Factoring Determinant












0












$begingroup$


I am trying to find the determinant of this matrix with eigenvalues in it.



$(lambda I - A)$ =
$begin{bmatrix}
lambda - 1 & 3 & 0 \
3 & lambda - 1 & 0 \
0 & 0 & lambda + 2 \
end{bmatrix}$



$det(A)= (lambda - 1) begin{vmatrix}
lambda - 1 & 0 \
0 & lambda + 2 \
end{vmatrix}$
-
$3begin{vmatrix}
3 & 0 \
0 & lambda + 2 \
end{vmatrix}$

+
$0begin{vmatrix}
3 & lambda - 1 \
0 & 0 \
end{vmatrix}$



Stuck here. This is the correct factorization, but what do the mean?



= $[(lambda - 1)^2 - 9](lambda + 2)$

= $(lambda - 4)(lambda + 2)^2$










share|cite|improve this question









$endgroup$












  • $begingroup$
    has the same meaning as () does.
    $endgroup$
    – xbh
    Dec 5 '18 at 1:50










  • $begingroup$
    Try expanding along the last row or column instead. That lets you start off with a partial factorization.
    $endgroup$
    – amd
    Dec 5 '18 at 3:24
















0












$begingroup$


I am trying to find the determinant of this matrix with eigenvalues in it.



$(lambda I - A)$ =
$begin{bmatrix}
lambda - 1 & 3 & 0 \
3 & lambda - 1 & 0 \
0 & 0 & lambda + 2 \
end{bmatrix}$



$det(A)= (lambda - 1) begin{vmatrix}
lambda - 1 & 0 \
0 & lambda + 2 \
end{vmatrix}$
-
$3begin{vmatrix}
3 & 0 \
0 & lambda + 2 \
end{vmatrix}$

+
$0begin{vmatrix}
3 & lambda - 1 \
0 & 0 \
end{vmatrix}$



Stuck here. This is the correct factorization, but what do the mean?



= $[(lambda - 1)^2 - 9](lambda + 2)$

= $(lambda - 4)(lambda + 2)^2$










share|cite|improve this question









$endgroup$












  • $begingroup$
    has the same meaning as () does.
    $endgroup$
    – xbh
    Dec 5 '18 at 1:50










  • $begingroup$
    Try expanding along the last row or column instead. That lets you start off with a partial factorization.
    $endgroup$
    – amd
    Dec 5 '18 at 3:24














0












0








0





$begingroup$


I am trying to find the determinant of this matrix with eigenvalues in it.



$(lambda I - A)$ =
$begin{bmatrix}
lambda - 1 & 3 & 0 \
3 & lambda - 1 & 0 \
0 & 0 & lambda + 2 \
end{bmatrix}$



$det(A)= (lambda - 1) begin{vmatrix}
lambda - 1 & 0 \
0 & lambda + 2 \
end{vmatrix}$
-
$3begin{vmatrix}
3 & 0 \
0 & lambda + 2 \
end{vmatrix}$

+
$0begin{vmatrix}
3 & lambda - 1 \
0 & 0 \
end{vmatrix}$



Stuck here. This is the correct factorization, but what do the mean?



= $[(lambda - 1)^2 - 9](lambda + 2)$

= $(lambda - 4)(lambda + 2)^2$










share|cite|improve this question









$endgroup$




I am trying to find the determinant of this matrix with eigenvalues in it.



$(lambda I - A)$ =
$begin{bmatrix}
lambda - 1 & 3 & 0 \
3 & lambda - 1 & 0 \
0 & 0 & lambda + 2 \
end{bmatrix}$



$det(A)= (lambda - 1) begin{vmatrix}
lambda - 1 & 0 \
0 & lambda + 2 \
end{vmatrix}$
-
$3begin{vmatrix}
3 & 0 \
0 & lambda + 2 \
end{vmatrix}$

+
$0begin{vmatrix}
3 & lambda - 1 \
0 & 0 \
end{vmatrix}$



Stuck here. This is the correct factorization, but what do the mean?



= $[(lambda - 1)^2 - 9](lambda + 2)$

= $(lambda - 4)(lambda + 2)^2$







linear-algebra quadratic-forms






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 5 '18 at 1:44









Evan KimEvan Kim

1068




1068












  • $begingroup$
    has the same meaning as () does.
    $endgroup$
    – xbh
    Dec 5 '18 at 1:50










  • $begingroup$
    Try expanding along the last row or column instead. That lets you start off with a partial factorization.
    $endgroup$
    – amd
    Dec 5 '18 at 3:24


















  • $begingroup$
    has the same meaning as () does.
    $endgroup$
    – xbh
    Dec 5 '18 at 1:50










  • $begingroup$
    Try expanding along the last row or column instead. That lets you start off with a partial factorization.
    $endgroup$
    – amd
    Dec 5 '18 at 3:24
















$begingroup$
has the same meaning as () does.
$endgroup$
– xbh
Dec 5 '18 at 1:50




$begingroup$
has the same meaning as () does.
$endgroup$
– xbh
Dec 5 '18 at 1:50












$begingroup$
Try expanding along the last row or column instead. That lets you start off with a partial factorization.
$endgroup$
– amd
Dec 5 '18 at 3:24




