Find domain, $f(x) =log(log_{|sin x|}(x^2-8x+23)-largefrac{3}{log_{2}|sin x|})$












0












$begingroup$


So as the question says finding domain of-




$f(x) = log(log_{|sin x|}(x^2-8x+23)-largefrac{3}{log_{2}|sin x|})$




$large f(x)=log(log_{|sin x|}(x^2-8x+23)-largefrac{3}{log_{2}|sin x|})$



What I did-



$largeimplies log_{|sin x|} (x^2 - 8x + 23) - frac{3}{ (log_{2} |sin x|)} > 0$



$large implies log_{|sin x|} (x^2 - 8x + 23) - 3 log_{|sin x|} 2 > 0$



How to proceed further?










share|cite|improve this question











$endgroup$












  • $begingroup$
    is the edit correct?
    $endgroup$
    – Vikram
    Jun 7 '14 at 14:30










  • $begingroup$
    @Vikram I am little poor with the MathJax format, so couldn't do much.
    $endgroup$
    – Swetank
    Jun 7 '14 at 14:33










  • $begingroup$
    I am asking if what I have done is correct according to your question?
    $endgroup$
    – Vikram
    Jun 7 '14 at 14:35










  • $begingroup$
    @Vikram no! let me post a pic of my question.
    $endgroup$
    – Swetank
    Jun 7 '14 at 14:38










  • $begingroup$
    @Vikram here is the snapshot of my question -goo.gl/UX9vwV
    $endgroup$
    – Swetank
    Jun 7 '14 at 14:44
















0












$begingroup$


So as the question says finding domain of-




$f(x) = log(log_{|sin x|}(x^2-8x+23)-largefrac{3}{log_{2}|sin x|})$




$large f(x)=log(log_{|sin x|}(x^2-8x+23)-largefrac{3}{log_{2}|sin x|})$



What I did-



$largeimplies log_{|sin x|} (x^2 - 8x + 23) - frac{3}{ (log_{2} |sin x|)} > 0$



$large implies log_{|sin x|} (x^2 - 8x + 23) - 3 log_{|sin x|} 2 > 0$



How to proceed further?










share|cite|improve this question











$endgroup$












  • $begingroup$
    is the edit correct?
    $endgroup$
    – Vikram
    Jun 7 '14 at 14:30










  • $begingroup$
    @Vikram I am little poor with the MathJax format, so couldn't do much.
    $endgroup$
    – Swetank
    Jun 7 '14 at 14:33










  • $begingroup$
    I am asking if what I have done is correct according to your question?
    $endgroup$
    – Vikram
    Jun 7 '14 at 14:35










  • $begingroup$
    @Vikram no! let me post a pic of my question.
    $endgroup$
    – Swetank
    Jun 7 '14 at 14:38










  • $begingroup$
    @Vikram here is the snapshot of my question -goo.gl/UX9vwV
    $endgroup$
    – Swetank
    Jun 7 '14 at 14:44














0












0








0





$begingroup$


So as the question says finding domain of-




$f(x) = log(log_{|sin x|}(x^2-8x+23)-largefrac{3}{log_{2}|sin x|})$




$large f(x)=log(log_{|sin x|}(x^2-8x+23)-largefrac{3}{log_{2}|sin x|})$



What I did-



$largeimplies log_{|sin x|} (x^2 - 8x + 23) - frac{3}{ (log_{2} |sin x|)} > 0$



$large implies log_{|sin x|} (x^2 - 8x + 23) - 3 log_{|sin x|} 2 > 0$



How to proceed further?










share|cite|improve this question











$endgroup$




So as the question says finding domain of-




$f(x) = log(log_{|sin x|}(x^2-8x+23)-largefrac{3}{log_{2}|sin x|})$




$large f(x)=log(log_{|sin x|}(x^2-8x+23)-largefrac{3}{log_{2}|sin x|})$



What I did-



$largeimplies log_{|sin x|} (x^2 - 8x + 23) - frac{3}{ (log_{2} |sin x|)} > 0$



$large implies log_{|sin x|} (x^2 - 8x + 23) - 3 log_{|sin x|} 2 > 0$



How to proceed further?







