Show that $hat{f}$ is continuous and $hat{f(xi)}rightarrow 0 $ as $|xi|rightarrow 0$
$begingroup$
Suppose $f$ continuous and of moderate decrease. Denote the Fourier Transform of $f$ by $hat{f}$. I need to prove that $hat{f}$ is continuous and $hat{f(xi)}rightarrow 0 $ as $|xi|rightarrow 0$.
For the first part, I'm thinking to show that $|hat{f}(xi+h)-hat{f}(xi)|$ goes to zero when $h$ goes to zero. So, I have
$$ |hat{f}(xi+h)-hat{f}(xi)|=left|int_{mathbb{R}}f(x)e^{-2pi ix(xi+h)}dx-int_{mathbb{R}}f(x)e^{-2pi ixxi}dx right| $$
$$leqint_{mathbb{R}} |f(x)|left|e^{-2pi ixxi}right|left|e^{-2pi ixh}-1right|dx $$
If $hrightarrow 0$, so $e^{-2pi ixh}rightarrow 1$, and this implies $left|e^{-2pi ixh}-1right|rightarrow 0$. So, the integral goes to zero and $hat{f}$ is continuous.
Is this proof correct?
For the second part, the hint is to prove the following statement:
$$hat{f}(xi)=frac{1}{2}int_{mathbb{R}}left[f(x)-fleft(x-frac{1}{2xi}right)right]e^{-2pi i x xi}dx $$
If that is true, when $|xi|rightarrow 0$, $fleft(1-frac{1}{2xi}right)rightarrow f(x)$, and it implies $hat{f}(xi)rightarrow 0$. So, I just need to prove that statement.
All that I have is:
$$frac{1}{2}int_{mathbb{R}}left[f(x)-fleft(x-frac{1}{2xi}right)right]e^{-2pi i x xi}dx=frac{1}{2}hat{f}(xi)-frac{1}{2}int_{mathbb{R}}fleft(1-frac{1}{2xi}right)e^{-2pi i x xi}dx$$
So, prove the statement is equivalent to prove that
$$int_{mathbb{R}}fleft(1-frac{1}{2xi}right)e^{-2pi i x xi}dx=-frac{1}{2}hat{f}(xi)$$
How can I prove that?
fourier-analysis fourier-transform
$endgroup$
add a comment |
$begingroup$
Suppose $f$ continuous and of moderate decrease. Denote the Fourier Transform of $f$ by $hat{f}$. I need to prove that $hat{f}$ is continuous and $hat{f(xi)}rightarrow 0 $ as $|xi|rightarrow 0$.
For the first part, I'm thinking to show that $|hat{f}(xi+h)-hat{f}(xi)|$ goes to zero when $h$ goes to zero. So, I have
$$ |hat{f}(xi+h)-hat{f}(xi)|=left|int_{mathbb{R}}f(x)e^{-2pi ix(xi+h)}dx-int_{mathbb{R}}f(x)e^{-2pi ixxi}dx right| $$
$$leqint_{mathbb{R}} |f(x)|left|e^{-2pi ixxi}right|left|e^{-2pi ixh}-1right|dx $$
If $hrightarrow 0$, so $e^{-2pi ixh}rightarrow 1$, and this implies $left|e^{-2pi ixh}-1right|rightarrow 0$. So, the integral goes to zero and $hat{f}$ is continuous.
Is this proof correct?
For the second part, the hint is to prove the following statement:
$$hat{f}(xi)=frac{1}{2}int_{mathbb{R}}left[f(x)-fleft(x-frac{1}{2xi}right)right]e^{-2pi i x xi}dx $$
If that is true, when $|xi|rightarrow 0$, $fleft(1-frac{1}{2xi}right)rightarrow f(x)$, and it implies $hat{f}(xi)rightarrow 0$. So, I just need to prove that statement.
