Solutions to $a, b, c, frac{a}{b}+frac{b}{c}+frac{c}{a}, frac{b}{a} + frac{c}{b} + frac{a}{c} in mathbb{Z}$
$begingroup$
I came across a puzzle in a Maths Calendar I own. Most of them I can do fairly easily, but this one has me stumped, and I was hoping for a hint or solution. The question is:
What are the solutions to
$$left { a, b, c, dfrac{a}{b}+dfrac{b}{c}+dfrac{c}{a}, dfrac{b}{a} + dfrac{c}{b} + dfrac{a}{c} right } subset mathbb{Z}$$
I've tried a few things, but don't think I've made any meaningful progress, besides determining that $a = pm b = pm c $ are the only obvious possible solutions. My hope is to prove that no other solution can exist.
I don't know if it helps, but I also did a brute force search for coprime numbers $a,b,c$ for which $dfrac{a}{b}+dfrac{b}{c}+dfrac{c}{a} in mathbb{Z}$, with $1 leq a leq b leq c$, and $a leq 100, b leq 1000, c leq 10000$.
The reason for coprimality is that if a solution has a common factor, we can divide through by the common factor and have another solution that satisfies the conditions.
The triplets I found which satisfy this are:
$(a, b, c) = (1, 1, 1), (1,2,4), (2, 36, 81), (3, 126, 196), (4, 9, 162), (9, 14, 588), (12, 63, 98), (18, 28, 147), (98, 108, 5103)$
None of these except the first satisfy $dfrac{b}{a} + dfrac{c}{b} + dfrac{a}{c} in mathbb{Z}$.
elementary-number-theory divisibility diophantine-equations recreational-mathematics problem-solving
$endgroup$
|
show 3 more comments
$begingroup$
I came across a puzzle in a Maths Calendar I own. Most of them I can do fairly easily, but this one has me stumped, and I was hoping for a hint or solution. The question is:
What are the solutions to
$$left { a, b, c, dfrac{a}{b}+dfrac{b}{c}+dfrac{c}{a}, dfrac{b}{a} + dfrac{c}{b} + dfrac{a}{c} right } subset mathbb{Z}$$
I've tried a few things, but don't think I've made any meaningful progress, besides determining that $a = pm b = pm c $ are the only obvious possible solutions. My hope is to prove that no other solution can exist.
I don't know if it helps, but I also did a brute force search for coprime numbers $a,b,c$ for which $dfrac{a}{b}+dfrac{b}{c}+dfrac{c}{a} in mathbb{Z}$, with $1 leq a leq b leq c$, and $a leq 100, b leq 1000, c leq 10000$.
The reason for coprimality is that if a solution has a common factor, we can divide through by the common factor and have another solution that satisfies the conditions.
The triplets I found which satisfy this are:
$(a, b, c) = (1, 1, 1), (1,2,4), (2, 36, 81), (3, 126, 196), (4, 9, 162), (9, 14, 588), (12, 63, 98), (18, 28, 147), (98, 108, 5103)$
None of these except the first satisfy $dfrac{b}{a} + dfrac{c}{b} + dfrac{a}{c} in mathbb{Z}$.
elementary-number-theory divisibility diophantine-equations recreational-mathematics problem-solving
$endgroup$
3
$begingroup$
Surely, one solution is obvious.
$endgroup$
– Zachary Selk
Dec 10 '18 at 13:10
$begingroup$
How is $ (a,b,c)=(1,2,4) $ a solution? $ frac{b}{a} + frac{c}{b} + frac{a}{c} = frac{2}{1} + frac{4}{2} + frac{1}{4} = 4 + 1/4 $, not an integer.
$endgroup$
– hellHound
Dec 10 '18 at 13:22
$begingroup$
@hellhound it does not satisfy $b/a + c/b + a/c in mathbb{Z}$, only $a/b+b/c+c/a in mathbb{Z}$
$endgroup$
– Shakespeare
Dec 10 '18 at 13:25
$begingroup$
Oh, I noticed the line about your search now, my bad. Although, if I had to guess, none of the triples from your search except $ (1,1,1) $ would satisfy the problem's requirement.