functions






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jun 7 '14 at 14:59









RE60K

14k22155




14k22155










asked Jun 7 '14 at 14:15









SwetankSwetank

6510




6510












  • $begingroup$
    is the edit correct?
    $endgroup$
    – Vikram
    Jun 7 '14 at 14:30










  • $begingroup$
    @Vikram I am little poor with the MathJax format, so couldn't do much.
    $endgroup$
    – Swetank
    Jun 7 '14 at 14:33










  • $begingroup$
    I am asking if what I have done is correct according to your question?
    $endgroup$
    – Vikram
    Jun 7 '14 at 14:35










  • $begingroup$
    @Vikram no! let me post a pic of my question.
    $endgroup$
    – Swetank
    Jun 7 '14 at 14:38










  • $begingroup$
    @Vikram here is the snapshot of my question -goo.gl/UX9vwV
    $endgroup$
    – Swetank
    Jun 7 '14 at 14:44


















  • $begingroup$
    is the edit correct?
    $endgroup$
    – Vikram
    Jun 7 '14 at 14:30










  • $begingroup$
    @Vikram I am little poor with the MathJax format, so couldn't do much.
    $endgroup$
    – Swetank
    Jun 7 '14 at 14:33










  • $begingroup$
    I am asking if what I have done is correct according to your question?
    $endgroup$
    – Vikram
    Jun 7 '14 at 14:35










  • $begingroup$
    @Vikram no! let me post a pic of my question.
    $endgroup$
    – Swetank
    Jun 7 '14 at 14:38










  • $begingroup$
    @Vikram here is the snapshot of my question -goo.gl/UX9vwV
    $endgroup$
    – Swetank
    Jun 7 '14 at 14:44
















$begingroup$
is the edit correct?
$endgroup$
– Vikram
Jun 7 '14 at 14:30




$begingroup$
is the edit correct?
$endgroup$
– Vikram
Jun 7 '14 at 14:30












$begingroup$
@Vikram I am little poor with the MathJax format, so couldn't do much.
$endgroup$
– Swetank
Jun 7 '14 at 14:33




$begingroup$
@Vikram I am little poor with the MathJax format, so couldn't do much.
$endgroup$
– Swetank
Jun 7 '14 at 14:33












$begingroup$
I am asking if what I have done is correct according to your question?
$endgroup$
– Vikram
Jun 7 '14 at 14:35




$begingroup$
I am asking if what I have done is correct according to your question?
$endgroup$
– Vikram
Jun 7 '14 at 14:35












$begingroup$
@Vikram no! let me post a pic of my question.
$endgroup$
– Swetank
Jun 7 '14 at 14:38




$begingroup$
@Vikram no! let me post a pic of my question.
$endgroup$
– Swetank
Jun 7 '14 at 14:38












$begingroup$
@Vikram here is the snapshot of my question -goo.gl/UX9vwV
$endgroup$
– Swetank
Jun 7 '14 at 14:44




$begingroup$
@Vikram here is the snapshot of my question -goo.gl/UX9vwV
$endgroup$
– Swetank
Jun 7 '14 at 14:44










3 Answers
3






active

oldest

votes


















3












$begingroup$

To determine the domain of $log_a(b)$, you need to apply the constraints:
$$b > 0\a>0 land a neq 1$$.



So let's apply them to the bases first:
$$
left{begin{matrix}
|sin x| > 0\
|sin x| neq 1\
end{matrix}right. iff left{begin{matrix}
sin x neq 0\
sin x neq pm 1\
end{matrix}right. implies x neq kfrac{pi}{2}, k in mathbb{Z}$$



Passing to the arguments:
$$left{begin{matrix}
x^2 - 8x + 23 > 0\
|sin x| > 0
end{matrix}right. iff left{begin{matrix}
forall x in mathbb{R}\
x neq kpi, k in mathbb{Z}
end{matrix}right. implies x neq kpi, k in mathbb{Z}$$
This is clearly a subset of the previous solution, so until now we have
$$x neq kfrac{pi}{2}, k in mathbb{Z} tag{1}$$



It remains to apply the constraint to the first $ln$:
$$log_{|sin x|} (x^2 - 8x + 23) - frac{3}{log_{2} |sin x|} > 0\
frac{ln(x^2-8 x+23)-3ln2}{ln|sin x|}>0$$



