleziak
44.7k10119272
44.7k10119272
answered Aug 17 '18 at 10:10
Ajay ChoudharyAjay Choudhary
888
888
add a comment |
add a comment |
$begingroup$
$|sin x|>0\implies xne npi$ where $ninmathbb{I}$
$log_2|sin x|ne0\ implies |sin x|ne1\implies xne (2n+1)large{fracpi2}$
where $ninmathbb{I}$
$x^2-8x+23>0\implies xinmathbb{R}$
$log_{|sin x|}(x^2-8x+23)-largefrac{3}{log_{2}|sin x|}>0 \implies
log_{|sin x|}(x^2-8x+23)-largelog_{|sin x|}8>0\implies
large{log_{|sin x|}(frac{x^2-8x+23}8)>0}\implies
frac{x^2-8x+23}8<1\implies
x^2-8x+23<8\implies
x^2-8x+15<0\implies
xin(3,5)$
Combining all $$LARGE xin(3,5)-{pi,frac32pi}$$
$endgroup$
$begingroup$
sorry but need more help..
$endgroup$
– Swetank
Jun 7 '14 at 15:05
add a comment |
$begingroup$
$|sin x|>0\implies xne npi$ where $ninmathbb{I}$
$log_2|sin x|ne0\ implies |sin x|ne1\implies xne (2n+1)large{fracpi2}$
where $ninmathbb{I}$
$x^2-8x+23>0\implies xinmathbb{R}$
$log_{|sin x|}(x^2-8x+23)-largefrac{3}{log_{2}|sin x|}>0 \implies
log_{|sin x|}(x^2-8x+23)-largelog_{|sin x|}8>0\implies
large{log_{|sin x|}(frac{x^2-8x+23}8)>0}\implies
frac{x^2-8x+23}8<1\implies
x^2-8x+23<8\implies
x^2-8x+15<0\implies
xin(3,5)$
Combining all $$LARGE xin(3,5)-{pi,frac32pi}$$
$endgroup$
$begingroup$
sorry but need more help..
$endgroup$
– Swetank
Jun 7 '14 at 15:05
add a comment |
$begingroup$
$|sin x|>0\implies xne npi$ where $ninmathbb{I}$
$log_2|sin x|ne0\ implies |sin x|ne1\implies xne (2n+1)large{fracpi2}$
where $ninmathbb{I}$
$x^2-8x+23>0\implies xinmathbb{R}$
$log_{|sin x|}(x^2-8x+23)-largefrac{3}{log_{2}|sin x|}>0 \implies
log_{|sin x|}(x^2-8x+23)-largelog_{|sin x|}8>0\implies
large{log_{|sin x|}(frac{x^2-8x+23}8)>0}\implies
frac{x^2-8x+23}8<1\implies
x^2-8x+23<8\implies
x^2-8x+15<0\implies
xin(3,5)$
Combining all $$LARGE xin(3,5)-{pi,frac32pi}$$
$endgroup$
$|sin x|>0\implies xne npi$ where $ninmathbb{I}$
$log_2|sin x|ne0\ implies |sin x|ne1\implies xne (2n+1)large{fracpi2}$
where $ninmathbb{I}$
$x^2-8x+23>0\implies xinmathbb{R}$
$log_{|sin x|}(x^2-8x+23)-largefrac{3}{log_{2}|sin x|}>0 \implies
log_{|sin x|}(x^2-8x+23)-largelog_{|sin x|}8>0\implies
large{log_{|sin x|}(frac{x^2-8x+23}8)>0}\implies
frac{x^2-8x+23}8<1\implies
x^2-8x+23<8\implies
x^2-8x+15<0\implies
xin(3,5)$
Combining all $$LARGE xin(3,5)-{pi,frac32pi}$$
edited Dec 10 '18 at 18:31
Martin Sleziak
44.7k10119272
44.7k10119272
answered Jun 7 '14 at 15:00
RE60KRE60K
14k22155
14k22155
$begingroup$
sorry but need more help..
$endgroup$
– Swetank
Jun 7 '14 at 15:05
add a comment |
$begingroup$
sorry but need more help..
$endgroup$
– Swetank
Jun 7 '14 at 15:05
$begingroup$
sorry but need more help..
$endgroup$
– Swetank
Jun 7 '14 at 15:05
$begingroup$
sorry but need more help..
$endgroup$
– Swetank
Jun 7 '14 at 15:05
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f823933%2ffind-domain-fx-log-log-sin-xx2-8x23-large-frac3-log-2-sin%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
is the edit correct?
$endgroup$
– Vikram
Jun 7 '14 at 14:30
$begingroup$
@Vikram I am little poor with the MathJax format, so couldn't do much.
$endgroup$
– Swetank
Jun 7 '14 at 14:33
$begingroup$
I am asking if what I have done is correct according to your question?
$endgroup$
– Vikram
Jun 7 '14 at 14:35
$begingroup$
@Vikram no! let me post a pic of my question.
$endgroup$
– Swetank
Jun 7 '14 at 14:38
$begingroup$
@Vikram here is the snapshot of my question -goo.gl/UX9vwV
$endgroup$
– Swetank
Jun 7 '14 at 14:44