$endgroup$
– hellHound
Dec 10 '18 at 13:27
1
$begingroup$
@hellhound correct, none of them do :)
$endgroup$
– Shakespeare
Dec 10 '18 at 13:28
|
show 3 more comments
$begingroup$
I came across a puzzle in a Maths Calendar I own. Most of them I can do fairly easily, but this one has me stumped, and I was hoping for a hint or solution. The question is:
What are the solutions to
$$left { a, b, c, dfrac{a}{b}+dfrac{b}{c}+dfrac{c}{a}, dfrac{b}{a} + dfrac{c}{b} + dfrac{a}{c} right } subset mathbb{Z}$$
I've tried a few things, but don't think I've made any meaningful progress, besides determining that $a = pm b = pm c $ are the only obvious possible solutions. My hope is to prove that no other solution can exist.
I don't know if it helps, but I also did a brute force search for coprime numbers $a,b,c$ for which $dfrac{a}{b}+dfrac{b}{c}+dfrac{c}{a} in mathbb{Z}$, with $1 leq a leq b leq c$, and $a leq 100, b leq 1000, c leq 10000$.
The reason for coprimality is that if a solution has a common factor, we can divide through by the common factor and have another solution that satisfies the conditions.
The triplets I found which satisfy this are:
$(a, b, c) = (1, 1, 1), (1,2,4), (2, 36, 81), (3, 126, 196), (4, 9, 162), (9, 14, 588), (12, 63, 98), (18, 28, 147), (98, 108, 5103)$
None of these except the first satisfy $dfrac{b}{a} + dfrac{c}{b} + dfrac{a}{c} in mathbb{Z}$.
elementary-number-theory divisibility diophantine-equations recreational-mathematics problem-solving
$endgroup$
I came across a puzzle in a Maths Calendar I own. Most of them I can do fairly easily, but this one has me stumped, and I was hoping for a hint or solution. The question is:
What are the solutions to
$$left { a, b, c, dfrac{a}{b}+dfrac{b}{c}+dfrac{c}{a}, dfrac{b}{a} + dfrac{c}{b} + dfrac{a}{c} right } subset mathbb{Z}$$
I've tried a few things, but don't think I've made any meaningful progress, besides determining that $a = pm b = pm c $ are the only obvious possible solutions. My hope is to prove that no other solution can exist.
I don't know if it helps, but I also did a brute force search for coprime numbers $a,b,c$ for which $dfrac{a}{b}+dfrac{b}{c}+dfrac{c}{a} in mathbb{Z}$, with $1 leq a leq b leq c$, and $a leq 100, b leq 1000, c leq 10000$.
The reason for coprimality is that if a solution has a common factor, we can divide through by the common factor and have another solution that satisfies the conditions.
The triplets I found which satisfy this are:
$(a, b, c) = (1, 1, 1), (1,2,4), (2, 36, 81), (3, 126, 196), (4, 9, 162), (9, 14, 588), (12, 63, 98), (18, 28, 147), (98, 108, 5103)$
None of these except the first satisfy $dfrac{b}{a} + dfrac{c}{b} + dfrac{a}{c} in mathbb{Z}$.
elementary-number-theory divisibility diophantine-equations recreational-mathematics problem-solving
elementary-number-theory divisibility diophantine-equations recreational-mathematics problem-solving
edited Dec 11 '18 at 12:44
Batominovski
33.1k33293
33.1k33293
asked Dec 10 '18 at 13:08
ShakespeareShakespeare
2,504923
2,504923
3
$begingroup$
Surely, one solution is obvious.
$endgroup$
– Zachary Selk
Dec 10 '18 at 13:10
$begingroup$
How is $ (a,b,c)=(1,2,4) $ a solution? $ frac{b}{a} + frac{c}{b} + frac{a}{c} = frac{2}{1} + frac{4}{2} + frac{1}{4} = 4 + 1/4 $, not an integer.
$endgroup$
– hellHound
Dec 10 '18 at 13:22
$begingroup$
@hellhound it does not satisfy $b/a + c/b + a/c in mathbb{Z}$, only $a/b+b/c+c/a in mathbb{Z}$
$endgroup$
– Shakespeare
Dec 10 '18 at 13:25
$begingroup$
Oh, I noticed the line about your search now, my bad. Although, if I had to guess, none of the triples from your search except $ (1,1,1) $ would satisfy the problem's requirement.