Since $ln|sin x|$ is always negative (except when $|sin x| = 1$, which we already excluded before) we can write:
$$ln(x^2-8 x+23)-3ln2<0\
ln(x^2-8 x+23)<ln8\
x^2-8 x+15<0\
3 < x < 5$$
Putting this last result together with $(1)$ we get:
$$3 < x < 5 land x notin left{pi, frac{3pi}{2}right}$$



I plotted it with Desmos and got this:
https://www.desmos.com/calculator/ld5vmseh9y






share|cite|improve this answer











$endgroup$













  • $begingroup$
    @Swetank: Did you understand all the details? Is it enough to accept the answer?
    $endgroup$
    – rubik
    Jun 8 '14 at 7:31



















1












$begingroup$

$$
begin{align}
log{log_{|sin x|}(x^2−8x+23)−frac{3}{log_2|sin x|}} &=
log{log_{|sin x|}(x^2−8x+23)+log_{|sin x|}frac{1}{8}} \
&= log{log_{|sin x|}frac{(x^2−8x+23)}{8}} \
&=log{frac{logfrac{(x^2−8x+23)}{8}}{log|sin x|}}
end{align}
$$

$$
=>frac{logfrac{(x^2−8x+23)}{8}}{log|sin x|} > 0\
text{In the above equation the denominator, } log{|sin x|} text{, is always negative.}\ text{ So the numerator must also be negative, }
logfrac{(x^2−8x+23)}{8} < 0 \
begin{align}
&=> frac{x^2−8x+23}{8} < 1 \
&=> {x^2−8x+23} < 8 \
&=> {x^2−8x+15} < 0 \
&=> (x-3)(x-5)<0 \
end{align} \
x in(3,5) \
text{Also we have a constraint on x from the initial equation : } |sin x|>0,ne 1
\ => x in (0,2pi) - {frac{pi}{2},pi,frac{3pi}{2}}
\ x in(3,5) - {pi,frac{3pi}{2}}
$$






share|cite|improve this answer











$endgroup$





















    0












    $begingroup$


    $|sin x|>0\implies xne npi$ where $ninmathbb{I}$





    $log_2|sin x|ne0\ implies |sin x|ne1\implies xne (2n+1)large{fracpi2}$
    where $ninmathbb{I}$





    $x^2-8x+23>0\implies xinmathbb{R}$





    $log_{|sin x|}(x^2-8x+23)-largefrac{3}{log_{2}|sin x|}>0 \implies
    log_{|sin x|}(x^2-8x+23)-largelog_{|sin x|}8>0\implies
    large{log_{|sin x|}(frac{x^2-8x+23}8)>0}\implies
    frac{x^2-8x+23}8<1\implies
    x^2-8x+23<8\implies
    x^2-8x+15<0\implies
    xin(3,5)$







    Combining all $$LARGE xin(3,5)-{pi,frac32pi}$$






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      sorry but need more help..
      $endgroup$
      – Swetank
      Jun 7 '14 at 15:05











    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f823933%2ffind-domain-fx-log-log-sin-xx2-8x23-large-frac3-log-2-sin%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    To determine the domain of $log_a(b)$, you need to apply the constraints:
    $$b > 0\a>0 land a neq 1$$.



    So let's apply them to the bases first:
    $$
    left{begin{matrix}
    |sin x| > 0\
    |sin x| neq 1\
    end{matrix}right. iff left{begin{matrix}
    sin x neq 0\
    sin x neq pm 1\
    end{matrix}right. implies x neq kfrac{pi}{2}, k in mathbb{Z}$$



    Passing to the arguments:
    $$left{begin{matrix}
    x^2 - 8x + 23 > 0\
    |sin x| > 0
    end{matrix}right. iff left{begin{matrix}
    forall x in mathbb{R}\
    x neq kpi, k in mathbb{Z}
    end{matrix}right. implies x neq kpi, k in mathbb{Z}$$
    This is clearly a subset of the previous solution, so until now we have
    $$x neq kfrac{pi}{2}, k in mathbb{Z} tag{1}$$



    It remains to apply the constraint to the first $ln$:
    $$log_{|sin x|} (x^2 - 8x + 23) - frac{3}{log_{2} |sin x|} > 0\
    frac{ln(x^2-8 x+23)-3ln2}{ln|sin x|}>0$$