All that I have is:
$$frac{1}{2}int_{mathbb{R}}left[f(x)-fleft(x-frac{1}{2xi}right)right]e^{-2pi i x xi}dx=frac{1}{2}hat{f}(xi)-frac{1}{2}int_{mathbb{R}}fleft(1-frac{1}{2xi}right)e^{-2pi i x xi}dx$$
So, prove the statement is equivalent to prove that
$$int_{mathbb{R}}fleft(1-frac{1}{2xi}right)e^{-2pi i x xi}dx=-frac{1}{2}hat{f}(xi)$$
How can I prove that?
fourier-analysis fourier-transform
$endgroup$
1
$begingroup$
Please be careful about commuting limits and integrals, as the answer below notes, this is justified here by DCT
$endgroup$
– qbert
Dec 5 '18 at 6:57
add a comment |
$begingroup$
Suppose $f$ continuous and of moderate decrease. Denote the Fourier Transform of $f$ by $hat{f}$. I need to prove that $hat{f}$ is continuous and $hat{f(xi)}rightarrow 0 $ as $|xi|rightarrow 0$.
For the first part, I'm thinking to show that $|hat{f}(xi+h)-hat{f}(xi)|$ goes to zero when $h$ goes to zero. So, I have
$$ |hat{f}(xi+h)-hat{f}(xi)|=left|int_{mathbb{R}}f(x)e^{-2pi ix(xi+h)}dx-int_{mathbb{R}}f(x)e^{-2pi ixxi}dx right| $$
$$leqint_{mathbb{R}} |f(x)|left|e^{-2pi ixxi}right|left|e^{-2pi ixh}-1right|dx $$
If $hrightarrow 0$, so $e^{-2pi ixh}rightarrow 1$, and this implies $left|e^{-2pi ixh}-1right|rightarrow 0$. So, the integral goes to zero and $hat{f}$ is continuous.
Is this proof correct?
For the second part, the hint is to prove the following statement:
$$hat{f}(xi)=frac{1}{2}int_{mathbb{R}}left[f(x)-fleft(x-frac{1}{2xi}right)right]e^{-2pi i x xi}dx $$
If that is true, when $|xi|rightarrow 0$, $fleft(1-frac{1}{2xi}right)rightarrow f(x)$, and it implies $hat{f}(xi)rightarrow 0$. So, I just need to prove that statement.
All that I have is:
$$frac{1}{2}int_{mathbb{R}}left[f(x)-fleft(x-frac{1}{2xi}right)right]e^{-2pi i x xi}dx=frac{1}{2}hat{f}(xi)-frac{1}{2}int_{mathbb{R}}fleft(1-frac{1}{2xi}right)e^{-2pi i x xi}dx$$
So, prove the statement is equivalent to prove that
$$int_{mathbb{R}}fleft(1-frac{1}{2xi}right)e^{-2pi i x xi}dx=-frac{1}{2}hat{f}(xi)$$
How can I prove that?
fourier-analysis fourier-transform
$endgroup$
Suppose $f$ continuous and of moderate decrease. Denote the Fourier Transform of $f$ by $hat{f}$. I need to prove that $hat{f}$ is continuous and $hat{f(xi)}rightarrow 0 $ as $|xi|rightarrow 0$.
For the first part, I'm thinking to show that $|hat{f}(xi+h)-hat{f}(xi)|$ goes to zero when $h$ goes to zero. So, I have
$$ |hat{f}(xi+h)-hat{f}(xi)|=left|int_{mathbb{R}}f(x)e^{-2pi ix(xi+h)}dx-int_{mathbb{R}}f(x)e^{-2pi ixxi}dx right| $$
$$leqint_{mathbb{R}} |f(x)|left|e^{-2pi ixxi}right|left|e^{-2pi ixh}-1right|dx $$
If $hrightarrow 0$, so $e^{-2pi ixh}rightarrow 1$, and this implies $left|e^{-2pi ixh}-1right|rightarrow 0$. So, the integral goes to zero and $hat{f}$ is continuous.
Is this proof correct?
