Why is $nabla f({bf p}) =sum_i left( 2{bf p} - 2{bf p}_i right) $?












0












$begingroup$


If



$$
f({bf p}) = sum_i left({bf p}cdot {bf p} - 2{bf p}cdot {bf p}_i + {bf p}_icdot {bf p}_iright)
$$



Why is the gradient of $f(p)$ equal to



$
nabla f({bf p}) = frac{partial}{partial {bf p}}sum_i left({bf p}cdot {bf p} - 2{bf p}cdot {bf p}_i + {bf p}_icdot {bf p}_i right)
=sum_i left( 2{bf p} - 2{bf p}_i right) $










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    If



    $$
    f({bf p}) = sum_i left({bf p}cdot {bf p} - 2{bf p}cdot {bf p}_i + {bf p}_icdot {bf p}_iright)
    $$



    Why is the gradient of $f(p)$ equal to



    $
    nabla f({bf p}) = frac{partial}{partial {bf p}}sum_i left({bf p}cdot {bf p} - 2{bf p}cdot {bf p}_i + {bf p}_icdot {bf p}_i right)
    =sum_i left( 2{bf p} - 2{bf p}_i right) $










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      If



      $$
      f({bf p}) = sum_i left({bf p}cdot {bf p} - 2{bf p}cdot {bf p}_i + {bf p}_icdot {bf p}_iright)
      $$



      Why is the gradient of $f(p)$ equal to



      $
      nabla f({bf p}) = frac{partial}{partial {bf p}}sum_i left({bf p}cdot {bf p} - 2{bf p}cdot {bf p}_i + {bf p}_icdot {bf p}_i right)
      =sum_i left( 2{bf p} - 2{bf p}_i right) $










      share|cite|improve this question









      $endgroup$




      If



      $$
      f({bf p}) = sum_i left({bf p}cdot {bf p} - 2{bf p}cdot {bf p}_i + {bf p}_icdot {bf p}_iright)
      $$



      Why is the gradient of $f(p)$ equal to



      $
      nabla f({bf p}) = frac{partial}{partial {bf p}}sum_i left({bf p}cdot {bf p} - 2{bf p}cdot {bf p}_i + {bf p}_icdot {bf p}_i right)
      =sum_i left( 2{bf p} - 2{bf p}_i right) $







      calculus multivariable-calculus






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 5 '18 at 1:08









      K.MK.M

      693412




      693412






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          You can do it in components, consider the first term for example



          $$
          {bf p}cdot {bf p} = p_1p_1 + p_2p_2 + cdots
          $$



          So the gradient of this term is



          begin{eqnarray}
          frac{partial {bf p}cdot {bf p}}{partial p_1} &=& 2p_1 \
          frac{partial {bf p}cdot {bf p}}{partial p_2} &=& 2p_2 \
          &vdots &
          end{eqnarray}



          or in general



          $$
          frac{partial {bf p}cdot {bf p}}{partial {bf p}} = 2{bf p}
          $$



          Similarly you can prove that



          $$
          frac{partial {bf p}cdot {bf p}_i}{partial {bf p}} = {bf p}_i
          $$






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3026450%2fwhy-is-nabla-f-bf-p-sum-i-left-2-bf-p-2-bf-p-i-right%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            You can do it in components, consider the first term for example



            $$
            {bf p}cdot {bf p} = p_1p_1 + p_2p_2 + cdots
            $$



            So the gradient of this term is



            begin{eqnarray}
            frac{partial {bf p}cdot {bf p}}{partial p_1} &=& 2p_1 \
            frac{partial {bf p}cdot {bf p}}{partial p_2} &=& 2p_2 \
            &vdots &
            end{eqnarray}



            or in general



            $$
            frac{partial {bf p}cdot {bf p}}{partial {bf p}} = 2{bf p}
            $$



            Similarly you can prove that



            $$
            frac{partial {bf p}cdot {bf p}_i}{partial {bf p}} = {bf p}_i
            $$






            share|cite|improve this answer











            $endgroup$


















              1












              $begingroup$

              You can do it in components, consider the first term for example



              $$
              {bf p}cdot {bf p} = p_1p_1 + p_2p_2 + cdots
              $$



              So the gradient of this term is



              begin{eqnarray}
              frac{partial {bf p}cdot {bf p}}{partial p_1} &=& 2p_1 \
              frac{partial {bf p}cdot {bf p}}{partial p_2} &=& 2p_2 \
              &vdots &
              end{eqnarray}



              or in general



              $$
              frac{partial {bf p}cdot {bf p}}{partial {bf p}} = 2{bf p}
              $$



              Similarly you can prove that



              $$
              frac{partial {bf p}cdot {bf p}_i}{partial {bf p}} = {bf p}_i
              $$






              share|cite|improve this answer











              $endgroup$
















                1












                1








                1





                $begingroup$

                You can do it in components, consider the first term for example



                $$
                {bf p}cdot {bf p} = p_1p_1 + p_2p_2 + cdots
                $$



                So the gradient of this term is



                begin{eqnarray}
                frac{partial {bf p}cdot {bf p}}{partial p_1} &=& 2p_1 \
                frac{partial {bf p}cdot {bf p}}{partial p_2} &=& 2p_2 \
                &vdots &
                end{eqnarray}



                or in general



                $$
                frac{partial {bf p}cdot {bf p}}{partial {bf p}} = 2{bf p}
                $$



                Similarly you can prove that



                $$
                frac{partial {bf p}cdot {bf p}_i}{partial {bf p}} = {bf p}_i
                $$






                share|cite|improve this answer











                $endgroup$



                You can do it in components, consider the first term for example



                $$
                {bf p}cdot {bf p} = p_1p_1 + p_2p_2 + cdots
                $$



                So the gradient of this term is



                begin{eqnarray}
                frac{partial {bf p}cdot {bf p}}{partial p_1} &=& 2p_1 \
                frac{partial {bf p}cdot {bf p}}{partial p_2} &=& 2p_2 \
                &vdots &
                end{eqnarray}



                or in general



                $$
                frac{partial {bf p}cdot {bf p}}{partial {bf p}} = 2{bf p}
                $$



                Similarly you can prove that



                $$
                frac{partial {bf p}cdot {bf p}_i}{partial {bf p}} = {bf p}_i
                $$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Dec 5 '18 at 1:51

























                answered Dec 5 '18 at 1:45









                caveraccaverac

                14.5k31130




                14.5k31130






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3026450%2fwhy-is-nabla-f-bf-p-sum-i-left-2-bf-p-2-bf-p-i-right%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Plaza Victoria

                    Puebla de Zaragoza

                    Musa