    Since $ln|sin x|$ is always negative (except when $|sin x| = 1$, which we already excluded before) we can write:
    $$ln(x^2-8 x+23)-3ln2<0\
    ln(x^2-8 x+23)<ln8\
    x^2-8 x+15<0\
    3 < x < 5$$
    Putting this last result together with $(1)$ we get:
    $$3 < x < 5 land x notin left{pi, frac{3pi}{2}right}$$



    I plotted it with Desmos and got this:
    https://www.desmos.com/calculator/ld5vmseh9y






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      @Swetank: Did you understand all the details? Is it enough to accept the answer?
      $endgroup$
      – rubik
      Jun 8 '14 at 7:31
















    3












    $begingroup$

    To determine the domain of $log_a(b)$, you need to apply the constraints:
    $$b > 0\a>0 land a neq 1$$.



    So let's apply them to the bases first:
    $$
    left{begin{matrix}
    |sin x| > 0\
    |sin x| neq 1\
    end{matrix}right. iff left{begin{matrix}
    sin x neq 0\
    sin x neq pm 1\
    end{matrix}right. implies x neq kfrac{pi}{2}, k in mathbb{Z}$$



    Passing to the arguments:
    $$left{begin{matrix}
    x^2 - 8x + 23 > 0\
    |sin x| > 0
    end{matrix}right. iff left{begin{matrix}
    forall x in mathbb{R}\
    x neq kpi, k in mathbb{Z}
    end{matrix}right. implies x neq kpi, k in mathbb{Z}$$
    This is clearly a subset of the previous solution, so until now we have
    $$x neq kfrac{pi}{2}, k in mathbb{Z} tag{1}$$



    It remains to apply the constraint to the first $ln$:
    $$log_{|sin x|} (x^2 - 8x + 23) - frac{3}{log_{2} |sin x|} > 0\
    frac{ln(x^2-8 x+23)-3ln2}{ln|sin x|}>0$$



    Since $ln|sin x|$ is always negative (except when $|sin x| = 1$, which we already excluded before) we can write:
    $$ln(x^2-8 x+23)-3ln2<0\
    ln(x^2-8 x+23)<ln8\
    x^2-8 x+15<0\
    3 < x < 5$$
    Putting this last result together with $(1)$ we get:
    $$3 < x < 5 land x notin left{pi, frac{3pi}{2}right}$$



    I plotted it with Desmos and got this:
    https://www.desmos.com/calculator/ld5vmseh9y






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      @Swetank: Did you understand all the details? Is it enough to accept the answer?
      $endgroup$
      – rubik
      Jun 8 '14 at 7:31














    3












    3








    3





    $begingroup$

    To determine the domain of $log_a(b)$, you need to apply the constraints:
    $$b > 0\a>0 land a neq 1$$.



    So let's apply them to the bases first:
    $$
    left{begin{matrix}
    |sin x| > 0\
    |sin x| neq 1\
    end{matrix}right. iff left{begin{matrix}
    sin x neq 0\
    sin x neq pm 1\
    end{matrix}right. implies x neq kfrac{pi}{2}, k in mathbb{Z}$$



    Passing to the arguments:
    $$left{begin{matrix}
    x^2 - 8x + 23 > 0\
    |sin x| > 0
    end{matrix}right. iff left{begin{matrix}
    forall x in mathbb{R}\
    x neq kpi, k in mathbb{Z}
    end{matrix}right. implies x neq kpi, k in mathbb{Z}$$
    This is clearly a subset of the previous solution, so until now we have
    $$x neq kfrac{pi}{2}, k in mathbb{Z} tag{1}$$



    It remains to apply the constraint to the first $ln$:
    $$log_{|sin x|} (x^2 - 8x + 23) - frac{3}{log_{2} |sin x|} > 0\
    frac{ln(x^2-8 x+23)-3ln2}{ln|sin x|}>0$$



    Since $ln|sin x|$ is always negative (except when $|sin x| = 1$, which we already excluded before) we can write:
    $$ln(x^2-8 x+23)-3ln2<0\
    ln(x^2-8 x+23)<ln8\
    x^2-8 x+15<0\
    3 < x < 5$$
    Putting this last result together with $(1)$ we get:
    $$3 < x < 5 land x notin left{pi, frac{3pi}{2}right}$$



    I plotted it with Desmos and got this:
    https://www.desmos.com/calculator/ld5vmseh9y






    share|cite|improve this answer











    $endgroup$



    To determine the domain of $log_a(b)$, you need to apply the constraints:
    $$b > 0\a>0 land a neq 1$$.