For the second part, the hint is to prove the following statement:
$$hat{f}(xi)=frac{1}{2}int_{mathbb{R}}left[f(x)-fleft(x-frac{1}{2xi}right)right]e^{-2pi i x xi}dx $$
If that is true, when $|xi|rightarrow 0$, $fleft(1-frac{1}{2xi}right)rightarrow f(x)$, and it implies $hat{f}(xi)rightarrow 0$. So, I just need to prove that statement.
All that I have is:
$$frac{1}{2}int_{mathbb{R}}left[f(x)-fleft(x-frac{1}{2xi}right)right]e^{-2pi i x xi}dx=frac{1}{2}hat{f}(xi)-frac{1}{2}int_{mathbb{R}}fleft(1-frac{1}{2xi}right)e^{-2pi i x xi}dx$$
So, prove the statement is equivalent to prove that
$$int_{mathbb{R}}fleft(1-frac{1}{2xi}right)e^{-2pi i x xi}dx=-frac{1}{2}hat{f}(xi)$$
How can I prove that?
fourier-analysis fourier-transform
fourier-analysis fourier-transform
asked Dec 5 '18 at 1:53
Mateus RochaMateus Rocha
817117
817117
1
$begingroup$
Please be careful about commuting limits and integrals, as the answer below notes, this is justified here by DCT
$endgroup$
– qbert
Dec 5 '18 at 6:57
add a comment |
1
$begingroup$
Please be careful about commuting limits and integrals, as the answer below notes, this is justified here by DCT
$endgroup$
– qbert
Dec 5 '18 at 6:57
1
1
$begingroup$
Please be careful about commuting limits and integrals, as the answer below notes, this is justified here by DCT
$endgroup$
– qbert
Dec 5 '18 at 6:57
$begingroup$
Please be careful about commuting limits and integrals, as the answer below notes, this is justified here by DCT
$endgroup$
– qbert
Dec 5 '18 at 6:57
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
If by moderate decrease you mean that $int_{-infty}^infty |f(x)| , dx < infty$ then your proof of the first part is correct and the interchange of limit and integral is justified by the dominated convergence theorem.
For the second part, using the change of variables $x = u + dfrac{1}{2xi}$ we have, since $e^{-pi i} = -1$,
$$int_{-R}^R fleft(x- frac{1}{2xi}right) e^{-2pi i xi x} , dx = int_{-R-frac{1}{2xi}}^{R- frac{1}{2xi}} f(u) e^{-2pi i xi u}e^{-pi i} , du = -int_{-R-frac{1}{2xi}}^{R- frac{1}{2xi}} f(u) e^{-2pi i xi u} , du, $$
Thus,
$$tag{*}int_{-infty}^infty fleft(x- frac{1}{2xi}right) e^{-2pi i xi x} , dx = -lim_{Rto infty}int_{-R-frac{1}{2xi}}^{R- frac{1}{2xi}} f(u) e^{-2pi i xi u} , du = -int_{-infty}^{infty} f(u) e^{-2pi i xi u} , du \ - hat{f}(xi)$$
Subtracting (*) from $displaystylehat{f}(xi) = int_{-infty}^{infty} f(x) e^{-2pi i xi x} , dx $, we get
$$2hat{f}(xi) = int_{-infty}^infty fleft(xright) e^{-2pi i xi x} , dx - int_{-infty}^infty fleft(x- frac{1}{2xi}right) e^{-2pi i xi x} , dx, $$
which implies
$$hat{f}(xi) = frac{1}{2} int_{-infty}^infty left[f(x) - fleft(x- frac{1}{2xi}right)right] e^{-2pi i xi x} , dx$$
$endgroup$
$begingroup$
My definition to Moderate decrease is: Exists $A>0$ such that $|f(x)|leqfrac{A}{1+x^2}$ for all $xinmathbb{R}$. That definition implies yours?