$endgroup$
– hellHound
Dec 10 '18 at 13:27
1
$begingroup$
@hellhound correct, none of them do :)
$endgroup$
– Shakespeare
Dec 10 '18 at 13:28
|
show 3 more comments
3
$begingroup$
Surely, one solution is obvious.
$endgroup$
– Zachary Selk
Dec 10 '18 at 13:10
$begingroup$
How is $ (a,b,c)=(1,2,4) $ a solution? $ frac{b}{a} + frac{c}{b} + frac{a}{c} = frac{2}{1} + frac{4}{2} + frac{1}{4} = 4 + 1/4 $, not an integer.
$endgroup$
– hellHound
Dec 10 '18 at 13:22
$begingroup$
@hellhound it does not satisfy $b/a + c/b + a/c in mathbb{Z}$, only $a/b+b/c+c/a in mathbb{Z}$
$endgroup$
– Shakespeare
Dec 10 '18 at 13:25
$begingroup$
Oh, I noticed the line about your search now, my bad. Although, if I had to guess, none of the triples from your search except $ (1,1,1) $ would satisfy the problem's requirement.
$endgroup$
– hellHound
Dec 10 '18 at 13:27
1
$begingroup$
@hellhound correct, none of them do :)
$endgroup$
– Shakespeare
Dec 10 '18 at 13:28
3
3
$begingroup$
Surely, one solution is obvious.
$endgroup$
– Zachary Selk
Dec 10 '18 at 13:10
$begingroup$
Surely, one solution is obvious.
$endgroup$
– Zachary Selk
Dec 10 '18 at 13:10
$begingroup$
How is $ (a,b,c)=(1,2,4) $ a solution? $ frac{b}{a} + frac{c}{b} + frac{a}{c} = frac{2}{1} + frac{4}{2} + frac{1}{4} = 4 + 1/4 $, not an integer.
$endgroup$
– hellHound
Dec 10 '18 at 13:22
$begingroup$
How is $ (a,b,c)=(1,2,4) $ a solution? $ frac{b}{a} + frac{c}{b} + frac{a}{c} = frac{2}{1} + frac{4}{2} + frac{1}{4} = 4 + 1/4 $, not an integer.
$endgroup$
– hellHound
Dec 10 '18 at 13:22
$begingroup$
@hellhound it does not satisfy $b/a + c/b + a/c in mathbb{Z}$, only $a/b+b/c+c/a in mathbb{Z}$
$endgroup$
– Shakespeare
Dec 10 '18 at 13:25
$begingroup$
@hellhound it does not satisfy $b/a + c/b + a/c in mathbb{Z}$, only $a/b+b/c+c/a in mathbb{Z}$
$endgroup$
– Shakespeare
Dec 10 '18 at 13:25
$begingroup$
Oh, I noticed the line about your search now, my bad. Although, if I had to guess, none of the triples from your search except $ (1,1,1) $ would satisfy the problem's requirement.
$endgroup$
– hellHound
Dec 10 '18 at 13:27
$begingroup$
Oh, I noticed the line about your search now, my bad. Although, if I had to guess, none of the triples from your search except $ (1,1,1) $ would satisfy the problem's requirement.
$endgroup$
– hellHound
Dec 10 '18 at 13:27
1
1
$begingroup$
@hellhound correct, none of them do :)
$endgroup$
– Shakespeare
Dec 10 '18 at 13:28
$begingroup$
@hellhound correct, none of them do :)
$endgroup$
– Shakespeare
Dec 10 '18 at 13:28
|
show 3 more comments
2 Answers
2
active
oldest
votes
$begingroup$
Suppose that $displaystyle a,b,c,frac{a}{b}+frac{b}{c}+frac{c}{a},frac{a}{c}+frac{b}{a}+frac{c}{b} in mathbb Z$.
Consider polynomial
$$P(x)=left(x-frac{a}{b}right)left(x-frac{b}{c}right)left(x-frac{c}{a}right) = x^3-left(frac{a}{b}+frac{b}{c}+frac{c}{a}right)x^2+left(frac{a}{c}+frac{b}{a}+frac{c}{b}right)x-1.$$
Its coefficients are integers. Since the leading coefficient is $1$, all rational roots of $P$ are integers. Since the constant term is $-1$, it follows that all integer roots of $P$ are $1$ or $-1$ (they must divide the constant term). Since $dfrac ab, dfrac bc, dfrac ca$ are rational roots of $P$, it follows that $dfrac ab, dfrac bc, dfrac ca in {-1,1}$.