    So let's apply them to the bases first:
    $$
    left{begin{matrix}
    |sin x| > 0\
    |sin x| neq 1\
    end{matrix}right. iff left{begin{matrix}
    sin x neq 0\
    sin x neq pm 1\
    end{matrix}right. implies x neq kfrac{pi}{2}, k in mathbb{Z}$$



    Passing to the arguments:
    $$left{begin{matrix}
    x^2 - 8x + 23 > 0\
    |sin x| > 0
    end{matrix}right. iff left{begin{matrix}
    forall x in mathbb{R}\
    x neq kpi, k in mathbb{Z}
    end{matrix}right. implies x neq kpi, k in mathbb{Z}$$
    This is clearly a subset of the previous solution, so until now we have
    $$x neq kfrac{pi}{2}, k in mathbb{Z} tag{1}$$



    It remains to apply the constraint to the first $ln$:
    $$log_{|sin x|} (x^2 - 8x + 23) - frac{3}{log_{2} |sin x|} > 0\
    frac{ln(x^2-8 x+23)-3ln2}{ln|sin x|}>0$$



    Since $ln|sin x|$ is always negative (except when $|sin x| = 1$, which we already excluded before) we can write:
    $$ln(x^2-8 x+23)-3ln2<0\
    ln(x^2-8 x+23)<ln8\
    x^2-8 x+15<0\
    3 < x < 5$$
    Putting this last result together with $(1)$ we get:
    $$3 < x < 5 land x notin left{pi, frac{3pi}{2}right}$$



    I plotted it with Desmos and got this:
    https://www.desmos.com/calculator/ld5vmseh9y







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Jun 7 '14 at 17:59

























    answered Jun 7 '14 at 15:57









    rubikrubik

    6,76132661




    6,76132661












    • $begingroup$
      @Swetank: Did you understand all the details? Is it enough to accept the answer?
      $endgroup$
      – rubik
      Jun 8 '14 at 7:31


















    • $begingroup$
      @Swetank: Did you understand all the details? Is it enough to accept the answer?
      $endgroup$
      – rubik
      Jun 8 '14 at 7:31
















    $begingroup$
    @Swetank: Did you understand all the details? Is it enough to accept the answer?
    $endgroup$
    – rubik
    Jun 8 '14 at 7:31




    $begingroup$
    @Swetank: Did you understand all the details? Is it enough to accept the answer?
    $endgroup$
    – rubik
    Jun 8 '14 at 7:31











    1












    $begingroup$

    $$
    begin{align}
    log{log_{|sin x|}(x^2−8x+23)−frac{3}{log_2|sin x|}} &=
    log{log_{|sin x|}(x^2−8x+23)+log_{|sin x|}frac{1}{8}} \
    &= log{log_{|sin x|}frac{(x^2−8x+23)}{8}} \
    &=log{frac{logfrac{(x^2−8x+23)}{8}}{log|sin x|}}
    end{align}
    $$

    $$
    =>frac{logfrac{(x^2−8x+23)}{8}}{log|sin x|} > 0\
    text{In the above equation the denominator, } log{|sin x|} text{, is always negative.}\ text{ So the numerator must also be negative, }
    logfrac{(x^2−8x+23)}{8} < 0 \
    begin{align}
    &=> frac{x^2−8x+23}{8} < 1 \
    &=> {x^2−8x+23} < 8 \
    &=> {x^2−8x+15} < 0 \
    &=> (x-3)(x-5)<0 \
    end{align} \
    x in(3,5) \
    text{Also we have a constraint on x from the initial equation : } |sin x|>0,ne 1
    \ => x in (0,2pi) - {frac{pi}{2},pi,frac{3pi}{2}}
    \ x in(3,5) - {pi,frac{3pi}{2}}
    $$






    share|cite|improve this answer











    $endgroup$


















      1












      $begingroup$

      $$
      begin{align}
      log{log_{|sin x|}(x^2−8x+23)−frac{3}{log_2|sin x|}} &=
      log{log_{|sin x|}(x^2−8x+23)+log_{|sin x|}frac{1}{8}} \
      &= log{log_{|sin x|}frac{(x^2−8x+23)}{8}} \
      &=log{frac{logfrac{(x^2−8x+23)}{8}}{log|sin x|}}
      end{align}
      $$