$endgroup$
– Mateus Rocha
Dec 5 '18 at 14:04
$begingroup$
@MateusRocha: Yes that implies that $f$ is absolutely integrable, a sufficient condition for the Fourier transform to exist and be uniformly continuous. Note that $int_{mathbb{R}} |f(x)| , dx leqslant int_{mathbb{R}} frac{A}{1 +x^2}, dx = Api < infty$. Then everything above works out well.
$endgroup$
– RRL
Dec 5 '18 at 14:10
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3026488%2fshow-that-hatf-is-continuous-and-hatf-xi-rightarrow-0-as-xi-rig%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If by moderate decrease you mean that $int_{-infty}^infty |f(x)| , dx < infty$ then your proof of the first part is correct and the interchange of limit and integral is justified by the dominated convergence theorem.
For the second part, using the change of variables $x = u + dfrac{1}{2xi}$ we have, since $e^{-pi i} = -1$,
$$int_{-R}^R fleft(x- frac{1}{2xi}right) e^{-2pi i xi x} , dx = int_{-R-frac{1}{2xi}}^{R- frac{1}{2xi}} f(u) e^{-2pi i xi u}e^{-pi i} , du = -int_{-R-frac{1}{2xi}}^{R- frac{1}{2xi}} f(u) e^{-2pi i xi u} , du, $$
Thus,
$$tag{*}int_{-infty}^infty fleft(x- frac{1}{2xi}right) e^{-2pi i xi x} , dx = -lim_{Rto infty}int_{-R-frac{1}{2xi}}^{R- frac{1}{2xi}} f(u) e^{-2pi i xi u} , du = -int_{-infty}^{infty} f(u) e^{-2pi i xi u} , du \ - hat{f}(xi)$$
Subtracting (*) from $displaystylehat{f}(xi) = int_{-infty}^{infty} f(x) e^{-2pi i xi x} , dx $, we get
$$2hat{f}(xi) = int_{-infty}^infty fleft(xright) e^{-2pi i xi x} , dx - int_{-infty}^infty fleft(x- frac{1}{2xi}right) e^{-2pi i xi x} , dx, $$
which implies
$$hat{f}(xi) = frac{1}{2} int_{-infty}^infty left[f(x) - fleft(x- frac{1}{2xi}right)right] e^{-2pi i xi x} , dx$$
$endgroup$
$begingroup$
My definition to Moderate decrease is: Exists $A>0$ such that $|f(x)|leqfrac{A}{1+x^2}$ for all $xinmathbb{R}$. That definition implies yours?
$endgroup$
– Mateus Rocha
Dec 5 '18 at 14:04
$begingroup$
@MateusRocha: Yes that implies that $f$ is absolutely integrable, a sufficient condition for the Fourier transform to exist and be uniformly continuous. Note that $int_{mathbb{R}} |f(x)| , dx leqslant int_{mathbb{R}} frac{A}{1 +x^2}, dx = Api < infty$. Then everything above works out well.
$endgroup$
– RRL
Dec 5 '18 at 14:10
add a comment |
$begingroup$
If by moderate decrease you mean that $int_{-infty}^infty |f(x)| , dx < infty$ then your proof of the first part is correct and the interchange of limit and integral is justified by the dominated convergence theorem.
For the second part, using the change of variables $x = u + dfrac{1}{2xi}$ we have, since $e^{-pi i} = -1$,
$$int_{-R}^R fleft(x- frac{1}{2xi}right) e^{-2pi i xi x} , dx = int_{-R-frac{1}{2xi}}^{R- frac{1}{2xi}} f(u) e^{-2pi i xi u}e^{-pi i} , du = -int_{-R-frac{1}{2xi}}^{R- frac{1}{2xi}} f(u) e^{-2pi i xi u} , du, $$
Thus,
$$tag{*}int_{-infty}^infty fleft(x- frac{1}{2xi}right) e^{-2pi i xi x} , dx = -lim_{Rto infty}int_{-R-frac{1}{2xi}}^{R- frac{1}{2xi}} f(u) e^{-2pi i xi u} , du = -int_{-infty}^{infty} f(u) e^{-2pi i xi u} , du \ - hat{f}(xi)$$
Subtracting (*) from $displaystylehat{f}(xi) = int_{-infty}^{infty} f(x) e^{-2pi i xi x} , dx $, we get
$$2hat{f}(xi) = int_{-infty}^infty fleft(xright) e^{-2pi i xi x} , dx - int_{-infty}^infty fleft(x- frac{1}{2xi}right) e^{-2pi i xi x} , dx, $$
which implies
$$hat{f}(xi) = frac{1}{2} int_{-infty}^infty left[f(x) - fleft(x- frac{1}{2xi}right)right] e^{-2pi i xi x} , dx$$
$endgroup$
$begingroup$
My definition to Moderate decrease is: Exists $A>0$ such that $|f(x)|leqfrac{A}{1+x^2}$ for all $xinmathbb{R}$. That definition implies yours?