$endgroup$
$begingroup$
Beautiful! I don't think I ever would have thought of this.
$endgroup$
– Shakespeare
Dec 10 '18 at 15:27
$begingroup$
@Shakespeare See also this prior symmetric variant.
$endgroup$
– Bill Dubuque
Dec 10 '18 at 22:21
add a comment |
$begingroup$
Let $(a,b,c)$ satisfy the requirements. Let $(a,b,c)$ are coprime. Then
$abc$ divides both
$a^2c + b^2a + c^2b$ and $a^2b+b^2c+c^2a$.
Let $p$ be a prime factor of $a$.
Let $d$ be the largest number such that $p^d$ divides $a$.
Then $p$ divides $b^2c$ and $c^2b$. Assume $p$ divides $b$ (and does not divide $c$).
Since $p^{d+1}$ divides $a^2$, $ab$, and $abc$, where the latter divides $a^2c + b^2a + c^2b$, it follows $p^{d+1}$ divides $b$.
This in turn implies that $p^{d+1}$ divides $a^2b+b^2c+c^2a$.
Now, $p$ does not divide $c$ by assumption of coprimality, hence $p^{d+1}$ divides $a$, a contradiction to the maximality of $d$.
Hence, none of $a,b,c$ has a prime factor. So all these numbers are equal $pm1$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033895%2fsolutions-to-a-b-c-fracab-fracbc-fracca-fracba-f%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Suppose that $displaystyle a,b,c,frac{a}{b}+frac{b}{c}+frac{c}{a},frac{a}{c}+frac{b}{a}+frac{c}{b} in mathbb Z$.
Consider polynomial
$$P(x)=left(x-frac{a}{b}right)left(x-frac{b}{c}right)left(x-frac{c}{a}right) = x^3-left(frac{a}{b}+frac{b}{c}+frac{c}{a}right)x^2+left(frac{a}{c}+frac{b}{a}+frac{c}{b}right)x-1.$$
Its coefficients are integers. Since the leading coefficient is $1$, all rational roots of $P$ are integers. Since the constant term is $-1$, it follows that all integer roots of $P$ are $1$ or $-1$ (they must divide the constant term). Since $dfrac ab, dfrac bc, dfrac ca$ are rational roots of $P$, it follows that $dfrac ab, dfrac bc, dfrac ca in {-1,1}$.
$endgroup$
$begingroup$
Beautiful! I don't think I ever would have thought of this.
$endgroup$
– Shakespeare
Dec 10 '18 at 15:27
$begingroup$
@Shakespeare See also this prior symmetric variant.
$endgroup$
– Bill Dubuque
Dec 10 '18 at 22:21
add a comment |
$begingroup$
Suppose that $displaystyle a,b,c,frac{a}{b}+frac{b}{c}+frac{c}{a},frac{a}{c}+frac{b}{a}+frac{c}{b} in mathbb Z$.
Consider polynomial
$$P(x)=left(x-frac{a}{b}right)left(x-frac{b}{c}right)left(x-frac{c}{a}right) = x^3-left(frac{a}{b}+frac{b}{c}+frac{c}{a}right)x^2+left(frac{a}{c}+frac{b}{a}+frac{c}{b}right)x-1.$$
Its coefficients are integers. Since the leading coefficient is $1$, all rational roots of $P$ are integers. Since the constant term is $-1$, it follows that all integer roots of $P$ are $1$ or $-1$ (they must divide the constant term). Since $dfrac ab, dfrac bc, dfrac ca$ are rational roots of $P$, it follows that $dfrac ab, dfrac bc, dfrac ca in {-1,1}$.
$endgroup$
$begingroup$
Beautiful! I don't think I ever would have thought of this.
$endgroup$
– Shakespeare
Dec 10 '18 at 15:27
$begingroup$
@Shakespeare See also this prior symmetric variant.