      $$
      =>frac{logfrac{(x^2−8x+23)}{8}}{log|sin x|} > 0\
      text{In the above equation the denominator, } log{|sin x|} text{, is always negative.}\ text{ So the numerator must also be negative, }
      logfrac{(x^2−8x+23)}{8} < 0 \
      begin{align}
      &=> frac{x^2−8x+23}{8} < 1 \
      &=> {x^2−8x+23} < 8 \
      &=> {x^2−8x+15} < 0 \
      &=> (x-3)(x-5)<0 \
      end{align} \
      x in(3,5) \
      text{Also we have a constraint on x from the initial equation : } |sin x|>0,ne 1
      \ => x in (0,2pi) - {frac{pi}{2},pi,frac{3pi}{2}}
      \ x in(3,5) - {pi,frac{3pi}{2}}
      $$






      share|cite|improve this answer











      $endgroup$
















        1












        1








        1





        $begingroup$

        $$
        begin{align}
        log{log_{|sin x|}(x^2−8x+23)−frac{3}{log_2|sin x|}} &=
        log{log_{|sin x|}(x^2−8x+23)+log_{|sin x|}frac{1}{8}} \
        &= log{log_{|sin x|}frac{(x^2−8x+23)}{8}} \
        &=log{frac{logfrac{(x^2−8x+23)}{8}}{log|sin x|}}
        end{align}
        $$

        $$
        =>frac{logfrac{(x^2−8x+23)}{8}}{log|sin x|} > 0\
        text{In the above equation the denominator, } log{|sin x|} text{, is always negative.}\ text{ So the numerator must also be negative, }
        logfrac{(x^2−8x+23)}{8} < 0 \
        begin{align}
        &=> frac{x^2−8x+23}{8} < 1 \
        &=> {x^2−8x+23} < 8 \
        &=> {x^2−8x+15} < 0 \
        &=> (x-3)(x-5)<0 \
        end{align} \
        x in(3,5) \
        text{Also we have a constraint on x from the initial equation : } |sin x|>0,ne 1
        \ => x in (0,2pi) - {frac{pi}{2},pi,frac{3pi}{2}}
        \ x in(3,5) - {pi,frac{3pi}{2}}
        $$






        share|cite|improve this answer











        $endgroup$



        $$
        begin{align}
        log{log_{|sin x|}(x^2−8x+23)−frac{3}{log_2|sin x|}} &=
        log{log_{|sin x|}(x^2−8x+23)+log_{|sin x|}frac{1}{8}} \
        &= log{log_{|sin x|}frac{(x^2−8x+23)}{8}} \
        &=log{frac{logfrac{(x^2−8x+23)}{8}}{log|sin x|}}
        end{align}
        $$

        $$
        =>frac{logfrac{(x^2−8x+23)}{8}}{log|sin x|} > 0\
        text{In the above equation the denominator, } log{|sin x|} text{, is always negative.}\ text{ So the numerator must also be negative, }
        logfrac{(x^2−8x+23)}{8} < 0 \
        begin{align}
        &=> frac{x^2−8x+23}{8} < 1 \
        &=> {x^2−8x+23} < 8 \
        &=> {x^2−8x+15} < 0 \
        &=> (x-3)(x-5)<0 \
        end{align} \
        x in(3,5) \
        text{Also we have a constraint on x from the initial equation : } |sin x|>0,ne 1
        \ => x in (0,2pi) - {frac{pi}{2},pi,frac{3pi}{2}}
        \ x in(3,5) - {pi,frac{3pi}{2}}
        $$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Dec 10 '18 at 18:30









        Martin Sleziak

        44.7k10119272




        44.7k10119272










        answered Aug 17 '18 at 10:10









        Ajay ChoudharyAjay Choudhary

        888




        888























            0












            $begingroup$


            $|sin x|>0\implies xne npi$ where $ninmathbb{I}$





            $log_2|sin x|ne0\ implies |sin x|ne1\implies xne (2n+1)large{fracpi2}$
            where $ninmathbb{I}$