$endgroup$
– Mateus Rocha
Dec 5 '18 at 14:04
$begingroup$
@MateusRocha: Yes that implies that $f$ is absolutely integrable, a sufficient condition for the Fourier transform to exist and be uniformly continuous. Note that $int_{mathbb{R}} |f(x)| , dx leqslant int_{mathbb{R}} frac{A}{1 +x^2}, dx = Api < infty$. Then everything above works out well.
$endgroup$
– RRL
Dec 5 '18 at 14:10
add a comment |
$begingroup$
If by moderate decrease you mean that $int_{-infty}^infty |f(x)| , dx < infty$ then your proof of the first part is correct and the interchange of limit and integral is justified by the dominated convergence theorem.
For the second part, using the change of variables $x = u + dfrac{1}{2xi}$ we have, since $e^{-pi i} = -1$,
$$int_{-R}^R fleft(x- frac{1}{2xi}right) e^{-2pi i xi x} , dx = int_{-R-frac{1}{2xi}}^{R- frac{1}{2xi}} f(u) e^{-2pi i xi u}e^{-pi i} , du = -int_{-R-frac{1}{2xi}}^{R- frac{1}{2xi}} f(u) e^{-2pi i xi u} , du, $$
Thus,
$$tag{*}int_{-infty}^infty fleft(x- frac{1}{2xi}right) e^{-2pi i xi x} , dx = -lim_{Rto infty}int_{-R-frac{1}{2xi}}^{R- frac{1}{2xi}} f(u) e^{-2pi i xi u} , du = -int_{-infty}^{infty} f(u) e^{-2pi i xi u} , du \ - hat{f}(xi)$$
Subtracting (*) from $displaystylehat{f}(xi) = int_{-infty}^{infty} f(x) e^{-2pi i xi x} , dx $, we get
$$2hat{f}(xi) = int_{-infty}^infty fleft(xright) e^{-2pi i xi x} , dx - int_{-infty}^infty fleft(x- frac{1}{2xi}right) e^{-2pi i xi x} , dx, $$
which implies
$$hat{f}(xi) = frac{1}{2} int_{-infty}^infty left[f(x) - fleft(x- frac{1}{2xi}right)right] e^{-2pi i xi x} , dx$$
$endgroup$
If by moderate decrease you mean that $int_{-infty}^infty |f(x)| , dx < infty$ then your proof of the first part is correct and the interchange of limit and integral is justified by the dominated convergence theorem.