$begingroup$
Try expanding along the last row or column instead. That lets you start off with a partial factorization.
$endgroup$
– amd
Dec 5 '18 at 3:24










1 Answer
1






active

oldest

votes


















0












$begingroup$

You got $det(A)= (lambda - 1) begin{vmatrix}
lambda - 1 & 0 \
0 & lambda + 2 \
end{vmatrix}$
-
$3begin{vmatrix}
3 & 0 \
0 & lambda + 2 \
end{vmatrix}$

+
$0begin{vmatrix}
3 & lambda - 1 \
0 & 0 \
end{vmatrix}$



Which gives result as $$(lambda-1)(lambda-1)(lambda+2)-3(3(lambda+2))+0$$
$$=(lambda-1)^2(lambda+2)-9(lambda+2)$$
Now they just factored out $(lambda+2)$ from the above equation and got $$[(lambda-1)^2-9](lambda+2)$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    @Evan Kim If you find my answer helpful then accept the answer $✓$ :)
    $endgroup$
    – Key Flex
    Jan 26 at 19:56











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3026481%2ffactoring-determinant%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









0












$begingroup$

You got $det(A)= (lambda - 1) begin{vmatrix}
lambda - 1 & 0 \
0 & lambda + 2 \
end{vmatrix}$
-
$3begin{vmatrix}
3 & 0 \
0 & lambda + 2 \
end{vmatrix}$

+
$0begin{vmatrix}
3 & lambda - 1 \
0 & 0 \
end{vmatrix}$



Which gives result as $$(lambda-1)(lambda-1)(lambda+2)-3(3(lambda+2))+0$$
$$=(lambda-1)^2(lambda+2)-9(lambda+2)$$
Now they just factored out $(lambda+2)$ from the above equation and got $$[(lambda-1)^2-9](lambda+2)$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    @Evan Kim If you find my answer helpful then accept the answer $✓$ :)
    $endgroup$
    – Key Flex
    Jan 26 at 19:56
















0












$begingroup$

You got $det(A)= (lambda - 1) begin{vmatrix}
lambda - 1 & 0 \
0 & lambda + 2 \
end{vmatrix}$
-
$3begin{vmatrix}
3 & 0 \
0 & lambda + 2 \
end{vmatrix}$

+
$0begin{vmatrix}
3 & lambda - 1 \
0 & 0 \
end{vmatrix}$



Which gives result as $$(lambda-1)(lambda-1)(lambda+2)-3(3(lambda+2))+0$$
$$=(lambda-1)^2(lambda+2)-9(lambda+2)$$
Now they just factored out $(lambda+2)$ from the above equation and got $$[(lambda-1)^2-9](lambda+2)$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    @Evan Kim If you find my answer helpful then accept the answer $✓$ :)
    $endgroup$
    – Key Flex
    Jan 26 at 19:56














0












0








0





$begingroup$

You got $det(A)= (lambda - 1) begin{vmatrix}
lambda - 1 & 0 \
0 & lambda + 2 \
end{vmatrix}$
-
$3begin{vmatrix}
3 & 0 \
0 & lambda + 2 \
end{vmatrix}$

+
$0begin{vmatrix}
3 & lambda - 1 \
0 & 0 \
end{vmatrix}$



Which gives result as $$(lambda-1)(lambda-1)(lambda+2)-3(3(lambda+2))+0$$
$$=(lambda-1)^2(lambda+2)-9(lambda+2)$$
Now they just factored out $(lambda+2)$ from the above equation and got $$[(lambda-1)^2-9](lambda+2)$$






share|cite|improve this answer









$endgroup$



You got $det(A)= (lambda - 1) begin{vmatrix}
lambda - 1 & 0 \
0 & lambda + 2 \
end{vmatrix}$
-
$3begin{vmatrix}
3 & 0 \
0 & lambda + 2 \
end{vmatrix}$

+
$0begin{vmatrix}
3 & lambda - 1 \
0 & 0 \
end{vmatrix}$



Which gives result as $$(lambda-1)(lambda-1)(lambda+2)-3(3(lambda+2))+0$$
$$=(lambda-1)^2(lambda+2)-9(lambda+2)$$
Now they just factored out $(lambda+2)$ from the above equation and got $$[(lambda-1)^2-9](lambda+2)$$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Dec 5 '18 at 1:51









Key FlexKey Flex

7,94461233




7,94461233












  • $begingroup$
    @Evan Kim If you find my answer helpful then accept the answer $✓$ :)
    $endgroup$
    – Key Flex
    Jan 26 at 19:56


















  • $begingroup$
    @Evan Kim If you find my answer helpful then accept the answer $✓$ :)
    $endgroup$
    – Key Flex
    Jan 26 at 19:56
















$begingroup$
@Evan Kim If you find my answer helpful then accept the answer $✓$ :)
$endgroup$
– Key Flex
Jan 26 at 19:56




$begingroup$
@Evan Kim If you find my answer helpful then accept the answer $✓$ :)
$endgroup$
– Key Flex
Jan 26 at 19:56


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3026481%2ffactoring-determinant%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Plaza Victoria

Puebla de Zaragoza

Musa