            $x^2-8x+23>0\implies xinmathbb{R}$





            $log_{|sin x|}(x^2-8x+23)-largefrac{3}{log_{2}|sin x|}>0 \implies
            log_{|sin x|}(x^2-8x+23)-largelog_{|sin x|}8>0\implies
            large{log_{|sin x|}(frac{x^2-8x+23}8)>0}\implies
            frac{x^2-8x+23}8<1\implies
            x^2-8x+23<8\implies
            x^2-8x+15<0\implies
            xin(3,5)$







            Combining all $$LARGE xin(3,5)-{pi,frac32pi}$$






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              sorry but need more help..
              $endgroup$
              – Swetank
              Jun 7 '14 at 15:05
















            0












            $begingroup$


            $|sin x|>0\implies xne npi$ where $ninmathbb{I}$





            $log_2|sin x|ne0\ implies |sin x|ne1\implies xne (2n+1)large{fracpi2}$
            where $ninmathbb{I}$





            $x^2-8x+23>0\implies xinmathbb{R}$





            $log_{|sin x|}(x^2-8x+23)-largefrac{3}{log_{2}|sin x|}>0 \implies
            log_{|sin x|}(x^2-8x+23)-largelog_{|sin x|}8>0\implies
            large{log_{|sin x|}(frac{x^2-8x+23}8)>0}\implies
            frac{x^2-8x+23}8<1\implies
            x^2-8x+23<8\implies
            x^2-8x+15<0\implies
            xin(3,5)$







            Combining all $$LARGE xin(3,5)-{pi,frac32pi}$$






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              sorry but need more help..
              $endgroup$
              – Swetank
              Jun 7 '14 at 15:05














            0












            0








            0





            $begingroup$


            $|sin x|>0\implies xne npi$ where $ninmathbb{I}$





            $log_2|sin x|ne0\ implies |sin x|ne1\implies xne (2n+1)large{fracpi2}$
            where $ninmathbb{I}$





            $x^2-8x+23>0\implies xinmathbb{R}$





            $log_{|sin x|}(x^2-8x+23)-largefrac{3}{log_{2}|sin x|}>0 \implies
            log_{|sin x|}(x^2-8x+23)-largelog_{|sin x|}8>0\implies
            large{log_{|sin x|}(frac{x^2-8x+23}8)>0}\implies
            frac{x^2-8x+23}8<1\implies
            x^2-8x+23<8\implies
            x^2-8x+15<0\implies
            xin(3,5)$







            Combining all $$LARGE xin(3,5)-{pi,frac32pi}$$






            share|cite|improve this answer











            $endgroup$




            $|sin x|>0\implies xne npi$ where $ninmathbb{I}$





            $log_2|sin x|ne0\ implies |sin x|ne1\implies xne (2n+1)large{fracpi2}$
            where $ninmathbb{I}$





            $x^2-8x+23>0\implies xinmathbb{R}$





            $log_{|sin x|}(x^2-8x+23)-largefrac{3}{log_{2}|sin x|}>0 \implies
            log_{|sin x|}(x^2-8x+23)-largelog_{|sin x|}8>0\implies
            large{log_{|sin x|}(frac{x^2-8x+23}8)>0}\implies
            frac{x^2-8x+23}8<1\implies
            x^2-8x+23<8\implies
            x^2-8x+15<0\implies
            xin(3,5)$







            Combining all $$LARGE xin(3,5)-{pi,frac32pi}$$







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Dec 10 '18 at 18:31









            Martin Sleziak

            44.7k10119272




            44.7k10119272










            answered Jun 7 '14 at 15:00









            RE60KRE60K

            14k22155




            14k22155












            • $begingroup$
              sorry but need more help..
              $endgroup$
              – Swetank
              Jun 7 '14 at 15:05


















            • $begingroup$
              sorry but need more help..
              $endgroup$
              – Swetank
              Jun 7 '14 at 15:05
















            $begingroup$
            sorry but need more help..
            $endgroup$
            – Swetank
            Jun 7 '14 at 15:05




            $begingroup$
            sorry but need more help..
            $endgroup$
            – Swetank
            Jun 7 '14 at 15:05


















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f823933%2ffind-domain-fx-log-log-sin-xx2-8x23-large-frac3-log-2-sin%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Plaza Victoria

            Puebla de Zaragoza

            Change location of user folders through cmd or PowerShell?