$endgroup$
– Bill Dubuque
Dec 10 '18 at 22:21
add a comment |
$begingroup$
Suppose that $displaystyle a,b,c,frac{a}{b}+frac{b}{c}+frac{c}{a},frac{a}{c}+frac{b}{a}+frac{c}{b} in mathbb Z$.
Consider polynomial
$$P(x)=left(x-frac{a}{b}right)left(x-frac{b}{c}right)left(x-frac{c}{a}right) = x^3-left(frac{a}{b}+frac{b}{c}+frac{c}{a}right)x^2+left(frac{a}{c}+frac{b}{a}+frac{c}{b}right)x-1.$$
Its coefficients are integers. Since the leading coefficient is $1$, all rational roots of $P$ are integers. Since the constant term is $-1$, it follows that all integer roots of $P$ are $1$ or $-1$ (they must divide the constant term). Since $dfrac ab, dfrac bc, dfrac ca$ are rational roots of $P$, it follows that $dfrac ab, dfrac bc, dfrac ca in {-1,1}$.
$endgroup$
Suppose that $displaystyle a,b,c,frac{a}{b}+frac{b}{c}+frac{c}{a},frac{a}{c}+frac{b}{a}+frac{c}{b} in mathbb Z$.
Consider polynomial
$$P(x)=left(x-frac{a}{b}right)left(x-frac{b}{c}right)left(x-frac{c}{a}right) = x^3-left(frac{a}{b}+frac{b}{c}+frac{c}{a}right)x^2+left(frac{a}{c}+frac{b}{a}+frac{c}{b}right)x-1.$$
Its coefficients are integers. Since the leading coefficient is $1$, all rational roots of $P$ are integers. Since the constant term is $-1$, it follows that all integer roots of $P$ are $1$ or $-1$ (they must divide the constant term). Since $dfrac ab, dfrac bc, dfrac ca$ are rational roots of $P$, it follows that $dfrac ab, dfrac bc, dfrac ca in {-1,1}$.
edited Dec 10 '18 at 16:34
answered Dec 10 '18 at 15:13
timon92timon92
4,3531826
4,3531826
$begingroup$
Beautiful! I don't think I ever would have thought of this.
$endgroup$
– Shakespeare
Dec 10 '18 at 15:27
$begingroup$
@Shakespeare See also this prior symmetric variant.
$endgroup$
– Bill Dubuque
Dec 10 '18 at 22:21
add a comment |
$begingroup$
Beautiful! I don't think I ever would have thought of this.
$endgroup$
– Shakespeare
Dec 10 '18 at 15:27
$begingroup$
@Shakespeare See also this prior symmetric variant.
$endgroup$
– Bill Dubuque
Dec 10 '18 at 22:21
$begingroup$
Beautiful! I don't think I ever would have thought of this.
$endgroup$
– Shakespeare
Dec 10 '18 at 15:27
$begingroup$
Beautiful! I don't think I ever would have thought of this.
$endgroup$
– Shakespeare
Dec 10 '18 at 15:27
$begingroup$
@Shakespeare See also this prior symmetric variant.
$endgroup$
– Bill Dubuque
Dec 10 '18 at 22:21
$begingroup$
@Shakespeare See also this prior symmetric variant.
$endgroup$
– Bill Dubuque
Dec 10 '18 at 22:21
add a comment |
$begingroup$
Let $(a,b,c)$ satisfy the requirements. Let $(a,b,c)$ are coprime. Then
$abc$ divides both
$a^2c + b^2a + c^2b$ and $a^2b+b^2c+c^2a$.
Let $p$ be a prime factor of $a$.
Let $d$ be the largest number such that $p^d$ divides $a$.
Then $p$ divides $b^2c$ and $c^2b$. Assume $p$ divides $b$ (and does not divide $c$).
Since $p^{d+1}$ divides $a^2$, $ab$, and $abc$, where the latter divides $a^2c + b^2a + c^2b$, it follows $p^{d+1}$ divides $b$.
This in turn implies that $p^{d+1}$ divides $a^2b+b^2c+c^2a$.
Now, $p$ does not divide $c$ by assumption of coprimality, hence $p^{d+1}$ divides $a$, a contradiction to the maximality of $d$.
Hence, none of $a,b,c$ has a prime factor. So all these numbers are equal $pm1$.