For the second part, using the change of variables $x = u + dfrac{1}{2xi}$ we have, since $e^{-pi i} = -1$,
$$int_{-R}^R fleft(x- frac{1}{2xi}right) e^{-2pi i xi x} , dx = int_{-R-frac{1}{2xi}}^{R- frac{1}{2xi}} f(u) e^{-2pi i xi u}e^{-pi i} , du = -int_{-R-frac{1}{2xi}}^{R- frac{1}{2xi}} f(u) e^{-2pi i xi u} , du, $$
Thus,
$$tag{*}int_{-infty}^infty fleft(x- frac{1}{2xi}right) e^{-2pi i xi x} , dx = -lim_{Rto infty}int_{-R-frac{1}{2xi}}^{R- frac{1}{2xi}} f(u) e^{-2pi i xi u} , du = -int_{-infty}^{infty} f(u) e^{-2pi i xi u} , du \ - hat{f}(xi)$$
Subtracting (*) from $displaystylehat{f}(xi) = int_{-infty}^{infty} f(x) e^{-2pi i xi x} , dx $, we get
$$2hat{f}(xi) = int_{-infty}^infty fleft(xright) e^{-2pi i xi x} , dx - int_{-infty}^infty fleft(x- frac{1}{2xi}right) e^{-2pi i xi x} , dx, $$
which implies
$$hat{f}(xi) = frac{1}{2} int_{-infty}^infty left[f(x) - fleft(x- frac{1}{2xi}right)right] e^{-2pi i xi x} , dx$$
answered Dec 5 '18 at 6:53
RRLRRL
50.7k42573
50.7k42573
$begingroup$
My definition to Moderate decrease is: Exists $A>0$ such that $|f(x)|leqfrac{A}{1+x^2}$ for all $xinmathbb{R}$. That definition implies yours?
$endgroup$
– Mateus Rocha
Dec 5 '18 at 14:04
$begingroup$
@MateusRocha: Yes that implies that $f$ is absolutely integrable, a sufficient condition for the Fourier transform to exist and be uniformly continuous. Note that $int_{mathbb{R}} |f(x)| , dx leqslant int_{mathbb{R}} frac{A}{1 +x^2}, dx = Api < infty$. Then everything above works out well.
$endgroup$
– RRL
Dec 5 '18 at 14:10
add a comment |
$begingroup$
My definition to Moderate decrease is: Exists $A>0$ such that $|f(x)|leqfrac{A}{1+x^2}$ for all $xinmathbb{R}$. That definition implies yours?
$endgroup$
– Mateus Rocha
Dec 5 '18 at 14:04
$begingroup$
@MateusRocha: Yes that implies that $f$ is absolutely integrable, a sufficient condition for the Fourier transform to exist and be uniformly continuous. Note that $int_{mathbb{R}} |f(x)| , dx leqslant int_{mathbb{R}} frac{A}{1 +x^2}, dx = Api < infty$. Then everything above works out well.
$endgroup$
– RRL
Dec 5 '18 at 14:10
$begingroup$
My definition to Moderate decrease is: Exists $A>0$ such that $|f(x)|leqfrac{A}{1+x^2}$ for all $xinmathbb{R}$. That definition implies yours?
$endgroup$
– Mateus Rocha
Dec 5 '18 at 14:04
$begingroup$
My definition to Moderate decrease is: Exists $A>0$ such that $|f(x)|leqfrac{A}{1+x^2}$ for all $xinmathbb{R}$. That definition implies yours?
$endgroup$
– Mateus Rocha
Dec 5 '18 at 14:04
$begingroup$
@MateusRocha: Yes that implies that $f$ is absolutely integrable, a sufficient condition for the Fourier transform to exist and be uniformly continuous. Note that $int_{mathbb{R}} |f(x)| , dx leqslant int_{mathbb{R}} frac{A}{1 +x^2}, dx = Api < infty$. Then everything above works out well.
$endgroup$
– RRL
Dec 5 '18 at 14:10
$begingroup$
@MateusRocha: Yes that implies that $f$ is absolutely integrable, a sufficient condition for the Fourier transform to exist and be uniformly continuous. Note that $int_{mathbb{R}} |f(x)| , dx leqslant int_{mathbb{R}} frac{A}{1 +x^2}, dx = Api < infty$. Then everything above works out well.
$endgroup$
– RRL
Dec 5 '18 at 14:10
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3026488%2fshow-that-hatf-is-continuous-and-hatf-xi-rightarrow-0-as-xi-rig%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Please be careful about commuting limits and integrals, as the answer below notes, this is justified here by DCT
$endgroup$
– qbert
Dec 5 '18 at 6:57