$endgroup$
add a comment |
$begingroup$
Let $(a,b,c)$ satisfy the requirements. Let $(a,b,c)$ are coprime. Then
$abc$ divides both
$a^2c + b^2a + c^2b$ and $a^2b+b^2c+c^2a$.
Let $p$ be a prime factor of $a$.
Let $d$ be the largest number such that $p^d$ divides $a$.
Then $p$ divides $b^2c$ and $c^2b$. Assume $p$ divides $b$ (and does not divide $c$).
Since $p^{d+1}$ divides $a^2$, $ab$, and $abc$, where the latter divides $a^2c + b^2a + c^2b$, it follows $p^{d+1}$ divides $b$.
This in turn implies that $p^{d+1}$ divides $a^2b+b^2c+c^2a$.
Now, $p$ does not divide $c$ by assumption of coprimality, hence $p^{d+1}$ divides $a$, a contradiction to the maximality of $d$.
Hence, none of $a,b,c$ has a prime factor. So all these numbers are equal $pm1$.
$endgroup$
add a comment |
$begingroup$
Let $(a,b,c)$ satisfy the requirements. Let $(a,b,c)$ are coprime. Then
$abc$ divides both
$a^2c + b^2a + c^2b$ and $a^2b+b^2c+c^2a$.
Let $p$ be a prime factor of $a$.
Let $d$ be the largest number such that $p^d$ divides $a$.
Then $p$ divides $b^2c$ and $c^2b$. Assume $p$ divides $b$ (and does not divide $c$).
Since $p^{d+1}$ divides $a^2$, $ab$, and $abc$, where the latter divides $a^2c + b^2a + c^2b$, it follows $p^{d+1}$ divides $b$.
This in turn implies that $p^{d+1}$ divides $a^2b+b^2c+c^2a$.
Now, $p$ does not divide $c$ by assumption of coprimality, hence $p^{d+1}$ divides $a$, a contradiction to the maximality of $d$.
Hence, none of $a,b,c$ has a prime factor. So all these numbers are equal $pm1$.
$endgroup$
Let $(a,b,c)$ satisfy the requirements. Let $(a,b,c)$ are coprime. Then
$abc$ divides both
$a^2c + b^2a + c^2b$ and $a^2b+b^2c+c^2a$.
Let $p$ be a prime factor of $a$.
Let $d$ be the largest number such that $p^d$ divides $a$.
Then $p$ divides $b^2c$ and $c^2b$. Assume $p$ divides $b$ (and does not divide $c$).
Since $p^{d+1}$ divides $a^2$, $ab$, and $abc$, where the latter divides $a^2c + b^2a + c^2b$, it follows $p^{d+1}$ divides $b$.
This in turn implies that $p^{d+1}$ divides $a^2b+b^2c+c^2a$.
Now, $p$ does not divide $c$ by assumption of coprimality, hence $p^{d+1}$ divides $a$, a contradiction to the maximality of $d$.
Hence, none of $a,b,c$ has a prime factor. So all these numbers are equal $pm1$.
edited Dec 10 '18 at 15:15
answered Dec 10 '18 at 15:10
dawdaw
24.5k1645
24.5k1645
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033895%2fsolutions-to-a-b-c-fracab-fracbc-fracca-fracba-f%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
$begingroup$
Surely, one solution is obvious.
$endgroup$
– Zachary Selk
Dec 10 '18 at 13:10
$begingroup$
How is $ (a,b,c)=(1,2,4) $ a solution? $ frac{b}{a} + frac{c}{b} + frac{a}{c} = frac{2}{1} + frac{4}{2} + frac{1}{4} = 4 + 1/4 $, not an integer.
$endgroup$
– hellHound
Dec 10 '18 at 13:22
$begingroup$
@hellhound it does not satisfy $b/a + c/b + a/c in mathbb{Z}$, only $a/b+b/c+c/a in mathbb{Z}$
$endgroup$
– Shakespeare
Dec 10 '18 at 13:25
$begingroup$
Oh, I noticed the line about your search now, my bad. Although, if I had to guess, none of the triples from your search except $ (1,1,1) $ would satisfy the problem's requirement.
$endgroup$
– hellHound
Dec 10 '18 at 13:27
1
$begingroup$
@hellhound correct, none of them do :)
$endgroup$
– Shakespeare
Dec 10 '18 at 13:28